
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Pecan: Cost-Efficient ML Data Preprocessing
with Automatic Transformation Ordering

and Hybrid Placement
Dan Graur, Oto Mraz, Muyu Li, and Sepehr Pourghannad, ETH Zurich;

Chandramohan A. Thekkath, Google; Ana Klimovic, ETH Zurich
https://www.usenix.org/conference/atc24/presentation/graur

Pecan: Cost-Efficient ML Data Preprocessing with Automatic Transformation
Ordering and Hybrid Placement

Dan Graur∗

ETH Zurich
Oto Mraz∗

ETH Zurich
Muyu Li

ETH Zurich
Sepehr Pourghannad

ETH Zurich

Chandramohan A. Thekkath
Google

Ana Klimovic
ETH Zurich

Abstract
Input data preprocessing is a common bottleneck in ma-

chine learning (ML) jobs, that can significantly increase train-
ing time and cost as expensive GPUs or TPUs idle waiting
for input data. Previous work has shown that offloading data
preprocessing to remote CPU servers successfully alleviates
data stalls and improves training time. However, remote CPU
workers in disaggregated data processing systems comprise a
significant fraction of total training costs. Meanwhile, current
disaggregated solutions often underutilize CPU and DRAM
resources available on ML accelerator nodes. We propose two
approaches to alleviate ML input data stalls while minimiz-
ing costs. First, we dynamically schedule data preprocessing
workers on ML accelerator host resources to minimize the
number of remote CPU workers needed to achieve peak data
ingestion bandwidth. Second, we analyze the characteristics
of input pipelines and automatically reorder transformations
to increase data preprocessing worker throughput. We ob-
serve that relaxing commutativity increases throughput while
maintaining high model accuracy for a variety of ML data
pipelines. We build Pecan, an ML data preprocessing ser-
vice that automates data preprocessing worker placement and
transformation reordering decisions. Pecan reduces prepro-
cessing costs by 87% on average and total training costs by
up to 60% compared to training with state-of-the-art disag-
gregated data preprocessing and total training costs by 55%
on average compared to collocated data preprocessing.

1 Introduction

Input data processing is essential for training machine learn-
ing (ML) models. Data transformations applied on-the-fly dur-
ing training (e.g., shuffling, sampling, and randomly augment-
ing data) improve model generalization and accuracy [12].
Data preprocessing also impacts end-to-end training time
and cost. As ML input data pipelines typically execute on

*Authors contributed equally to this work.

ResNet50_v2-8 SimCLR RetinaNet ASRTrans ResNet50_v3-8
Model

0

2

4

6

8

To
ta

l t
ra

in
in

g
co

st
 p

er
 e

po
ch

 ($
)

4.55
4.13

0.82
1.58

8.26

0.56
1.34

0.82 1.02
0.65

0.91

1.41

0.18 0.18
0.95

Collocated data
preprocessing
TPU cost

Disaggregated data
preprocessing
Remote worker cost

Figure 1: Disaggregated data preprocessing reduces cost for
training jobs that are input-bound with collocated data pre-
processing (e.g., ResNet50, SimCLR). In disaggregated jobs,
remote CPU workers make up a sizeable fraction of total cost.

CPUs to support user-defined transformations [54], prepro-
cessing data fast enough to keep up with the high data in-
gestion bandwidth of ML hardware accelerators is challeng-
ing [70]. Avoiding input data stalls is critical as idling expen-
sive GPUs or TPUs significantly increases training time and
cost [5, 10, 22, 32, 47, 53, 58, 66].

Prior work proposes to eliminate data stalls during ML
training by disaggregating and offloading data preprocessing
to remote CPU servers [5, 22, 78]. In a disaggregated deploy-
ment, remote workers (i.e., commodity VMs with moderate
CPU/DRAM allocations) preprocess data and send batches
over the network to ML accelerator nodes i.e., training clients
equipped with accelerators such as GPUs or TPUs). In con-
trast to a collocated deployment, where preprocessing runs on
the local CPU and memory of ML accelerator hosts, disaggre-
gation allows independent right-sizing of CPU and DRAM
resources for data preprocessing. This flexibility alleviates
bottlenecks, as each training job has unique resource require-
ments [5, 22, 53]. Figure 1 shows that offloading preprocess-
ing to remote CPUs (e.g., with Cachew [22]) reduces training
costs by up to 81% compared to collocated preprocessing on
ML accelerator hosts. By scaling out data processing, Cachew
eliminates data stalls and maximizes training throughput, re-

USENIX Association 2024 USENIX Annual Technical Conference 649

ducing the time that expensive accelerators are used. In pro-
duction ML training jobs, this can improve end-to-end time
by up to 99% [5].

However, Figure 1 shows that the remote CPU servers re-
quired to feed model training without stalls can comprise a
significant portion of end-to-end training costs in fully disag-
gregated deployments (e.g., on TPUv2-8: 62% for ResNet,
51% for SimCLR; on TPUv3-8: 15% for ASRTransformer
(ASRTrans), and 59% for ResNet). Furthermore, some mod-
els (e.g., RetinaNet on TPUv2-8) are not input-bound with
collocated data processing and do not need remote workers at
all to avoid data stalls. A key drawback of fully disaggregated
preprocessing systems like Cachew [22] and Meta’s DPP [78]
is that they do not leverage the available CPU and DRAM
resources on ML accelerator nodes for data preprocessing.
These resources remain idle and cannot easily be used by other
datacenter workloads, as accelerator nodes are typically dedi-
cated to ML workloads to avoid interference [5,36,70,72]. Un-
derutilizing ML accelerator hosts is wasteful, particularly as
these servers are typically equipped with many CPU cores and
high DRAM capacity per accelerator. For example, Google
Cloud TPU virtual machines (VMs) have 96 CPU cores and
335 GB of DRAM per 8-core accelerator [18]. Users must
pay for all resources on accelerator VMs, regardless of their
utilization. Furthermore, users pay extra for each remote CPU
server used for disaggregated data preprocessing.

The main question we address in this work is: how can
we alleviate ML input data stalls more cost-effectively? We
have two main insights. First, we dynamically schedule data
preprocessing workers across ML accelerator host resources,
which minimizes the number of remote CPU servers needed
to avoid data stalls. Second, in contrast to prior work that
treats the input pipeline as a black box, we analyze the charac-
teristics of data transformations in data pipelines and reorder
transformations to maximize throughput. For example, we
can increase throughput by placing transformations that re-
duce the volume of data early on in the pipeline while pushing
transformations that increase the volume of data toward the
end. While many transformations are not commutative, we
observe that for a variety of pipelines that randomly augment
data, relaxing commutativity does not impact model accu-
racy. The reordered input pipelines have higher throughput
per CPU worker and hence require fewer remote workers to
saturate accelerator ingestion bandwidth, which reduces cost.

Applying these insights to real input data pipelines is non-
trivial. Finding the optimal fraction of data preprocessing
workers to schedule locally vs. remotely is a complex op-
timization problem. It involves finding the right balance of
three types of tasks that run on ML accelerator hosts: local
data preprocessing, network processing (including deserial-
ization and decompression) for data batches arriving from
any remote workers, and data loading to ML accelerators.
Optimizing preprocessing throughput via transformation re-
ordering requires analyzing how each transformation affects

a data element’s size, which can depend on the input element
(e.g., some transformations apply relative resizing whereas
others output fixed-size elements). Scheduling data workers
and reordering transformations are both complex decisions,
which are a burden for ML practitioners to optimize.

We propose Pecan, an ML data preprocessing service that
leverages these insights to alleviate data stalls while mini-
mizing training costs. Pecan’s AutoPlacement policy scales
data preprocessing workers and places them across local and
remote resources to minimize cost. The AutoOrder policy
transparently reorders input pipeline transformations to max-
imize per-worker throughput. We show that the AutoPlace-
ment and AutoOrder policies reduce total training costs by
up to 60% compared to Cachew [22], a state-of-the-art disag-
gregated data preprocessing system and by 55% on average
compared to collocated data preprocessing. Pecan’s policies
do not compromise on training time or model accuracy.

2 ML Input Data Preprocessing

Online vs. offline preprocessing. ML data preprocessing
consists of two stages: offline and online. Offline preprocess-
ing executes in batch processing frameworks (e.g., Apache
Spark [75], Beam [1]) and applies transformations that require
a view of the whole dataset, such as normalizing data and iden-
tifying outliers [54]. The outputs of offline preprocessing are
persisted to storage and serve as input for online preprocess-
ing. Online (or “last-mile”) data preprocessing transforms
data on-the-fly during training, with per-element transforma-
tions tailored for the ML model. Transformations include
domain-specific operations, such as random image flipping,
cropping, and rotation [2, 5, 40, 54, 59] as well as domain-
agnostic operations, such as shuffling, batching, and casting.
We focus on online preprocessing, as it is on the critical path
of training, hence directly affecting training time and cost.

Frameworks for online preprocessing. Online prepro-
cessing frameworks integrate directly with ML training plat-
forms. For example, PyTorch DataLoader [60] preprocesses
data on-the-fly for PyTorch training jobs, offering high paral-
lelism via multi-processing. NVIDIA DALI integrates with
both PyTorch and TensorFlow [56]. tf.data is TensorFlow’s
native data loader [54], which we extend in our work as it is
widely used and supports offloading online preprocessing to
remote CPUs. tf.data’s Python API offers a library of trans-
formations, which users compose and parametrize to define
their input pipeline logic [19]. Internally, tf.data represents
the input pipeline as a graph and optimizes the graph before
execution by fusing and vectorizing operators. While execut-
ing the input pipeline, tf.data also autotunes its thread pool
and memory buffer sizes to maximize throughput [54].

Disaggregated vs. collocated data preprocessing. Con-
ventionally, ML frameworks collocate data preprocessing
with training. However, as ML accelerator ingestion band-
width continues to scale, data preprocessing can easily satu-

650 2024 USENIX Annual Technical Conference USENIX Association

rate host CPU and DRAM on ML accelerator nodes and stall
training. Some frameworks offer a disaggregated data prepro-
cessing mode, which schedules preprocessing on remote CPU
workers, enabling flexible scale-out per job. This approach
is widely adopted in production at Meta and Google. Meta’s
internal Data Preprocessing (DPP) system offloads prepro-
cessing to remote nodes [52, 78]. Google’s tf.data service
disaggregates tf.data workers from ML accelerator nodes and
is available open source [5]. When deploying a disaggregated
preprocessing service, practitioners can manually configure
the number of remote workers, use hardware utilization-based
autoscalers like Kubernetes Horizontal Pod Autoscaler [41]
and AutoPilot [63], or scale workers based on application-
specific metrics. Our work builds on Cachew [22], which
autoscales remote tf.data service workers by monitoring and
minimizing batch processing time in training jobs.

3 Cost Saving Opportunities & Challenges

We explore two opportunities for cost-efficient data prepro-
cessing: scheduling data preprocessing on a combination of
remote CPUs and local ML accelerator hosts (§3.1) and re-
ordering data transformations to maximize throughput (§3.2).

3.1 Exploiting Local Resources
While scaling out data preprocessing to remote CPU workers
mitigates data stalls [5], relying exclusively on remote servers
leaves vast CPU and DRAM on accelerator hosts underuti-
lized. For example, A100 GPUs in AWS EC2 have 12 CPU
cores and 144 GB of DRAM per GPU [4]. In Google Cloud,
8-core TPUv2-8 accelerators come with 96 cores and 335
GB of DRAM [18]. When training ResNet50 using Cachew
for remote preprocessing, we observe that host CPU utiliza-
tion remains below 20% on a TPUv2-8 machine and remote
servers contribute up to 62% of the overall training costs.

Hence, there is an opportunity to decrease costs by schedul-
ing some data preprocessing on underutilized training node
hosts, whose available CPU/DRAM resources are a sunk cost.
tf.data service already provides a mechanism to instantiate
a configurable number of local workers, which execute data
preprocessing in the training client process on the ML accel-
erator node. Local workers can pass data to the model directly
via method calls, unlike remote workers, which communicate
with training clients over gRPC.

Tuning the number of local versus remote workers to op-
timize throughput and cost is challenging. Figure 2 shows
the epoch time and cost (lower is better) when training a
ResNet50 model on a TPUv2-8 VM with different combina-
tions of remote and local tf.data service workers. Using only
local workers does not eliminate input data stalls. The number
of remote workers required to alleviate data stalls depends on
the number of local workers used. Using multiple local work-
ers is beneficial as a single local worker lacks the parallelism

0 1 2 3 4 5 6 7 8 9 10 20
Local workers

0
1

2
4

6
8

10
12

14
16

18
20

R
em

ot
e

w
or

ke
rs

3283 1895 1371 1100 1049 949 858 794 748 670 566

8137 2444 1495 1198 1007 927 802 767 764 634 576 601

3480 1799 1323 1036 908 851 835 725 650 616 538 455

2068 1303 923 780 678 638 632 536 486 444 466 650

1412 934 768 627 591 532 494 454 427 409 449 429

1063 784 628 555 492 457 453 406 426 420 400 461

786 651 528 450 434 416 407 401 413 408 417 456

648 482 419 404 405 415 403 401 408 400 429 408

580 469 422 403 399 399 399 398 402 406 421 410

522 418 399 400 398 402 399 403 400 409 401 403

455 400 400 400 399 401 400 398 404 406 399 405

404 404 403 400 398 398 396 398 400 398 410 401
400

425

450

475

500

525

550

575

600

(a) Epoch time (seconds).

0 1 2 3 4 5 6 7 8 9 10 20
Local workers

0
1

2
4

6
8

10
12

14
16

18
20

R
em

ot
e

w
or

ke
rs

4.5 2.6 1.9 1.5 1.4 1.3 1.2 1.1 1 0.92 0.78

12 3.7 2.2 1.8 1.5 1.4 1.2 1.1 1.1 0.95 0.86 0.9

5.6 2.9 2.1 1.7 1.5 1.4 1.3 1.2 1.1 1 0.87 0.74

3.6 2.3 1.6 1.4 1.2 1.1 1.1 0.93 0.84 0.77 0.81 1.1

2.6 1.7 1.4 1.2 1.1 0.99 0.92 0.84 0.79 0.76 0.83 0.8

2.1 1.5 1.2 1.1 0.97 0.9 0.9 0.8 0.84 0.83 0.79 0.91

1.6 1.4 1.1 0.94 0.91 0.87 0.85 0.84 0.86 0.86 0.87 0.95

1.4 1.1 0.93 0.89 0.9 0.92 0.89 0.89 0.9 0.88 0.95 0.9

1.4 1.1 0.99 0.94 0.93 0.93 0.93 0.93 0.94 0.95 0.98 0.96

1.3 1 0.98 0.98 0.98 0.99 0.98 0.99 0.98 1 0.98 0.99

1.2 1 1 1 1 1 1 1 1 1 1 1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
0.8

1.0

1.2

1.4

1.6

1.8

2.0

(b) Epoch cost ($).

Figure 2: Epoch time and cost for ResNet50 model training
on a TPUv2-8 with different remote and local data worker
configurations.

needed to utilize all 96 CPU cores on the TPU host, even
with software parallelism autotuning. However, we cannot
arbitrarily increase the number of local workers because they
compete for CPU and memory resources that are needed for
other tasks on ML accelerator hosts, such as checkpointing,
logging, loading data on accelerators, and network processing
(including deserializing and decompressing requests and data
from remote workers [5]). Analytically deriving the optimal
number of remote and local workers is impractical as it re-
quires accurately modeling the interference between the tasks
running on ML accelerator hosts. This is complex due to the
numerous shared hardware resources (CPU, memory, storage,
NICs, buses, accelerators) and the complexity of OS schedul-
ing algorithms. This challenge is not specific to tf.data; we
observe similar challenges with PyTorch DataLoader. How-
ever, we observe that adding and removing data workers on
the fly is relatively lightweight, so we propose an AutoPlace-

USENIX Association 2024 USENIX Annual Technical Conference 651

ment policy based on runtime metrics (§5.1) that iteratively
autoscales and places data workers across local and remote
nodes to minimize epoch time and cost.

3.2 Transformation Reordering
ML practitioners develop data preprocessing logic with model
accuracy and robustness in mind [12,13,40,48]. They rely on
the preprocessing framework to optimize throughput [54, 62].
Current frameworks like tf.data and Plumber [43] apply static
and dynamic optimizations (e.g., operator fusion) to increase
throughput without altering the semantics of the input pipeline.
We propose to further optimize throughput by relaxing the
constraint of semantic equivalence for pipelines that anyway
add randomness to input data.

In particular, we study how the order of transformations
impacts compute requirements and per-worker throughput.
Consider the example pipeline in Figure 3a, which applies
various data augmentations represented by nodes TA and TB
(e.g., TA consists of cropping, flipping, rotating, and shearing)
and two transformations that reduce the data volume: resizing
elements to a fixed size and casting to float16. Executing the
reordered pipeline in Figure 3b on the same n2-standard-8
Google Cloud VM increases throughput by 1.4×. By apply-
ing transformations that reduce data volume early on in the
pipeline, downstream data augmentations compute on smaller
elements and can output results at higher throughput.

Optimizing throughput with transformation reordering is
non-trivial for users, as it requires reasoning about how trans-
formations impact data volume, which may depend on input
data characteristics. For example, transformations that resize
an element to a fixed size may inflate or deflate data, depend-
ing on the input size. Another potential concern is the impact
reordering could have on model training dynamics. We find
that since a key role of data preprocessing in many ML appli-
cation domains is to add randomness (e.g., randomly flipping
or cropping images) to train more robust and generalizable
models [12, 13], relaxing commutativity among transforma-
tions in such pipelines does not disrupt convergence or no-
ticeably impact accuracy. As not all transformations can be
arbitrarily reordered, user hints can help identify transfor-
mations whose absolute or relative order must be preserved
when these constraints cannot be automatically detected. In
§5.2, we describe our policy for ordering transformations to
maximize throughput while supporting user hints.

4 Related Work

Alleviating ML input data stalls. Our work is complemen-
tary to approaches that mitigate ML data stalls with more effi-
cient data formats [42, 78], cache source data [45, 68], cache
preprocessed data [11,22,47,53], improve storage throughput
for ML access patterns [23, 37, 38, 68], or combine clever
sampling with caching [9, 17, 39, 76]. Revamper [47] and

Read Data TA
14.6

batches/min
Downcast(fp16)
[deflation=2x]

TB
Resize

[deflation=3.62x]

(a) Original Pipeline

Read Data TA
Resize

[deflation=3.62x]
Downcast(fp16)
[deflation=2x]

TB
20.4

batches/min

(b) Manually Reordered Pipeline
Figure 3: Impact of reordering on the input pipeline through-
put. The pipeline is a simplified version of the ResNet50 input
pipeline, showing how much transformations deflate the data.

data echoing [11] relax the requirement of identical results
for the input pipeline by adding caching operators that in-
crease throughput while reducing randomness. They show
that transformation output caching can be sparingly applied
without degrading model convergence and accuracy. Most
similar to our work is FastFlow [66], which proposes leverag-
ing local and remote workers for data preprocessing with a
Smart Offloading policy that splits an input pipeline in one of
three candidate locations. While FastFlow aims to minimize
training time for a given fixed number of remote CPU nodes,
we aim to minimize training time and total cost by minimiz-
ing the pool of remote workers needed while scaling local
workers to eliminate data stalls. In §6.2, we show that our
AutoPlacement approach achieves significantly lower training
cost than FastFlow’s policy of splitting and offloading data
preprocessing to throttle the volume of data preprocessed by
local workers. Finally, other systems, such as DALI [56] and
TrainBox [58], offload preprocessing to specialized hardware,
such as GPUs or FPGAs. This is a viable approach for data
transformations that map easily to custom hardware operators,
however, converting user-defined functions is often tricky.

Transformation reordering. Databases statically reorder
(as well as prune and transform) query plans to minimize
query latency [6, 31, 35, 64]. Adaptive query processing lever-
ages query runtime signals and statistics to generate adaptive
query plans with greater performance than statically gener-
ated plans [15,21,26]. Work in stream processing has focused
on similar challenges of reordering transformations, often-
times providing theoretical guarantees for the correctness of
the transformed pipeline [27, 28, 49]. Such work does not
capitalize on the unique characteristics of ML preprocessing,
which allow relaxing commutativity constraints in (parts of)
pipelines that randomly permute input data [44].

5 Pecan Design and Implementation

We propose Pecan, an open-source data preprocessing ser-
vice built on top of tf.data service [5] and Cachew [22].
Pecan introduces two policies, AutoPlacement (§5.1) and
AutoOrder (§5.2), to maximize preprocessing throughput and
minimize ML training costs. Pecan’s policies are platform-

652 2024 USENIX Annual Technical Conference USENIX Association

<feed source data>

Storage

Clientk
...

Client1

Training Process
. . .

Local Worker Processm
...

Local Worker Process1

Dispatcher
[Metadata]

3. AutoPlacement

Pecan

<provision workers>

ML Job Orchestrator

2. AutoOrder

<reordered pipeline>

1. Schedule Clients

Remote Workern
...

Remote Worker1

<feed batches>

<feed batches>

Figure 4: Pecan system architecture.

agnostic. We choose to implement them on top of tf.data
service as the framework is widely used by ML practitioners
and it provides high-performance mechanisms for local and
remote data preprocessing. We also build on Cachew’s au-
toscaling policy for tf.data service, which dynamically scales
out remote data workers. Pecan’s AutoPlacement policy con-
sists of ∼1400 lines of code in the core C++ layer of tf.data
while the AutoOrder policy consists of ∼1600 lines of code,
predominantly in the Python layer.

System architecture. Figure 4 shows Pecan’s system ar-
chitecture. The practitioner uses the tf.data-based Python API
to define their input pipeline logic and submit their pipeline to
Pecan’s ML Job Orchestrator. The Orchestrator analyzes the
user’s input pipeline and applies Pecan’s AutoOrder policy to
optimize the order of transformations for higher throughput.
The Orchestrator then launches the user-specified number of
training clients for the job with the appropriate hardware ac-
celerator types (e.g., GPU or TPU) and registers the reordered
input data pipeline with the Pecan dispatcher.

The dispatcher is an essential part of Pecan enabling multi-
tenancy and moving policy execution and cluster management
off the critical path of preprocessing. The dispatcher manages
data preprocessing workers and implements Pecan’s Auto-
Placement policy, which decides how many data workers to
use and on which nodes to schedule them. The dispatcher
sends each worker a copy of the (re-ordered) input pipeline
graph. Workers request dataset splits (i.e., locations of input
dataset partitions) from the dispatcher, read the source data
from storage, and preprocess it by applying input pipeline
transformations. Pecan can dynamically add or remove work-
ers as the dispatcher assigns dataset splits to workers. The
dispatcher informs each training client of the IP addresses of
remote CPU workers, allowing clients to fetch preprocessed
data over the network via gRPC. Training clients also poll a
local buffer to receive preprocessed data from local workers,

1 ds = tf.data.Dataset
2 .from_tensor_slices(["file1", ...])
3 .map(transform_1)
4 ...
5 .map(transform_N, keep_position=True)
6 .batch()
7 ds = ds.apply(distribute(dispatcher_IP))
8 for element in ds:
9 train(element)

Listing 1: Input pipeline example in Pecan.

which run within the same TensorFlow process and pass data
via regular method calls instead of gRPC.

User API. Pecan builds on the easy-to-use API of tf.data
service [19, 54]. Listing 1 shows an example pipeline that
reads a source dataset (line 2) and applies a series of user-
defined functions in a map transformation (lines 3-5). The
pipeline groups its Dataset object into batches (line 6)
and registers the pipeline for execution in Pecan via the
distribute call (line 7). Finally, the code iterates over
each batch and supplies it to the training logic (lines 8-9).
The keep_position parameter is the only extension Pecan
adds to the tf.data API. This flag is used to accept user hints
for the AutoOrder policy, for transformations with strict or-
dering requirements. Pecan treats transformations with the
keep_position flag set to True as barriers; the transfor-
mation maintains its position in the input pipeline and no
transformations are moved across it.

5.1 AutoPlacement Policy
While each training job executes, Pecan’s AutoPlacement
policy scales and places data preprocessing workers across
ML accelerator hosts (whose CPU and DRAM are a sunk
cost) and an elastic pool of remote CPU servers (which cost
extra but can speed up training by alleviating data stalls). To
minimize cost, the policy aims to eliminate data stalls with the
minimum number of remote servers. As highlighted in §3.1,
this also requires carefully tuning the number of local workers.
With too few, accelerator host resources are underutilized,
whereas, with too many local workers, we observe contention
for CPU cycles and memory bandwidth on accelerator hosts,
which also receive data over the network from remote workers
and need to load data to accelerators.

Algorithm 1 summarizes the AutoPlacement policy. The
policy starts by addressing the primary objective: eliminating
input data stalls. Like Cachew, we leverage the iterative nature
of ML training jobs and monitor the batch processing time
(bpt) metric for each training iteration. Gathering the bpt
metric has negligible overhead, as it exploits tf.data’s existing
metric gathering logic. In lines 1-2, we apply Cachew’s au-
toscaling policy, gradually adding remote workers until bpt
plateaus. When bpt stops decreasing with additional remote
workers, training throughput is bound by model training rather

USENIX Association 2024 USENIX Annual Technical Conference 653

Algorithm 1: AUTOPLACEMENT(T , X)

1 ResetLocal();
2 bptconv←CachewAutoscale(T);
3 countlocal←0; countremote← CountRemote();
4 converged← False;
5 repeat
6 startlocal←countlocal; startremote←countremote;
7 // Add local workers until bptnew/bptconv - 1 ≥ T

8 countlocal←AddLocalUntilWorse(T, bptconv);
9 // Remove detrimental local worker if countlocal > 0

10 countlocal←RemoveLocal(countlocal);
11 // Remove remote workers until job cost degrades
12 countremote←RemoveRemoteUntilWorse(bptconv);
13 // Re-add last remote if its removal broke cost constraints
14 countremote← AddRemote();
15 until startlocal == countlocal ∧ startremote == countremote

than input data preprocessing. We denote the model-bound
batch processing time as bptconv. We first scale remote work-
ers because we assume remote CPU and DRAM can be scaled
as much as needed to guarantee we reach bptconv. In contrast,
local workers are limited to fixed CPU and DRAM resources
available on ML accelerator hosts, and may not suffice.

The next step in the policy (lines 6-10) involves gradu-
ally adding local workers on ML accelerator hosts. In line 8,
AddLocalUntilWorse(*) adds local workers until bpt starts
to increase beyond a threshold T from bptconv. Batch pro-
cessing time can increase due to resource contention between
local workers and other tasks (e.g., network processing and
data loading to the accelerator) on ML training nodes.

In the final step (lines 12-14), the policy removes as many
remote workers as possible while maintaining similar batch
time and optimizing for cost. Batch processing cost (bpc) is
a function of batch time, the number of ML accelerator nodes
(na), and the number of remote worker nodes (nw):

bpc = bpt(ca ·na + cw ·nw)

where ca and cw are the per-unit cost of ML acceler-
ator and remote worker nodes, respectively. In line 12,
RemoveRemoteUntilWorse(*) continually removes remote
workers until batch processing cost increases. bpc can in-
crease if removing a remote worker leads to a data preprocess-
ing bottleneck that significantly increases bpt. If this occurs,
the remote worker is added back (line 14).

The algorithm converges when the number of remote and
local workers stabilizes (line 15). This indicates that the pol-
icy has identified the minimum required number of remote
and local workers. Otherwise, the algorithm repeats another it-
eration of adding local workers and removing remote workers.
This iterative process helps reach the optimal configuration
as adding local workers gradually redistributes work to local
resources, reducing the need for remote workers. In turn, re-
moving remote workers frees up CPU cycles on the training

node (due to less network request processing), potentially
making adding more local workers viable. After convergence,
runtime metrics are used to determine if workers need to be
added or removed based on performance changes.

The AutoPlacement algorithm takes two parameters: a
threshold parameter T (for bpt measurement comparison)
and a window size of X batches (for bpt measurement aver-
aging). We conduct a sensitivity study for these parameters in
§6.4. We use T = 0.03 as it provides a good compromise be-
tween efficient scaling and noise mitigation, as also observed
in other works [22, 66]. We set X = 500 as it minimizes mea-
surement noise and allows for low autoscaling convergence
times relative to the total job time.

Fast worker removal. Pecan can leverage relaxed data
visitation guarantees during downscaling phases to remove
workers immediately, without waiting for them to finish pro-
cessing their assigned data shards. Production ML workloads
typically allow for relaxed data visitation as there is abundant
data to train on and training is hence robust against dropped
batches [5]. The user can choose to enable this feature in
Pecan to speed up AutoPlacement policy convergence.

Multi-client setup. Pecan accommodates multi-client dis-
tributed training scenarios. The dispatcher averages clients’
bpt measurements for the AutoPlacement policy. Pecan de-
ploys local workers on clients in a round-robin fashion to
avoid overprovisioning particular nodes, as this could halt
the policy prematurely. We assume homogeneous hardware
across clients, as this is standard practice. For heterogeneous
hardware, local workers can be deployed on the workers with
the highest ratio between CPU power and the number of al-
ready deployed workers.

Analytical approach. We considered using a purely ana-
lytical approach to derive the optimal number of remote and
local workers. However, this requires modeling how local
data preprocessing tasks and network processing tasks for re-
motely processed data batches compete for CPU and memory
resources on ML accelerator nodes, which is non-trivial. In
addition, training clients and remote workers can each run on
heterogeneous nodes, which introduces additional complexity
for purely analytical solutions. We found it more accurate to
add and remove workers on the fly and rely on runtime metrics
to determine the right data worker scale and placement for a
particular ML workload and hardware deployment. However,
in ongoing work, we are exploring an analytical approach for
determining an initial number of remote workers, which can
be combined with our current policy to fine-tune the final num-
ber of remote and local workers. The analytical component
could use a simple linear model: nw = E[tmodel]/E[tworker],
where t denotes throughput. E[tmodel] is measured by test-
ing model performance on immediately available data, and
E[tworker] is measured by testing preprocessing performance
on a data subset. We expect this approach to accelerate policy
convergence by starting with more than one worker.

654 2024 USENIX Annual Technical Conference USENIX Association

5.2 AutoOrder Policy

The AutoOrder policy statically reorders transformations to
increase per-worker preprocessing throughput. We refer to
input pipeline transformations as inflationary if they increase
data volume, such as image padding and one-hot encoding.
We refer to transformations as deflationary if they decrease
data volume, such as sampling, filtering, or cropping images.
Transformations such as resizing an image to a particular size
or casting an input to a different type can be inflationary or de-
flationary, depending on the input size or type. The AutoOrder
policy opportunistically moves deflationary transformations
upstream and inflationary transformations downstream, while
respecting ordering constraints specified by users with the
keep_position flag. The intuition for this reordering policy
is to start by reducing the volume of data as much as possi-
ble, such that most transformations compute on smaller data
elements and consume fewer CPU cycles. At the end of the
pipeline, inflationary transformations can finally be applied.

Respecting ordering constraints. To optimize an input
pipeline while respecting user-specified ordering constraints,
Pecan’s ML job orchestrator divides the pipeline into sec-
tions at each transformation with the keep_position flag
set. These transformations act as barriers, allowing reordering
only within sections but not across keep_position trans-
formations. Pecan also preserves the original positions of
two other types of transformations: (1) transformations that
convert between numeric and non-numeric types (e.g., decod-
ing an image), and (2) transformations that change the rank
of the data (i.e., the number of data dimensions). Moving
rank-changing transformations risks breaking dependencies.
We did not observe any helpful reorderings of rank-changing
transformations in practice. AutoOrder is expected to ben-
efit preprocessing logic with loose dependency constraints,
commonly found in audio-visual and multi-modal tasks. Con-
versely, pure text-based models typically have strict prepro-
cessing constraints and may not significantly benefit from
AutoOrder. Such models, however, are rarely input-bound.

Algorithm. Algorithm 2 summarizes the AutoOrder policy.
The policy receives the ordered list of sections of the original
input pipeline (Sections) and a list of fixed transformations
(FixedOps). The algorithm iterates through each section (line
2) and keeps track of a prefix and suffix list (line 3). For
each transformation in a section (line 5), if a transformation
is deflationary, it is added to the beginning of the prefix list
(lines 6-8)1. If the transformation is inflationary, it is added to
the suffix list (lines 11-13). Otherwise (i.e., inflation factor is
1), the transformation is appended to the prefix list (lines 8-9).
We create a new section by concatenating the prefix and
suffix lists (line 15). We append the new section to a list
of reordered sections (line 16) and later insert them between

1One exception is that deflationary casts to custom data types like
tf.bfloat16 are moved to the end of the pipeline because most current
CPUs do not support efficient computation on such data types [69].

Algorithm 2: AUTOORDER(Sections, FixedOps)

1 reorderedSections← EmptyList();
2 for section ∈ Sections do
3 prefix← EmptyList(); suffix← EmptyList();
4 for transformation ∈ section do
5 if transformation.InflationFactor() ≤ 1 then
6 if transformation.InflationFactor() < 1 then
7 prefix.Prepend(transformation);
8 else
9 prefix.Append(transformation);

10 end
11 else
12 suffix.Append(transformation);
13 end
14 end
15 reordered←CreateSection(prefix, suffix);
16 reorderedSections.Append(reordered);
17 end
18 return Interleave(reorderedSections, FixedOps);

the fixed-position transformations to generate the reordered
input pipeline (line 18). The overall time complexity is O(n),
where n is the number of transformations in the input pipeline.
AutoOrder runs once before training and after the first epoch
to validate inflation factors based on a full dataset pass.

Calculating inflation factors. To determine whether a
transformation is inflationary or deflationary, Pecan uses
static information captured by TensorFlow, namely the data
types, data rank, and the size of each dimension. The in-
flation factor It of a transformation t is computed as It =
(cout ·dout ·∏so∈Sout so)/(cin ·din ·∏si∈Sin si). Here, din and dout
represent the number of bits per atomic input and output ele-
ment respectively (e.g., tf.float16 is 16), and Sin and Sout
are lists containing the size of each input and output data
dimension respectively. Some transformations (e.g., batch,
filter) may have a different number of input and output
elements. To account for this, we condition It on cout and cin,
i.e. the number of atomic output and input instances in t.

TensorFlow’s statically inferred metadata suffices to calcu-
late inflation factors for most transformations. For datasets
with variable shape elements (e.g., ImageNet [14]) and rela-
tive sizing transformations like halving image resolutions, Sin
and Sout are not statically known. For such scenarios, Pecan’s
ML job orchestrator (which implements the AutoOrder pol-
icy) executes the data pipeline for a small subset of the input
dataset (e.g., 300 elements) to empirically estimate Sin and
Sout . The orchestrator profiles input pipeline execution locally
without involving model training. This approach is fast and
does not impact model accuracy.

USENIX Association 2024 USENIX Annual Technical Conference 655

Model Input Pipeline
ResNet50 Decode + Crop→ Flip→ Rotate→ Shear→ Resize→Mean Subtract→ Cast image(fp16) + One hot encode label→ Batch
SimCLR Duplicate + Cast(fp32)→ Crop + Resize→ Flip→ Jitter→ Blur→ Clip→ To Grayscale→ Tile→ Reshape→ Batch
RetinaNet Decode→ Cast(fp32) + Normalize→ Flip→ LabelExtract (denormalize boxes, asign anchors, label anchors)→ Cast(bf16)→ Batch
ASRTransformer Decode→ AddText→ Vectorize→ Fourier Transform→ Pad→ SpecAugment→ SpeedPerturb→ PitchPerturb→ Reverb→ Batch

Table 1: Preprocessing logic in evaluation models. We use “+” between user-defined operators for which TensorFlow offers a
high-performance fused implementation (we keep these transformations within the same map). Deflationary transformations are
green, inflationary transformations are orange, and immovable transformations as described in §5.2 are blue.

6 Evaluation

We evaluate Pecan to answer the following questions:
• How much does AutoPlacement decrease the cost of data

preprocessing and end-to-end model training?

• How much does AutoOrder decrease the cost of data
preprocessing and end-to-end model training?

• What is the impact of AutoOrder on model accuracy?

• How do AutoPlacement and AutoOrder work together
to improve end-to-end model training costs?

6.1 Methodology
Setup. We run our experiments on Google Cloud Platform
(GCP) using TPUv2-8 and TPUv3-8 VMs, which come with
96 CPU cores and 335 GB of DRAM. We choose these ac-
celerators as we received cloud credits for these VMs from
Google’s TPU Research Cloud [20]. We use n2-standard-8
GCP VMs for Pecan’s dispatcher and remote CPU servers
(8 CPU cores, 32 GB DRAM each). We schedule one remote
worker per n2-standard-8 VM yielding a 1:1 mapping be-
tween remote workers and remote CPU servers. We deploy
and orchestrate VMs with Kubernetes. The TPU training node
runs the training client and the ML job orchestrator for a train-
ing job. The network bandwidth between our GCP resources
is at least 16 Gb/s. We store and read our datasets from Google
Cloud Storage buckets. We enable tf.data autotuning in all ex-
periments, as is customary to maximize software parallelism.
We do not set keep_position=True in any of our pipelines.
Unless specified otherwise, results are averaged across five
runs, and we do not use the fast worker removal feature.

Workloads. We evaluate Pecan on four popular ML mod-
els and their input pipelines: ResNet50 [25], SimCLR [7],
RetinaNet [50], and ASRTrans [16, 67]. We use the open-
source TF Model Garden implementations of ResNet and
RetinaNet [29], the Google Research implementation of Sim-
CLR [8], and the keras-io implementation of ASRTrans [55]
using both the model and its data preprocessing logic. For
ResNet50, we also include rotation and shearing transforma-
tions in the input pipeline, as used in prior works, such as
RandAugment [13] and AutoAugment [12]. For ASRTrans
we include Spec augmentation, reverbation, and speed and
pitch perturbation, commonly used in works such as SpecAug-
ment [57] and variants of DeepSpeech [24]. Table 1 shows the

transformations in each input pipeline. For each pipeline, we
spread user-defined preprocessing logic across a sequence of
map transformations, each parameterized with an individual
user-defined function (e.g., image cropping), to enable the Au-
toOrder policy to reorder transformations at fine granularity.
We train the ResNet50 and SimCLR models on ImageNet [14].
We train the RetinaNet model on MS-COCO [51] and the AS-
RTrans model on the LJ-Speech dataset [33]. To show the
benefits of our policies across a variety of hardware, we run ex-
periments on TPUv2-8 and TPUv3-8. We evaluate ResNet50,
SimCLR, and RetinaNet on TPUv2-8. We use TPUv3-8 for
experiments on ASRTrans, and re-evaluate ResNet50, to pro-
vide a reference point for how collocated training, our policies,
and related work perform across accelerators.

Metrics. We measure per-epoch training throughput and
cost. We break down the total cost to show the portion at-
tributed to ML accelerator VMs and remote data worker VMs.
The TPU VM portion of the cost also serves as an indicator
of end-to-end training time as we only lease ML accelera-
tors for as long as the training job lasts and we do not scale
training nodes up or down during experiments. Hence, higher
TPU costs imply longer training time (e.g., due to input bot-
tlenecks). We use the costs of Google Cloud resources in
the europe-west4-a zone in April 2023 [18]. A TPUv2-
8 VM costs 4.96$/hr and TPUv3-8 VM costs 8.8$/hr. The
n2-standard-8 VM (used for remote CPU workers) costs
0.42$/hr. Workers and clients are deployed in the same region.
The epoch cost is C = tepoch · (ca · na + cw · nw) where tepoch
is the epoch execution time, ca and cw are the cost per unit
time of a training node and remote worker node, respectively,
and na and nw represent the current number of training nodes
and remote worker nodes, respectively. We report costs for
the configuration of workers that Pecan’s policies converge to.
In-region data transfers are not charged in GCP, however, we
also quantify the volume of data transferred over the network
for data preprocessing with Pecan compared to other systems.

Baselines. We compare Pecan to remote data preprocessing
with Cachew [22], local data preprocessing with tf.data [54],
and hybrid data preprocessing with FastFlow’s Smart Offload-
ing policy [66]. The tf.data baseline shows the performance of
local data preprocessing mechanisms, which the other systems
in our evaluation build on. Cachew is a state-of-the-art service
built on top of tf.data service that autoscales remote work-
ers to maximize ML training throughput. FastFlow spreads

656 2024 USENIX Annual Technical Conference USENIX Association

data preprocessing across local tf.data service workers and
a user-specified fixed number of remote workers. For Fast-
Flow, we use a 14:1 ratio of CPU cores to accelerator cores,
as originally proposed by the authors [66]. Hence we provi-
sion 112 CPU cores per 8-core TPUv2-8 accelerator. 96 CPU
cores are local on the TPU VM and for the other 16, we use
two n2-standard-8 VMs as remote workers. We use two
local workers for the FastFlow baseline, as specified in the
FastFlow GitHub repository [65]. We do not include a direct
comparison to Meta’s Data PreProcessing (DPP) system [78]
as it is closed source and not available to us. Based on the
system description, which depicts offloading data preprocess-
ing entirely to remote workers, we expect DPP’s end-to-end
performance and cost to be similar to the Cachew baseline.

6.2 AutoPlacement Evaluation

Figure 6 compares the total training cost per epoch with dif-
ferent data preprocessing systems. The blue bars show epoch
costs when using tf.data to preprocess data locally on TPU
host resources. Data preprocessing saturates local TPU host
CPU and DRAM resources for the ResNet50_v2-8, SimCLR ,
ASRTrans, and ResNet50_v3-8 workloads, causing input data
stalls, prolonging training time, and incurring high costs.

Cachew, FastFlow, and Pecan achieve lower costs by alle-
viating input data bottlenecks with remote workers. Cachew
fully alleviates input data stalls, but does so by relying, on
average, on 19 remote data workers for ResNet50_v2-8, 12
for SimCLR, 2.6 for RetinaNet, 4 for ASRTrans, and 30 for
ResNet50_v3-8. Compared to Cachew, Pecan’s AutoPlace-
ment policy reduces training costs by 44% for ResNet50_v2-8,
by alleviating data stalls with 74% less remote workers (5
vs. 19). AutoPlacement reduces SimCLR training epoch cost
by 33% compared to Cachew, alleviating input data stalls
with 58% less remote resources (5 vs. 12). For ASRTrans
we observe a 14% cost reduction, fully removing the 4 re-
mote workers by deploying several local workers to capture
all available client resources. For ResNet50_v3-8 we obtain
a 14% total cost reduction with 9% fewer remote workers
(27.2 vs. 30). We observe a 5.2% improvement in training
time for SimCLR and 8% for ResNet50_v3-8. For SimCLR,
Cachew’s autoscaling struggles with probabilistic transforma-
tions. For ResNet50_v3-8, Cachew cannot fully eliminate the
input bottleneck. RetinaNet’s less compute-intensive pipeline
allows TPU VMs to handle local data preprocessing without
stalling. Pecan’s AutoPlacement correctly determines that
local-only preprocessing is optimal for RetinaNet, reducing
training costs by 17% compared to Cachew (0.2 vs. 2.6 remote
workers). Overall, AutoPlacement yields 69% preprocessing
cost savings and 24% total cost savings compared to Cachew.

Compared to FastFlow, AutoPlacement reduces training
costs by 76%, 23%, 27%, 19%, and 72% for ResNet50_v2-8,
SimCLR, RetinaNet, ASRTrans, and ResNet50_v3-8, respec-
tively. FastFlow’s fixed remote worker configuration does not

Model GiB Transferred

Cachew Pecan
AutoPlacement

Pecan AutoPlacement
+ AutoOrder

ResNet50 (v2-8) 18 8.91 (-50.5%) 1.33 (-92.64%)
SimCLR 36.13 19.42 (-46.25%) 9.92 (-72.54%)
RetinaNet 155.15 8.51 (-94.47%) 0 (-100%)
ASRTrans 42.37 0 (-100%) 0 (-100%)
ResNet50 (v3-8) 17.92 13.96 (-22.10%) 11 (-38.61%)

Table 2: Amount of data transferred over the network from
remote workers to training clients for 500 training batches.

ResNet50_v2-8 SimCLR RetinaNet ASRTrans ResNet50_v3-8
Model

0

1

2

3

To
ta

l t
ra

in
in

g
co

st
 p

er
 e

po
ch

 ($
)

0.56

1.34

0.82
1.02

0.65

0.91

1.41

0.18
0.18

0.95

0.54

1.13

0.82
1.0

0.6

0.57

0.74

0.18
0.15

0.7

Cachew
TPU cost

Pecan AutoOrder
Remote worker cost

Figure 5: Cost of an epoch for all five workloads with and
without the AutoOrder policy in a disaggregated setting.

fully alleviate stalls, resulting in job times that are 5.1×, 1.6×,
1.2×, 1.1×, and 7.4× higher than with AutoPlacement.

Table 2 shows the network data transfer savings achieved
by AutoPlacement. By distributing preprocessing across lo-
cal and remote nodes, AutoPlacement reduces the total data
volume sent by remote workers to training clients by 63%
compared to fully disaggregated data processing with Cachew.

6.3 AutoOrder Evaluation
We apply the AutoOrder policy on each input data pipeline
in Table 1. In the ResNet50 pipeline, AutoOrder moves the
image Resize transformation in front of all other data augmen-
tations (flip, rotate, shear). In SimCLR, AutoOrder moves the
To Grayscale transformation in front of all the other augmenta-
tions (flip, jitter, blur, and value clipping). In RetinaNet, Auto-
Order moves the Cast+Normalize transformation downstream
immediately after the random flip transformation, while in AS-
RTrans, it moves the Pad transformation after all the augmen-
tations (SpecAugment, SpeedPerturb, PitchPerturb, Reverb).
We measure the training throughput and cost benefits of the
AutoOrder policy and validate that transformation reordering
does not reduce model quality for our workloads.

Impact on Training Throughput and Cost. We apply the
AutoOrder policy in a disaggregated data preprocessing setup,
using Cachew’s autoscaling policy to determine the number
of remote workers. Figure 5 shows the epoch cost benefits
compared to executing the original pipeline with Cachew.
The AutoOrder policy reduces epoch cost by 24% and remote
worker costs by 37% for ResNet50_v2-8. For SimCLR, Auto-

USENIX Association 2024 USENIX Annual Technical Conference 657

Model Original Reordered Delta
ResNet50 73.94% (±0.34%) 74.32% (±0.21%) +0.38%
SimCLR 56.06% (±0.11%) 55.97% (±0.03%) -0.09%
RetinaNet 33.08% (±0.09%) 33.21% (±0.13%) +0.13%
ASRTrans 41.41% (±8.69%) 43.72% (±8.00%) +2.31%

Table 3: AutoOrder impact on Top-1 accuracy (ResNet, Sim-
CLR), mAP (RetinaNet), and WER (ASRTrans).

Order reduces epoch cost by 32% and remote worker costs by
48%. The AutoOrder policy does not significantly impact the
RetinaNet input pipeline, due to the efficiency of the original
pipeline for our hardware setup. AutoOrder only changes the
intermediate memory footprint, not the total computation, and
RetinaNet is not memory bottlenecked on our hardware. For
ASRTrans, AutoOrder reduces epoch cost by 4% and remote
worker cost by 17%. For ResNet50_v3-8, it reduces epoch
cost by 19% and remote worker cost by 26%.

Impact on Trained Model Quality. To measure the impact
of transformation reordering on model quality, we compare
the average validation accuracy after training each model
to convergence with and without applying AutoOrder to its
input pipeline. ResNet50 and SimCLR are evaluated using
Top-1 accuracy and RetinaNet uses mean Average Precision
(mAP). In both cases, higher values are better (ideally 100%).
ASRTrans is evaluated via Word Error Rate (WER), where
lower values are better (ideally 0%). Table 3 shows that in all
cases, AutoOrder has negligible impact on model accuracy,
with ResNet50 and RetinaNet accuracy benefiting slightly
and SimCLR accuracy decreasing slightly (0.09%). The ASR-
Trans WER increases by 2.31%, however, randomness plays
a considerably bigger role here with a standard deviation of
around 8%. On average, for our workloads, the AutoOrder
policy has a ±0.73% effect on the final validation accuracy.
Intuitively, model quality is not significantly impacted by
transformation reordering for these vision and speech models
because the transformations are designed to add randomness
to the input data [12, 13] and the exact order in which they
are applied (e.g., crop then flip or flip then crop) is not criti-
cal. In §7 we motivate the need for a broader empirical and
theoretical exploration of model quality guarantees for other
ML application domains [46, 71, 73].

6.4 End-to-End Pecan Evaluation

We evaluate Pecan’s AutoPlacement and AutoOrder policies
together to understand their combined benefit.

Impact on Training Time and Cost. Figure 6 shows
that Pecan minimizes training cost across workloads. For
ResNet50_v2-8, Pecan successfully eliminates the input bot-
tleneck, reducing epoch time by 88% compared to collo-
cated data preprocessing (from 3302 seconds to 395 seconds).
Pecan achieves the optimized epoch time at 60% lower cost
than Cachew and reduces preprocessing costs by 95%. For

ResNet50_v2-8 SimCLR RetinaNet ASRTrans ResNet50_v3-8
Model

0

2

4

6

8

To
ta

l t
ra

in
in

g
co

st
 p

er
 e

po
ch

 ($
)

4.
55

4.
13

.82

1.
58

8.
26

.56

1.
34

.82 1.
02

.65

0.
91

1.
41

0.
18 0.
18 0.

952.
89

2.
04

.97 1.
16

4.
44

0.
5

0.
35

0.
17 0.
11

0.
43

.57

1.
27

.82 1.
03

.6

0.
26

0.
57

0.
01 0.
0 0.

78

.54

1.
41

.82 1.
0

.6

0.
05

0.
12

0.
0 0.
0 0.
49

tf.data collocated
FastFlow
Pecan AutoPlacement
TPU cost

Cachew
Pecan AutoPlacement
+ AutoOrder
Remote worker cost

Figure 6: Training cost benefits of Pecan.

SimCLR, Pecan reduces training time by 66% compared to
collocated data preprocessing and cost by 44% compared to
Cachew. Pecan barely requires remote workers to alleviate
data stalls during SimCLR training, thanks to the AutoOrder
policy’s input pipeline optimizations. SimCLR experiences
a slight (5%) increase in training time due to the AutoPlace-
ment policy’s cost-based removal of remote workers. For
RetinaNet, Pecan correctly identifies that disaggregated data
preprocessing is not needed due to abundant local resources
on the TPU VM. Pecan hence relies only on local workers
and achieves the same optimal performance and cost as col-
located data preprocessing. For ASRTrans, Pecan reduces
training time by 37% relative to a collocated deployment and
entirely removes the need for preprocessing workers, com-
pared to Cachew. Unlike RetinaNet, ASRTrans is not natu-
rally model-bound and requires the AutoPlacement policy
to deploy several local workers to eliminate the input bot-
tleneck. For ResNet50_v3-8, Pecan produces a 14× epoch
time speedup compared to a collocated deployment. Rela-
tive to Cachew, there is a 7.7% epoch time improvement (as
Cachew cannot entirely remove the input bottleneck) and
48% fewer preprocessing resources. Overall, Pecan signifi-
cantly reduces the number of remote workers compared to
Cachew: from 19 to 1 for ResNet50_v2-8, 12 to 1 for Sim-
CLR, 2.6 to 0 for RetinaNet, 3.8 to 0 for ASRTrans, and 30
to 17 for ResNet50_v3-8. The last column in Table 2 also
shows Pecan’s data transfers between workers and clients rel-
ative to Cachew. Pecan reduces network traffic by 93%, 73%,
and 39% for ResNet50_v2-8, SimCLR, and ResNet50_v3-8
respectively. For RetinaNet and ASRTrans Pecan eliminates
network traffic between data workers and training clients as
it does not rely on remote workers to alleviate data prepro-
cessing stalls. Pecan converges to 9, 5.4, 3.4, 7.4, and 9 local
workers on average for ResNet50_v2-8, SimCLR, RetinaNet,
ASRTrans, and ResNet50_v3-8.

Policy Execution Timeline. Figure 7 shows how Pecan’s
policies work together over time during the first 18k steps of
ResNet50_v2-8 training. For this trace, we use the fast worker
removal feature. Before model training begins, Pecan’s ML
job orchestrator runs a few trial batches of the input pipeline

658 2024 USENIX Annual Technical Conference USENIX Association

0 2500 5000 7500 10000 12500 15000 17500
Batches

0
2
4
6
8

10
12
14

W
or

ke
r C

ou
nt

Au
to

Or
de

r
Remote
worker
scaling Adding

local
workers

Adding
local
workers

Remote
worker
removal

Remote
worker
removal

Worker type
Remote workers
Local workers

Figure 7: Pecan’s workflow for the first few epochs of ResNet50_v2-8 training. Pecan first applies the AutoOrder policy, followed
by the AutoPlacement policy, which autoscales remote workers, adds local workers, then removes unneeded remote workers.

to collect transformation inflation factors for the AutoOrder
policy. The orchestrator then applies the reordering recom-
mended by the AutoOrder policy, producing a new input data
pipeline graph which it registers with the Pecan dispatcher.
Next, the ML training job starts to execute and Pecan moni-
tors batch times (bpt) to apply its AutoPlacement policy. The
first stage of the policy scales out remote workers to eliminate
data stalls. For the ResNet50_v2-8 example, this converges
to 12 remote workers around the 7kth minibatch, after the su-
perfluous 13th remote worker is successfully removed. Next,
the AutoPlacement policy begins adding local workers until it
notices a performance degradation in the bpt metric, converg-
ing to 5 local workers around the 10kth step. Any additional
local workers would introduce resource contention on the
client nodes, slowing down training. The algorithm resumes,
next removing remote workers, thus applying more pressure
on the local and remaining remote workers, and finding the
ideal trade-off point between the new local and existing re-
mote workers. At the 12.5kth step, the iteration converges
to 8 remote workers. The algorithm executes a second and
final iteration, first adding local workers, then removing re-
mote workers, converging around the 18kth step with 8 local
workers and 0 remote workers. The trace shows the complex,
non-linear trade-offs between local and remote workers, first
trading off 4 remote workers for 5 local workers, and later 8
remote workers for 3 local workers.

Policy Convergence Time. Pecan’s AutoOrder policy re-
quires executing a small number of minibatches to collect
inflation factor statistics, which takes 5s, 10s, 4s, and 36s for
ResNet50, SimCLR, RetinaNet, and ASRTrans respectively.
In our experiments with ResNet50, SimCLR, and RetinaNet,
the AutoPlacement policy converges within the first five train-
ing epochs, which is negligible compared to the numerous
epochs that are typically used to train such models [7, 25]. In
Figure 7 Pecan reaches an optimal training time at approxi-
mately 6k steps (2% of total job time) when the remote work-
ers initially converge. We also notice that Pecan’s AutoOrder
policy speeds up the remote worker autoscaling convergence
time compared to Cachew. By increasing per-worker pre-
processing throughput, AutoOrder decreases the number of
required remote workers and hence reduces the time needed

Scaling Threshold (T) Batch Sampling Window (X)
100 500 1000

0.01 $0.89 $0.96 $0.59 $3.48 $0.61 $5.01
0.03 $0.78 $1.05 $0.59 $3.34 $0.64 $4.75
0.07 $0.73 $0.87 $0.66 $2.95 $0.59 $4.69

Table 4: AutoPlacement sensitivity study on ResNet50_v2-
8 relative to X and T parameters. Left cell (blue) in each
configuration is epoch cost; right cell (orange) is convergence
cost.

to alleviate input data stalls by 47%, 15%, 5%, 28%, and
32% compared to Cachew for the ResNet50_v2-8, SimCLR,
RetinaNet, ASRTrans, and ResNet50_v3-8 workloads.

Sensitivity Study. Table 4 shows the impact of changing
parameters X (batch sampling window) and T (scaling thresh-
old) (§5.1) on the cost per epoch, and the AutoPlacement
policy’s convergence cost for ResNet50_v2-8. Greater values
for X mean lower noise levels in bpt measurements, reduc-
ing the risk of falsely converging to suboptimal deployments
due to noise, and thus allowing for the more desirable, lower
values of T . This improves the quality of AutoPlacement de-
cisions, leading to low epoch costs. The trade-off is greater
policy convergence times and costs. Lower values for X mean
smaller sampling periods, which lead to noise in the bpt mea-
surements, generally requiring greater values for T to ensure
scaling only happens when significant benefits are noticed in
the measurements. The advantage is low convergence times
and costs but can lead to suboptimal AutoPlacement decisions
that increase epoch costs. We choose the sweet spot, X = 500
and T = 0.03, which yields 1 remote and 9 local workers with
an epoch cost of $0.59 and a convergence cost of $3.34. In all
the tested deployments Pecan removes data stalls.

Optimality. We confirmed that the policy decisions are
throughput-optimal, as all models in our evaluation are no
longer input-bound when using Pecan. Ensuring cost optimal-
ity is more challenging, as it depends on runtime conditions
such as network performance and tail latency.

USENIX Association 2024 USENIX Annual Technical Conference 659

7 Discussion

Our work on optimizing data preprocessing to minimize the
cost of ML training opens up several future directions.

LLMs and multimodal workloads. Pecan targets domains
with high preprocessing demands (e.g., audio-visual), where
input bottlenecks can occur, and optimizing the number of
local and remote workers is challenging. In contrast, text-
based NLP models like LLMs are typically not input-bound
due to lightweight online preprocessing or due to delegating
most preprocessing to the offline stage. Local preprocess-
ing on training nodes is usually sufficient in such cases, as
confirmed by our experiments. However, an important future
challenge for efficient ML preprocessing lies in multimodal
workloads [30, 61]. In such settings, preprocessing remains
critical for job performance, as data from various domains
will have distinct preprocessing needs and will be used by
models with diverse compute requirements. We anticipate
significant benefits for multimodal jobs from systems like
Pecan, that mitigate input bottlenecks.

Cross-region ML. Optimizing the placement of data pre-
processing workers is especially useful when ML models
need to be trained on input data that resides in a different
geographical region. Cross-region scenarios often arise in
practice [34, 74]. Copying data to the ML training job region
might be restricted by data ownership or legal constraints.
Scheduling ML training in the source data region may be
limited by ML accelerator availability or per-region cloud
quotas. Our initial experiments in cross-region settings show
that expensive cross-region data transfers account for most
of the training job cost (>90% for ResNet50_v2-8 on Ima-
geNet). In cross-region deployments, AutoPlacement involves
distributing workers across local training node resources, plac-
ing "close-remote" workers in the ML accelerator region, and
"far-remote" workers in the dataset storage region.

Pipeline splitting. An additional way of splitting data pre-
processing across local and remote resources is to split the
input pipeline, such that specific transformations execute only
locally and others only remotely. For example, FastFlow [66]
selects among three generic split locations in a pipeline. As
future work, we plan to explore how the AutoOrder and Auto-
Placement policies can be co-designed with an input pipeline
splitting policy to optimize which transformations should
execute on remote versus local resources. For example, the
AutoOrder policy can optimize for a split location that min-
imizes the amount of data sent over the network. This can
further minimize costs when combined with AutoPlacement.

Reordering opportunities. Integrating AutoOrder into a
compiler can enhance synergy with other optimizations and
compilation phases. Several ML data preprocessing systems,
including Cachew [22], Revamper [47], and Plumber [43], au-
tomatically cache data transformation outputs to save compute
power and improve throughput. The challenge with caching
outputs from prior epochs is that it makes the input pipeline

deterministic, potentially affecting model quality for pipelines
relying on data randomness. Pecan’s AutoOrder policy can
place deterministic, compute-intensive transformations ear-
lier in the input pipeline to maximize caching opportunities.
Orthogonal to caching AutoOrder can be designed to reorder
pipelines to synergize with existing static graph optimization
passes, including fusing contiguous map, filter, and batch,
to reduce data movement and increase throughput [54, 77].

AutoOrder model quality analysis. We empirically
showed that data transformation reordering with relaxed com-
mutativity increases preprocessing throughput while maintain-
ing high model quality for image recognition, object detection,
and speech recognition (§6.3). A common characteristic of
our tested input pipelines is the use of random transforma-
tions to improve model generalization [12, 13]. However, a
broader study is needed to understand the general impact of
data transformation reordering. A theoretical framework to
compare preprocessed data distributions of original and Au-
toOrder pipelines and their impact on model quality, akin to
Agarwal et al.’s for convergence guarantees in the context of
cached preprocessed data [3], would be valuable.

8 Conclusion

We propose Pecan, a system that introduces the AutoPlace-
ment and AutoOrder policies to alleviate input data prepro-
cessing bottlenecks during ML training while minimizing
cost. AutoPlacement leverages the flexibility of disaggregated
data preprocessing to schedule data workers across both host
training node resources and the bare minimum number of
remote CPU servers, leading on average to 68% lower prepro-
cessing costs compared to fully remote data preprocessing.
Pecan’s AutoOrder policy further reduces costs by reordering
data transformations to increase per-worker throughput. To-
gether, Pecan’s AutoPlacement and AutoOrder policies can
reduce data preprocessing costs by 87% on average and total
training costs by up to 60% compared to Cachew. Compared
to collocated deployments, Pecan reduces total training cost
by 55% on average using only 14% of the remote workers
required by Cachew.

Availability

Pecan is available at https://github.com/eth-easl/
cachew/tree/pecan.

Acknowledgements

We thank the anonymous reviewers and shepherd for their
valuable feedback. We are grateful for access to the Google
TPU Research Cloud. This work is partially supported by
the Swiss National Science Foundation (Project Number
200021_204620) and a Meta Research Award.

660 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/eth-easl/cachew/tree/pecan
https://github.com/eth-easl/cachew/tree/pecan

References

[1] Apache Beam: An advanced unified programming
model. https://beam.apache.org/, 2020.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, page 265–283, 2016.

[3] Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Tal-
war, and Cyril Zhang. Stochastic optimization with
laggard data pipelines. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, pages 10282–
10293, 2020.

[4] Amazon Web Services. AWS EC2 Instance Types.
https://aws.amazon.com/ec2/instance-types/,
April 2023.

[5] Andrew Audibert, Yang Chen, Dan Graur, Ana
Klimovic, Jiří Šimša, and Chandramohan A. Thekkath.
tf.data service: A case for disaggregating ml input data
processing. In Proceedings of the 2023 ACM Sympo-
sium on Cloud Computing, SoCC ’23, page 358–375,
New York, NY, USA, 2023. Association for Computing
Machinery.

[6] Surajit Chaudhuri. An overview of query optimization
in relational systems. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, pages 34–43, 1998.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International Con-
ference on Machine Learning, pages 1597–1607. PMLR,
2020.

[8] Ting Chen, Saurabh Saxena, and William Falcon.
SimCLR. https://github.com/google-research/
simclr, 2020.

[9] Weijian Chen, Shuibing He, Yaowen Xu, Xuechen
Zhang, Siling Yang, Shuang Hu, Sun Xian-He, and Gang
Chen. iCache: An importance-sampling-informed cache
for accelerating I/O-bound DNN model training. In
IEEE International Symposium on High-Performance
Computer Architecture. IEEE, 2023.

[10] Yang Cheng, Dan Li, Zhiyuan Guo, Binyao Jiang, Jinkun
Geng, Wei Bai, Jianping Wu, and Yongqiang Xiong. Ac-
celerating end-to-end deep learning workflow with code-
sign of data preprocessing and scheduling. IEEE Trans-
actions on Parallel and Distributed Systems, 32(7):1802–
1814, 2020.

[11] Dami Choi, Alexandre Passos, Christopher J Shallue,
and George E Dahl. Faster neural network training with
data echoing. arXiv preprint arXiv:1907.05550, 2019.

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V Le. AutoAugment: Learn-
ing augmentation policies from data. arXiv preprint
arXiv:1805.09501, 2018.

[13] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceed-
ings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition Workshops, pages 702–703,
2020.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. Ieee,
2009.

[15] Amol Deshpande, Zachary Ives, and Vijayshankar Ra-
man. Adaptive query processing. Foundations and
Trends® in Databases, 1(1):1–140, 2007.

[16] Linhao Dong, Shuang Xu, and Bo Xu. Speech-
transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 5884–5888. IEEE, 2018.

[17] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and
Torsten Hoefler. Clairvoyant prefetching for distributed
machine learning I/O. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15, 2021.

[18] Google GCP. TPU VM documentation. https:
//cloud.google.com/tpu/docs/regions-zones,
February 2023.

[19] Google. tf.Data Documentation. https://www.
tensorflow.org/guide/data, February 2023.

[20] Google. TPU Research Cloud. https://sites.
research.google/trc/about/, January 2024.

USENIX Association 2024 USENIX Annual Technical Conference 661

https://beam.apache.org/
https://aws.amazon.com/ec2/instance-types/
https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://cloud.google.com/tpu/docs/regions-zones
https://cloud.google.com/tpu/docs/regions-zones
https://www.tensorflow.org/guide/data
https://www.tensorflow.org/guide/data
https://sites.research.google/trc/about/
https://sites.research.google/trc/about/

[21] Anastasios Gounaris, Norman W Paton, Alvaro AA Fer-
nandes, and Rizos Sakellariou. Adaptive query pro-
cessing: A survey. In Advances in Databases: 19th
British National Conference on Databases, BNCOD 19
Sheffield, UK, July 17–19, 2002 Proceedings 19, pages
11–25. Springer, 2002.

[22] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Al-
brici, Chandramohan A Thekkath, and Ana Klimovic.
Cachew: Machine learning input data processing as a
service. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 689–706, 2022.

[23] Rong Gu, Kai Zhang, Zhihao Xu, Yang Che, Bin Fan,
Haojun Hou, Haipeng Dai, Li Yi, Yu Ding, Guihai Chen,
and Yihua Huang. Fluid: Dataset abstraction and elastic
acceleration for cloud-native deep learning training jobs.
In 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pages 2182–2195, 2022.

[24] Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev
Satheesh, Shubho Sengupta, Adam Coates, et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 770–778, 2016.

[26] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chan-
drasekaran, Amol Deshpande, Kris Hildrum, Samuel
Madden, Vijayshankar Raman, and Mehul A. Shah.
Adaptive query processing: Technology in evolution.
IEEE Data Eng. Bull., 23(2):7–18, 2000.

[27] Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu.
A survey on automatic parameter tuning for big data
processing systems. ACM Computing Surveys (CSUR),
53(2):1–37, 2020.

[28] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra
Gedik, and Robert Grimm. A catalog of stream process-
ing optimizations. ACM Computing Surveys (CSUR),
46(4):1–34, 2014.

[29] Yu Hongkun, Chen Chen, Du Xianzhi, Li Yeqing, Rash-
wan Abdullah, Hou Le, Jin Pengchong, Yang Fan, Liu
Frederick, Kim Jaeyoun, and Li Jing. TensorFlow Model
Garden. https://github.com/tensorflow/models,
2020.

[30] Jun Huang, Zhen Zhang, Shuai Zheng, Feng Qin, and
Yida Wang. DISTMM: Accelerating distributed multi-
modal model training. In 21st USENIX Symposium on

Networked Systems Design and Implementation (NSDI
24), pages 1157–1171, 2024.

[31] Yannis E Ioannidis. Query optimization. ACM Comput-
ing Surveys (CSUR), 28(1):121–123, 1996.

[32] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and
Hans-Arno Jacobsen. Where is my training bottle-
neck? hidden trade-offs in deep learning preprocessing
pipelines. In SIGMOD ’22: International Conference
on Management of Data, 2022.

[33] Keith Ito and Linda Johnson. The LJ Speech Dataset.
https://keithito.com/LJ-Speech-Dataset/,
2017.

[34] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil,
Joseph E. Gonzalez, and Ion Stoica. Skyplane: Opti-
mizing transfer cost and throughput using Cloud-Aware
overlays. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023.

[35] Matthias Jarke and Jurgen Koch. Query optimization
in database systems. ACM Computing surveys (CsUR),
16(2):111–152, 1984.

[36] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019.

[37] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phan-
ishayee, and Shivaram Venkataraman. The case for
unifying data loading in machine learning clusters. In
11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), Renton, WA, July 2019. USENIX
Association.

[38] Awais Khan, Arnab K Paul, Christopher Zimmer, Sarp
Oral, Sajal Dash, Scott Atchley, and Feiyi Wang. Hvac:
Removing i/o bottleneck for large-scale deep learning
applications. In 2022 IEEE International Conference on
Cluster Computing (CLUSTER), pages 324–335. IEEE,
2022.

[39] Redwan Ibne Seraj Khan, Ahmad Hossein Yazdani, Yuqi
Fu, Arnab K Paul, Bo Ji, Xun Jian, Yue Cheng, and
Ali R Butt. SHADE: Enable fundamental cacheability
for distributed deep learning training. In 21st USENIX
Conference on File and Storage Technologies (FAST 23),
pages 135–152, 2023.

[40] Sotiris B Kotsiantis, Dimitris Kanellopoulos, and Pana-
giotis E Pintelas. Data preprocessing for supervised
leaning. International Journal of Computer Science,
1(2):111–117, 2006.

662 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/tensorflow/models
https://keithito.com/LJ-Speech-Dataset/

[41] Kubernetes. Kubernetes Horizontal Pod Autoscaler Doc-
umentation. https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale/,
February 2023.

[42] Michael Kuchnik, George Amvrosiadis, and Virginia
Smith. Progressive compressed records: Taking a byte
out of deep learning data. Proceedings of the VLDB
Endowment, 14(11), 2021.

[43] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia
Smith, and George Amvrosiadis. Plumber: Diagnosing
and removing performance bottlenecks in machine learn-
ing data pipelines. Proceedings of Machine Learning
and Systems, 4:33–51, 2022.

[44] Jan Kukačka, Vladimir Golkov, and Daniel Cremers.
Regularization for deep learning: A taxonomy. arXiv
preprint arXiv:1710.10686, 2017.

[45] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 283–296, 2020.

[46] Elnaz Lashgari, Dehua Liang, and Uri Maoz. Data aug-
mentation for deep-learning-based electroencephalog-
raphy. Journal of Neuroscience Methods, 346:108885,
2020.

[47] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyung-Geun
Lee, Hwarim Hyun, Ahnjae Shin, and Byung-Gon Chun.
Refurbish your training data: Reusing partially aug-
mented samples for faster deep neural network train-
ing. In USENIX 2021 Annual Technical Conference
(USENIX ATC 21), pages 537–550, 2021.

[48] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran.
Smart augmentation learning an optimal data augmenta-
tion strategy. IEEE Access, 5:5858–5869, 2017.

[49] Katerina Lepenioti, Alexandros Bousdekis, Dimitris
Apostolou, and Gregoris Mentzas. Prescriptive analytics:
Literature review and research challenges. International
Journal of Information Management, 50:57–70, 2020.

[50] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 2980–2988, 2017.

[51] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision–ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13, pages 740–755. Springer,
2014.

[52] Meta. Scaling data ingestion for machine learn-
ing training at Meta. https://engineering.
fb.com/2022/09/19/ml-applications/
data-ingestion-machine-learning-training-meta/,
2022.

[53] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala,
and Vijay Chidambaram. Analyzing and mitigating
data stalls in DNN training. Proceedings of the VLDB
Endowment, 14(5):771–784, 2021.

[54] Derek G Murray, Jiří Šimša, Ana Klimovic, and Ihor
Indyk. tf. data: A machine learning data processing
framework. Proceedings of the VLDB Endowment,
14(12):2945–2958, 2021.

[55] Apoorv Nandan. Transformer ASR. https:
//github.com/keras-team/keras-io/blob/
master/examples/audio/transformer_asr.py,
2021.

[56] Nvidia. Nvidia DALI Documentation.
https://docs.nvidia.com/deeplearning/dali/
user-guide/docs/, February 2023.

[57] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
SpecAugment: A simple data augmentation method for
automatic speech recognition. Proc. Interspeech 2019,
pages 2613–2617, 2019.

[58] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim.
Trainbox: An extreme-scale neural network training
server architecture by systematically balancing oper-
ations. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 825–
838. IEEE, 2020.

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
PyTorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[60] PyTorch. PyTorch DataLoader. https://pytorch.
org/docs/stable/data.html, February 2023.

[61] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International Conference on Ma-
chine Learning, pages 8748–8763. PMLR, 2021.

USENIX Association 2024 USENIX Annual Technical Conference 663

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/
https://engineering.fb.com/2022/09/19/ml-applications/data-ingestion-machine-learning-training-meta/
https://github.com/keras-team/keras-io/blob/master/examples/audio/transformer_asr.py
https://github.com/keras-team/keras-io/blob/master/examples/audio/transformer_asr.py
https://github.com/keras-team/keras-io/blob/master/examples/audio/transformer_asr.py
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html

[62] Jan S Rellermeyer, Sobhan Omranian Khorasani, Dan
Graur, and Apourva Parthasarathy. The coming age of
pervasive data processing. In 2019 18th International
Symposium on Parallel and Distributed Computing (IS-
PDC), pages 58–65. IEEE, 2019.

[63] Krzysztof Rzadca, Paweł Findeisen, Jacek Świderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Paweł Krzysztof Nowak, Beata Strack, Piotr
Witusowski, Steven Hand, and John Wilkes. Autopilot:
Workload autoscaling at Google scale. In Proceedings
of the Fifteenth European Conference on Computer Sys-
tems, 2020.

[64] Timos K Sellis. Multiple-query optimization. ACM
Transactions on Database Systems (TODS), 13(1):23–
52, 1988.

[65] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Min-
hyeok Kweun, Goeun Kim, and Woo-Yeon Lee.
FastFlow. https://github.com/SamsungLabs/
FastFlow, 2023.

[66] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Min-
hyeok Kweun, Goeun Kim, and Woo-Yeon Lee. Fast-
Flow: Accelerating deep learning model training with
smart offloading of input data pipeline. Proceedings of
the VLDB Endowment, 16(5):1086–1099, 2023.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in Neural Information Processing Systems, 30, 2017.

[68] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu,
Hequan Zhang, Shengen Yan, and Qiong Luo. DIESEL:
A dataset-based distributed storage and caching system
for large-scale deep learning training. In Proceedings of
the 49th International Conference on Parallel Process-
ing, ICPP ’20, 2020.

[69] Wei Wang and Niranjan Hasabnis. Distributed MLPerf
ResNet50 training on Intel Xeon architectures with Ten-
sorFlow. In The International Conference on High Per-
formance Computing in Asia-Pacific Region Companion,
pages 29–35, 2021.

[70] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in large-scale heterogeneous GPU clus-
ters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), 2022.

[71] Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han,
and Songlin Hu. Conditional BERT contextual aug-
mentation. In Computational Science–ICCS 2019: 19th

International Conference, Faro, Portugal, June 12–14,
2019, Proceedings, Part IV 19, pages 84–95. Springer,
2019.

[72] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clus-
ters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), 2020.

[73] Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y
Ng, and Dan Jurafsky. Noising and denoising natural
language: Diverse backtranslation for grammar correc-
tion. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 619–628, 2018.

[74] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-
Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,
and Ion Stoica. SkyPilot: An intercloud broker for sky
computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023.

[75] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Clus-
ter computing with working sets. In Proceedings of
HotCloud, 2010.

[76] Xiao Zeng, Ming Yan, and Mi Zhang. Mercury: Effi-
cient on-device distributed DNN training via stochastic
importance sampling. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems,
pages 29–41, 2021.

[77] Mark Zhao, Emanuel Adamiak, and Christos Kozyrakis.
cedar: Composable and optimized machine learning in-
put data pipelines. arXiv preprint arXiv:2401.08895,
2024.

[78] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Understand-
ing data storage and ingestion for large-scale deep rec-
ommendation model training: Industrial product. In Pro-
ceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, page 1042–1057,
2022.

664 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/SamsungLabs/FastFlow
https://github.com/SamsungLabs/FastFlow

A Artifact Appendix

Abstract

The artifact consists of the source code of Pecan, the Pecan
client binaries, as well as scripts for building wheel files and
Docker images. We also provide reference scripts for deploy-
ing GCE VMs for evaluation and for running some represen-
tative experiments. For concrete instructions on how to set
up and run experiments, please see the pecan-experiments
repository.

Scope

The artifact evaluation (AE) focuses on reproducing key ex-
periments and their respective results, demonstrating how the
main contributions of Pecan work. To this extent, the AE fo-
cuses on reproducing and exemplifying the combined benefits
of the AutoPlacement and AutoOrder policies on a job’s per-
formance. We focus on reproducing this for the ResNet and
RetinaNet models on TPUv2-8 VMs. Overall, the AE would
produce a part of Figure 6: the collocated (blue), Cachew (or-
ange), and Pecan (brown) bars for the ResNet and RetinaNet
on TPUv2-8 VMs. This should prove the reproducibility of
our work.

Contents

The artifact with the components listed below is available at
https://github.com/eth-easl/pecan-experiments.

• System to deploy: Pecan service (dispatcher, input data
workers, remote cache cluster)

• Algorithms to evaluate: Pecan’s AutoPlacement and Au-
toOrder policies

• Workloads to run:

– Figure 6’s ResNet TPUv2-8 group: ResNet50
model and its open-source canonical input pipeline
for the collocated – blue bar –, Cachew – orange
bar –, and Pecan (AutoPlacement and AutoOrder)
– brown bar –

– Figure 6’s RetinaNet TPUv2-8 group: RetinaNet
model and its open-source canonical input pipeline
for the collocated – blue bar –, Cachew – orange
bar –, and Pecan (AutoPlacement and AutoOrder)
– brown bar –

• Binary: Pecan Docker image for workers and dispatcher,
Pecan wheel file for client

• Models: ResNet50 and RetinaNet and their canonical
input pipelines

• Datasets: ImageNet 2012 and MS COCO (stored in
Google Cloud Storage buckets)

• Output: Text-based logs and plots to compare with fig-
ures in the paper and reference results provided in our
repository.

Hosting
Our artifacts are all publicly available:

• Code: https://github.com/eth-easl/cachew/tree/pecan
(branch pecan)

• Artifact evaluation scripts: https://github.com/eth-
easl/pecan-experiments (branch main)

• Pecan TPU-compatible binary: gs://easl-atc24-ae-
files/tensorflow-2.8.0-cp38-cp38-linux_x86_64.whl

• Zenodo DOI: 10.5281/zenodo.11477795

Requirements
Hardware dependencies: The experiments require a cluster
of x86 CPU servers with hardware virtualization support. We
recommend (and our scripts assume that you are) conducting
experiments on GCP. Client nodes are assumed to be TPUv2-
8 VMs. Worker nodes are assumed to be n2-standard-8 VMs.

Software dependencies: Our scripts use the gcloud CLI
tool. This tool is a prerequisite for setting up VMs and running
experiments. Please follow this tutorial to install it. We also
suggest to use PyEnv to install and manage multiple Python
versions and virtual environments. Our scripts should set up
the correct experiment environment on the client VMs (i.e.
the trainer nodes) from where experiments will be executed.

USENIX Association 2024 USENIX Annual Technical Conference 665

https://github.com/eth-easl/pecan-experiments
https://github.com/eth-easl/cachew/tree/pecan
https://github.com/eth-easl/pecan-experiments
https://github.com/eth-easl/pecan-experiments
gs://easl-atc24-ae-files/tensorflow-2.8.0-cp38-cp38-linux_x86_64.whl
gs://easl-atc24-ae-files/tensorflow-2.8.0-cp38-cp38-linux_x86_64.whl
https://zenodo.org/records/11477795
https://cloud.google.com/sdk/docs/install
https://github.com/pyenv/pyenv

	Introduction
	ML Input Data Preprocessing
	Cost Saving Opportunities & Challenges
	Exploiting Local Resources
	Transformation Reordering

	Related Work
	Pecan Design and Implementation
	AutoPlacement Policy
	AutoOrder Policy

	Evaluation
	Methodology
	AutoPlacement Evaluation
	AutoOrder Evaluation
	End-to-End Pecan Evaluation

	Discussion
	Conclusion
	Artifact Appendix

