
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Limitations and Opportunities of Modern Hardware
Isolation Mechanisms

Xiangdong Chen and Zhaofeng Li, University of Utah; Tirth Jain, Maya Labs;
Vikram Narayanan and Anton Burtsev, University of Utah

https://www.usenix.org/conference/atc24/presentation/chen-xiangdong

Limitations and Opportunities of Modern Hardware Isolation Mechanisms
Xiangdong Chen1, Zhaofeng Li1, Tirth Jain†2, Vikram Narayanan1, and Anton Burtsev1

1University of Utah, 2Maya Labs

Abstract
A surge in the number, complexity, and automation of

targeted security attacks has triggered a wave of interest in
hardware support for isolation. Intel memory protection keys
(MPK), ARM pointer authentication (PAC), ARM memory
tagging extensions (MTE), and ARM Morello capabilities are
just a few hardware mechanisms aimed at supporting low-
overhead isolation in recent CPUs. These new mechanisms
aim to bring practical isolation to a broad range of systems,
e.g., browser plugins, device drivers and kernel extensions,
user-defined database and network functions, serverless cloud
platforms, and many more. However, as these technolo-
gies are still nascent, their advantages and limitations are yet
unclear. In this work, we do an in-depth look at modern hard-
ware isolation mechanisms with the goal of understanding
their suitability for the isolation of subsystems with the tight-
est performance budgets. Our analysis shows that while a
huge step forward, the isolation mechanisms in commodity
CPUs are still lacking implementation of several design prin-
ciples critical for supporting low-overhead enforcement of
isolation boundaries, zero-copy exchange of data, and secure
revocation of access permissions.

1 Introduction
Despite significant academic interest [17, 24–26, 63, 64, 80,
87, 99, 102–104, 111, 113, 118, 118, 119], until recently the
performance of hardware isolation primitives remained a low
priority in commodity CPUs. For example, on x86 machines,
one of the low-overhead isolation mechanisms, segmenta-
tion [61,66,124], was deprecated as part of the transition from
32-bit to 64-bit addressing mode, leaving page tables as the
only available isolation mechanism. For decades, lack of hard-
ware support was making fine-grained isolation prohibitively
expensive. For example, a highly optimized page-based isola-
tion implementation requires 771 cycles for a cross-subsystem
invocation on Intel CPUs (818 cycles on ARM) [1] – an over-
head prohibitive for isolation of modern I/O intensive work-
loads like network processing frameworks [19] which spend
less than a hundred cycles per I/O request [30].

The interest in isolation was revived by a surge in complex-
ity and automation of targeted security attacks [53, 100, 107].
Memory Protection Keys (MPK) and Extended Page-Table

†Work done at the University of Utah

(EPT) switching with VM functions (VMFUNC) [52] de-
ployed in modern Intel CPUs provide support for memory
isolation with overheads gradually approaching the overhead
of a function call [41, 76, 83, 112]. Both X86 and ARM are
exploring hardware support for sub-page isolation [7,20]. The
latest ARM CPUs introduce 16-byte-granularity memory iso-
lation with the Memory Tagging Extension (MTE) [7, 10].
Intel introduced support for 128-byte sub-page permissions
(SPP) [20]. Finally, ARM implements pointer authentication
(PAC), i.e., cryptographic signing of pointers in hardware, that
can be used to implement both control-flow integrity [67] and
subsystem isolation [75]. ARM Morello is the first silicon
implementation of the CHERI capability model [119].

In contrast to traditional hardware isolation techniques (e.g.,
segmentation and page tables), the new primitives are de-
signed to support lightweight cross-subsystem invocations
(in the low hundreds and even low tens of cycles). Hence
these new mechanisms bring a promise of practical isolation
of small untrusted extensions and third-party code that re-
quire frequent communication with the rest of the system, e.g.,
browser plugins [2,78,84,124], database extensions [15,105],
virtualized network functions [6,45,48,73,92,96], web appli-
cations [3, 27, 32, 56], serverless cloud and edge platforms [4,
5, 58, 90, 109], and operating system kernels [75, 81, 83].

As the range of new hardware mechanisms matures the
questions of their practicality and relative advantages for iso-
lation arise. The overhead of switching the isolation boundary
is becoming progressively lower, e.g., writing a pkru register
that changes the current tag in the Intel MPK isolation mech-
anism introduces an overhead of only 20-26 cycles [41, 89].
At the same time, new isolation mechanisms often rely on
a complex compiler and binary instrumentation to enforce
isolation [41, 75, 112], and require software and hardware
schemes to support the revocation of rights [117, 120].

Our work performs an in-depth look at hardware isolation
mechanisms deployed in recent ARM and x86 CPUs with
the goal to understand their ability to support fine-grained
isolation of subsystems with the strictest performance bud-
gets. We first introduce a generic isolation scheme aimed at
providing low-overhead isolation and efficient zero-copy com-
munication. We draw inspiration from prior projects aimed at
implementing fine-grained, process-like boundaries around
untrusted subsystems [47, 82]. We then develop carefully
optimized implementations of the isolation primitives for dif-

USENIX Association 2024 USENIX Annual Technical Conference 349

ferent CPU architectures: Intel MPK, ARM MTE, ARM PAC,
and ARM Morello. These four mechanisms support isolation
with a low overhead and fast switching of isolation boundary.
A controlled implementation allows us to reason about the
benefits and limitations of each hardware mechanism.

Our analysis shows that while a huge step forward, modern
isolation mechanisms still lack multiple conceptual features
that limit their practicality. ARM PAC and ARM MTE are
inherently limited by the overhead of additional instructions
that are needed to enforce the isolation of heaps. Careful
performance analysis demonstrates that even the most mini-
mal compiler instrumentation, e.g., a single instruction that
copies the MTE tag bits in front of every memory access adds
overhead impractical for the isolation of modern systems. All
isolation schemes are limited by the overhead of saving and
restoring general and extended registers which significantly
affects the cost of cross-subsystem invocations. Intel MPK
suffers from the inability to reflect the passing of zero-copied
memory regions across all cores of the system, which results
in a restrictive programming model (the buffers passed on
one core cannot be accessed from other cores). Tag-based
schemes like MPK and MTE support an impractically small
number of isolated subsystems. Additionally, MTE suffers
from the overhead of retagging, which in our experiments is
only marginally faster than copying. Capability schemes like
CHERI are inherently limited by the lack of support for revo-
cation of rights and “move” semantics, i.e., ensuring that the
caller loses access to the objects on the heap that are passed
to the callee. Hardware architectures that keep access rights
in registers, e.g., Intel MPK, CHERI, and even PAC are fac-
ing another inherent limitation: it is impossible to perform
revocation of rights across the cores (active capabilities can
be retained in registers of other cores).

Our observations allow us to identify several principles
that are critical for design of practical, low-overhead isola-
tion mechanisms with support for efficient zero-copy com-
munication. Software transparency: Architectural mecha-
nisms should minimize the use of costly compiler instrumen-
tation which becomes prohibitive in modern systems (Intel
MPK and ARM Morello satisfy this principle, but ARM MTE
and AMR PAC does not). Core-coherent synchronization of
rights: Hardware should support synchronization of access
permissions across cores of the system, which is essential for
implementing both a general programming model in which
memory regions exchanged across the isolation boundary are
available to all threads and even more important for the global
revocation of rights (our analysis shows that ARM MTE is
the only set of isolation extensions that implements this prin-
ciple). Number of isolated subsystems: Hardware isolation
primitives should support practically large number of isolated
subsystems. Revocation: Support for revocation should be a
first-class design principle. In the face of frequent commu-
nication, the ability to revoke access rights to a the specific
memory region is as important as granting them.

We demonstrate that the above principles are largely over-
looked by the current generation of hardware isolation mech-
anisms. Arguably, this might be due to the lack of under-
standing of which functionality is needed for implementing
isolation. The goal of this work, therefore, is to improve the
understanding of modern isolation mechanisms, analyze their
advantages and disadvantages, and, hopefully, shape the de-
sign space of the future solutions. We argue that in most cases
existing mechanisms can be extended to support the above
principles (although some changes, e.g., support of revocation
in pointer-centric architectures like CHERI, remain challeng-
ing research problems).

2 Background
The very first isolation mechanisms root back to the early
time-sharing machines that utilized hardware segmentation
and later paging to support efficient virtualization of mem-
ory. The first computer architectures (1950-1960) were batch
machines which executed one program at a time. The need
for multi-programming required dynamic sharing of memory
across multiple programs and triggered development of the
first isolation mechanisms. In 1961, the Burroughs B5000 in-
troduced segmentation [87] (similar ideas appear in the Rice
University Computer [51, 55], and the Basic Language Ma-
chine [49, 50] architectures). Paging was introduced by the
Atlas Computer [59] but naturally as a storage management
mechanism not a security primitive.

In 1977, the final Multics report suggested that the core ker-
nel can be reduced to several thousands of lines of code and
even formally verified while the rest of the operating system
can execute in isolation [68]. Since then, for over four decades,
a range of user-level and kernel projects explored the possi-
bility of providing practical, low-overhead isolation through
1) hardware mechanisms that were used to isolate kernel sub-
systems [38,81,83,106], support virtualized execution [13,37,
57, 85], and microkernelization [11, 21, 22, 34, 42–44]; 2) pro-
gramming language safety [9,12,47,82,115]; and 3) software
fault isolation (SFI) [14, 31, 35, 72, 74, 91, 94, 116, 126, 127].
In parallel, numerous hardware architectures explored ideas
of fine-grained isolation centered around memory tags and
capabilities [17, 24–26, 63, 64, 80, 87, 99, 102–104, 111, 113,
118, 118, 119].

Unfortunately, commodity CPU architectures remained op-
timized for the abstraction of process which was central to
time-sharing, i.e., designed to execute a collection of largely
independent programs with infrequent inter-process commu-
nication. Careful hardware optimizations like the virtually
indexed and physically tagged L1 cache enabled TLB lookups
to be performed in parallel with the rest of the pipeline, hence
ensuring zero-overhead isolation between address spaces. Ef-
ficient switching between isolated subsystems was never a
goal [29]. Ironically, the x86 architecture abandoned seg-
mentation (which was demonstrated as an efficient isolation
mechanism by both microkernel [66] and software fault iso-

350 2024 USENIX Annual Technical Conference USENIX Association

lation [61, 124] architectures) while transitioning to 64-bit
addressing mode.

Trying to remove hardware overheads from the invoca-
tion path, a range of projects explored isolation mechanisms
that enforce isolation entirely in software through techniques
of SFI and language safety. Software fault isolation (SFI)
strikes a balance between the ability to support isolation in
a broad spectrum of programming languages, overheads of
enforcing isolation and cost of cross-subsystem communica-
tion [2, 14, 31, 72, 95, 116, 124]. SFI enforces segment-like
boundaries (i.e., access to a contiguous region of memory)
through additional bounds checks in front of all memory ac-
cess instructions [116]. Building on efficient SFI isolation
techniques, WebAssembly became a de facto mechanism
to enable near-native performance for a range of resource-
demanding Web applications [27, 32, 56], data streaming plat-
forms [5], serverless and edge platforms [4, 58, 90, 109] as
well as providing practical isolation of browser [2,78,84,124]
and kernel [14, 31, 72, 98] extensions implemented in unsafe
languages that are prone to low-level memory safety viola-
tions and vulnerabilities. Unfortunately, as we argue in this
paper, without proper hardware support the overheads of SFI
remain high (this is consistent with findings by Narayan et
al. [79] and by Yedidia [123]).

2.1 Modern Isolation Primitives
In the last decade, commodity CPUs introduced a diverse
range of hardware primitives aimed at supporting practical,
fine-grained memory isolation. Some of the new primitives,
like Intel extended page table (EPT) switching with VM-
FUNC and Intel sub-page protection (SPP) are a poor fit for
systems with frequent communication (VMFUNC has a high
overhead of switching the EPT and requires complex virtual-
ization infrastructure to enforce isolation [83], SPP controls
only write accesses which is insufficient for enforcing confi-
dentiality). Other mechanisms, however, bear the promise of
improving the performance of lightweight isolation schemes.

Intel MPK Memory protection keys (MPK) is a new isola-
tion mechanism introduced by Intel in SkyLake CPUs. MPK
allows one to enforce isolation within a single address space,
i.e., a single page table, by tagging individual pages with a
4-bit protection key (saved in the unused bits of the pagetable
entry). A special register, pkru, holds a bitmap that allows ac-
cess to a combination of tags (i.e., any combination from none
to all is possible by setting individual bits in the bitmap). The
pkru register specifies the access rights for each protection key
with two bits per key (access disable and write disable). The
read or write access to a page is allowed only if the value of
the pkru register matches the tag of the page. Crossing between
subsystems is performed by updating the bitmask in the pkru

register, a fast operation taking 20-26 cycles [41, 89].
Isolation with MPK requires control over all wrpkru instruc-

tions throughout the code of the program to prevent unau-
thorized transitions between address spaces. In the past con-

trol over wrpkru was demonstrated with either binary rewrit-
ing [112] or dynamic validation of all wrpkru instructions with
hardware breakpoints [41]. Also, MPK enforces checks only
on data accesses but does not limit control flow transitions
which opens the door for numerous system-interface level
attacks that require expensive enforcement [18].
ARM MTE Starting with ARMv8.3-A, ARM SoCs intro-
duce support for memory tagging extensions (MTE) that allow
partitioning the address space into 16-byte regions that are
colored with one of the 16 tags. The hardware maintains a
table that stores the mapping between addresses and tags al-
lowing access to the region only if the tag of the pointer (the
tag is stored in the upper bits of the pointer matches the tag
of the memory region). MTE does not directly support iso-
lation – the attacker can change the upper bits of the pointer
containing the tag. To enforce isolation, it is possible to com-
bine MTE with techniques of software fault isolation (SFI),
i.e., rely on binary rewriting or compile-time instrumentation
to enforce a specific tag on every load and store operation.
ARM PAC Starting with ARMv8.3-A, ARM SoCs support
cryptographic pointer authentication (PAC). PAC implements
the ability to cryptographically sign a pointer and store the
signature in the “unused” upper bits of the pointer. The sig-
nature is generated from 1) the pointer value, 2) a secret key
protected by the operating system, and 3) a 64-bit program-
defined “signing context” that allows the isolation scheme
to restrict the use of a pointer in a custom way, for example,
allows using the pointer only if the value of the stack pointer
(sp) is identical at the moment of signing and authenticating
the signature. A signed pointer cannot be used directly but
instead has to be authenticated with the same secret key and
context. If either the pointer, its signature, or the context is dif-
ferent from the values used during signing, the authentication
results in an invalid pointer value that triggers a hardware ex-
ception when used. PAC is a powerful mechanism that can be
used to enforce control flow [67], spatial and temporal [33,65]
safety and isolation of subsystems [75].
ARM Morello ARM Morello is an experimental architec-
ture that implements the CHERI capability model [39, 119].
It extends all general-purpose registers on AArch64 to be ca-
pabilities which include bounds and permissions in addition
to addresses, and adds new instructions to support loading
and storing of capabilities in memory. Memory operations
against a capability are checked against its bounds and permis-
sions, triggering a hardware exception if the constraints are
violated. New capabilities can only be derived from existing
ones and Morello guarantees capability monotonicity, mean-
ing that a new capability cannot provide access that exceeds
the capability it’s derived from.

To guarantee the unforgeability of capabilities in both regis-
ters and memory, Morello adds protected tag bits that indicate
their validity. Each 16-byte memory location is associated
with a hidden tag bit indicating whether a valid capability is
stored. Similarly, each capability register contains a tag bit

USENIX Association 2024 USENIX Annual Technical Conference 351

which is cleared when the register is modified in a way that
violates the capability monotonicity.

In Morello, a capability can be sealed which causes further
changes (address, permissions, or bounds) to invalidate it. For
example, a sealed function capability has its address set to
the beginning of the function, with its bounds covering the
entirety of the function code. An adversary cannot modify the
capability to point to the middle of the function, despite the
new address being within bounds. Branching to the capabil-
ity, however, unseals it and sets the program counter to the
unsealed capability. The function runs from the fixed entry
point and can derive further capabilities from the Program
Counter Capability (PCC).

To preserve compatibility with unmodified AArch64 code
that isn’t capability-aware, Morello introduces the Default
Data Capability (DDC) which is used for regular loads and
stores. This provides coarse-grained isolation and allows the
developer to gradually transition to fine-grained isolation
by adding __capability annotations to pointers. Furthermore,
Morello adds a new execution state known as the Restricted
mode which has its own Default Data Capability as well as
Stack Capability. When the processor is in Restricted mode,
accesses to DDC and the stack register are automatically
switched to the restricted counterparts.

Intel CET Intel introduced control-flow enforcement tech-
nology (CET), a hardware feature to mitigate ROP-style
attacks (return-oriented programming, jump-oriented pro-
gramming, call-oriented programming) by enforcing coarse-
grained control flow integrity. It consists of a 1) shadow
stack (SHSTK) to protect the return addresses that can be cor-
rupted by buffer-overflow attacks and, 2) indirect branch track-
ing (IBT) that protects the forward control flow of the program.
SHSTK records the return addresses in a hardware-protected
stack region along with the regular stack; when ret instruction
is executed, the return addresses are compared to generate
an exception if there is a mismatch. SHSTK provides write-
protected pages (using unused combination of read, write,
and dirty bits in the pagetable) to store return addresses. IBT
marks the jump targets in a program with a special instruc-
tion (endbr64). On an indirect call, the hardware enters the
WAIT_FOR_ENDBRANCH state and generates an exception if the next
encountered instruction is not endbr64.

3 Design principles for efficient isolation
We assume that hardware isolation mechanisms are used
to implement process-like isolation boundaries across mu-
tually mistrusting subsystems that implement a larger system,
i.e., individual network functions that form a single service
chain [6, 45, 48, 73, 88, 92, 96], loadable kernel extensions
and device drivers [14, 46, 72, 81, 83, 106], etc. The isolation
architecture protects the state of each subsystem, i.e., its heap,
stacks, etc., from accidental and malicious accesses by other
subsystems, and provides a way for controlled communication
in which subsystems can invoke each other interfaces.

Low-overhead enforcement To be practical, isolation is al-
lowed to impose only minimal overhead. In the past, segment
and page-based isolation schemes enforced isolation bound-
aries with no additional overhead. Modern mechanisms, how-
ever, are less transparent. ARM PAC and MTE rely on a com-
piler pass that adds additional instructions to enforce isolation
along with the hardware. Similarly, as we demonstrate below,
while designed to avoid software support, CHERI capability
architecture requires software support to track propagation of
capabilities and implement efficient revocation. Unfortunately,
even the fastest SFI implementations introduce significant per-
formance impact on the isolated system (we provide a detailed
breakdown of SFI overheads on x86 and ARM machines in
Section 5).
Fast switching of isolation boundaries Fine-grained isola-
tion comes at the cost of frequent crossings of isolation bound-
aries. Historically, overheads of cross-subsystem invocations
remained high [60]. A typical invocation required a transition
into a privileged execution mode to switch the address space
(even a well-optimized sequence took hundreds of cycles [1]).
Fortunately, novel hardware isolation primitives, provide sup-
port for switching the isolation boundary that approaches the
overhead of a function call. The software however should
be carefully optimized to leverage low-overhead hardware
primitives. To minimize the overhead of cross-subsystem in-
vocations, we implement them as synchronous transitions
that do not change the thread of execution between caller and
callee subsystems. Specifically, upon the invocation, the caller
saves its state on the stack, switches into the callee subsystem,
picks a new stack inside the callee subsystem, and continues
execution inside the callee.
Zero-copy passing of data Isolation of I/O intensive sys-
tems, e.g., operating system device drivers [23, 72, 81, 83],
network processing frameworks [88], databases [62], etc., re-
quires frequent passing of data between isolated subsystems.
In such systems, the overhead of copying data between subsys-
tems is prohibitive. An isolation mechanism should support
low-overhead zero-copy passing of data across isolated sub-
systems.
“Move” semantics and revocation The requirement to sup-
port zero-copy results in a unique challenge: the need to
revoke or transfer access rights from the caller to the callee
when the reference to an object is passed in a cross-subsystem
invocation. Such “move” semantics is critical for preventing
a range of time-of-check-time-of-use attacks which allow the
caller to manipulate the object after it has been passed to the
callee. Internally, the ability to “move” the access right relies
on the ability to revoke the access right from the caller. Re-
vocation is surprisingly challenging. First, isolation schemes
like CHERI allow unrestricted propagation of capabilities and
hence revocation requires either a pass over the entire mem-
ory of the subsystem [117, 120] or, as we demonstrate in this
work, compiler instrumentation to track the propagation of
all capabilities in memory. Second, revocation should be en-

352 2024 USENIX Annual Technical Conference USENIX Association

Exchange Heap

fn(•) fn(•) {
 move(*buf)
 fn(•);
}

fn(•) {

 ...

} Subsystem BTCBSubsystem A

move

Ownership transfer

Figure 1: Private and shared heaps

forced across the cores. This is challenging as cores can have
capabilities loaded in registers. As a result, synchronization
of access rights requires an expensive inter-processor inter-
rupt (IPI) or alternatively a restricted programming model
in which the processing of a specific object is pinned to one
CPU core.
Fast, zero-copy isolation scheme In the sections below we
implement the following isolation scheme (Figure 1). To fully
leverage the low-overhead nature of the hardware mechanism,
we implement a migrating threads model of invocation [36]
that avoids overheads of dispatching messages and switch-
ing the threads, i.e., the same thread of execution transitions
between caller and callee address spaces. To support clean ter-
mination and unloading of crashing subsystems, we enforce
heap isolation invariant across subsystems, i.e., subsystems
never hold pointers into each other’s private heaps [47, 82].
Specifically, we orchestrate isolated subsystems as a collec-
tion of isolated private heaps and a special shared exchange
heap – a heap that allows the allocation of objects that can
be exchanged across subsystems. Moreover, objects on the
shared heap are owned by exactly one subsystem and are
moved between them on cross-subsystem invocations. This
approach helps us avoid a scenario where objects left in an
inconsistent state by a crashing subsystem become accessible
on the shared heap by other subsystems.

4 Isolation with Modern Mechanisms
To understand the advantages and limitations of modern iso-
lation mechanisms, we develop several isolation schemes that
leverage recent hardware extensions: Intel MPK and CET,
ARM MTE, ARM PAC, and ARM Morello.

4.1 Intel MPK + CET
To enforce isolation, we tag private heaps of individual sub-
systems with one of the 15 available tags (tag 0 is privileged
and allows unlimited access to the entire address space and
hence is reserved for the TCB). To enforce control flow, we
combine MPK with Intel CET. We rely on indirect branch
tracking (IBT) to protect the forward edge of indirect transi-

tions and utilize the write-protected shadow stack to protect
the return edge. MPK does not check memory tags for targets
of indirect control flow transitions. An attacker can find a
valid (with respect to IBT) entry point in another subsystem
and potentially reach code that contains sensitive instructions
(e.g., attack gadgets, trampolines to other subsystems, etc.).
To prevent indirect control transitions between subsystems,
we instrument indirect control flow instructions (e.g., jumps
and calls) with a memory load from the target address of the
control flow transition, hence using MPK to validate that the
address belongs to the same subsystem.

To implement support for zero-copy communication, we
support the allocation of special regions of memory on the
shared exchange heap that are also tagged with one of the
available MPK tags. On cross-subsystem invocations, the
IPC trampoline changes the current tag granting access to
the callee’s heap as well as updating access permissions for
buffers passed as arguments (i.e., it revokes access from the
caller and granting it to the callee). This organization allows
us to implement single-ownership on the exchange heap, i.e.,
only one subsystem can access each shared region at a time,
on cross-subsystem invocations, the buffers are “moved” be-
tween subsystems.

The above isolation scheme has several limitations inherent
to MPK. First, the total number of isolated subsystems and ex-
change buffers is limited to 15. Second, the cross-subsystem
invocation updates the tag only on the CPU core on which in-
vocation is performed, and hence the buffers on the exchange
heap are accessible by only that CPU. This means that multi-
threaded applications cannot access shared exchange buffers
from different cores and potentially require a copy into the
private heap that is accessible from all cores.

MPK trampoline Since we need to change accessible tags
on cross-subsystem invocations, MPK trampoline needs to
update the current value of the pkru register. A naive implemen-
tation of the trampoline would require two wrpkru instructions
on both call and return paths – one to switch into the TCB
and then another one to switch into the callee. On our Intel
Core i7 machines, a wrpkru instruction takes around 40 cycles.
To avoid the overhead of additional wrpkru instructions, we
leverage the ability to save information about the caller’s tag
on the CET stack and restore it after invocation returns.

Specifically, we first read the current MPK permissions
with the rdpkru instruction and check that the caller has per-
missions for the regions on the shared heap it is passing to the
callee (Listing 1, lines 2–4, we use assert syntax instead of
complete machine code to simplify the text). We then utilize
a small thunk trampoline to reserve space on the protected
CET stack and save the current value of the pkru register there
(lines 5–9). On return from the callee, we read the saved value
of pkru from the CET stack and restore it (lines 22–27). Here
we assume the case when the callee “borrows” the buffer on
the exchange stack and returns it back when the invocation
returns.

USENIX Association 2024 USENIX Annual Technical Conference 353

1 ; check buffer ownership before entering B
2 rdpkru ; rax contains permissions of A
3 and rax, r10 ; r10 has the buffer(s) A wants to pass to B
4 assert rax == 0 ; A has the permissions of the buffer(s)
5 call .reserve_ssp ; decrement ssp and rsp by 8 bytes
6 reserve_ssp:
7 pop ; restore rsp
8 rdsspq r9 ; copy ssp to r9
9 wrssq [r9], rax ; save pkru on the top of the shadow stack

10 ; grant buffer ownership to B
11 mov rax, PKRU_B
12 xor r10, 0xFFFFFFFFFFFFFFFF
13 and rax, r10
14 ; switch to B
15 wrpkru
16 ; locate stack
17 ...
18 call dispatch
19 ...
20 ; return path
21 ; load pkru of caller from the shadow stack
22 rdsspq r10
23 mov rax, [r10]
24 mov r10, 0x1
25 incsspq r10 ; increment ssp by 1 x 8 bytes.
26 ; switch back into A
27 wrpkru
28 ; restore the stack, restore register state...

Listing 1: MPK trampoline between two subsystems, A and B

To perform safety checks, we maintain read-only metadata
about liveness of the callee, allowing the caller to perform the
liveness check before entering the trampoline. Similarly, the
callee checks that the caller is alive before returning, and if
not, calls into the TCB instead. To implement unwind, the
TCB accesses the shadow stack to unwind execution to the
next “live” subsystem in the return chain.
Discussion In the past, MPK was suggested as an in-
process isolation mechanism without control-flow enforce-
ment (CFI) [41, 112]. While plausible for simple isolation
scenarios (one isolated subsystem and no zero-copy passing
of buffers), MPK alone becomes an easy target for a variety
of attacks without control flow enforcement. Without CFI,
all wrpkru instructions are reachable to the attacker. They can
redirect control flow to steal buffers passed in zero-copy invo-
cations from other subsystems, break control flow between
subsystems (e.g., in a call chain of from A to B, and then to
C an attacker can return from C directly into A, and even re-
turn into a random subsystem D). CFI not only eliminates the
complex binary rewriting required to protect MPK sandboxes
from control flow attacks [18, 41, 112], but also allows for
semantically complex transfer of rights on cross-subsystem
invocations.

4.2 ARM MTE
To enforce isolation with MTE, we tag the private heap of the
program with one of 15 the available tags. Since the tag is
stored in the upper bits of the pointer (memory address of the
load or store instructions), attacker can change the bits of the
tag by overflowing the pointers. We enforce the tag for each
memory access by copying it from a reserved register into the
address register with a bit-field bfi instruction.

MTE checks are not enforced for memory accesses rel-

SZ PAC

AUTIA

random_ctx

Metadata table

Authentication check

address

address

SZ base addressPAC

Pointer (without seal)

Pointer (with seal)

Base Pointer (with seal)

Figure 2: Enforcement with PAC

ative to the stack pointer. We, therefore, disable the use of
the stack pointer in the program and instead replace it with
another general register. Similar to MPK, MTE checks are not
enforced for control flow transitions. We rely on techniques
of Native Client to enforce all control transfers to a specific
segment [95]. Specifically, we enforce instruction bundling
and alignment to 16-byte boundary and enforce all control
flow transitions to stay within the segment and land on the
beginning of the bundle.

To support unwinding of execution from a faulting subsys-
tem, the trampoline first switches into the TCB that records
the state of the caller and then enters the callee subsystem.
Zero-copy communication MTE provides a way of support-
ing zero-copy communication across isolated SFI subsystems.
Specifically, it is possible to use MTE to enforce both bound-
aries of a private subsystem heap, as well as to control access
for fine-grained memory objects passed across subsystems.
We tag the entire private heap with the subsystem’s MTE
key. Objects allocated on the shared exchange heap are also
tagged with the MTE key of the subsystem that can access
them at the moment (note, we enforce single ownership on the
shared heap and move the objects between subsystems upon
invocations). Upon invocation, the TCB in the trampoline
first checks the ownership of the memory region by reading
the tag and comparing it with the tag of the caller, and then
retagging it with the tag of the callee. Note that since the tag
metadata is updated in memory, the access rights are reflected
on all CPUs. Combined with single ownership, MTE provides
support for reclamation of resources allocated on the shared
heap.

4.3 ARM PAC
ARM PAC provides a way to authenticate individual memory
pointers, i.e., implement a check that the pointer was not made
up or altered by the isolated subsystem but was obtained from
the TCB (e.g., from the memory allocator) or was received
through a valid communication channel. Combined with au-
thentication, an in-memory metadata can be used to check for
spatial bounds of the object accessed via a pointer, its liveness
and access permissions [33, 65, 75]. In a way, PAC allows
implementing CHERI-like capability scheme but relying on

354 2024 USENIX Annual Technical Conference USENIX Association

a single hardware primitive – signing and authentication of
pointers. Similar to other SFI schemes, PAC requires careful
instrumentation of every memory instruction to ensure that
access is allowed.

Specifically, we allocate all shared and private heap objects
with an alignment that matches the size of the object rounded
up to the nearest power of two (Figure 2). We then use unused
PAC bits (63-56th) of the pointer to store the size of the object
as a power of two. this allows us to represent objects of size
up to 2255 bytes. We use the size information to truncate the
lower bits of the pointer to restore the base address of the ob-
ject allocated on the heap (e.g., the pointer can point into the
middle of an object). We use the following signing context:
the base address bits of the pointer along with the size bits
in the upper bits, and a random identifier which we generate
when the object is allocated. To ensure the liveness of the
object, we record the random identifier in a global metadata
table indexed by the top 16 bits of the pointer (size bits and
PAC signature). If we detect collision in the table we pick a
new random identifier to generate a new PAC signature that
indexes into a new entry. Before each load and store, we first
look up its random identifier in the global metadata table using
the top 16 bits . We authenticate the sealed (i.e., signed) base
pointer using the random identifier. Authentication fails if the
PAC signature, size bits, or the address itself is changed. Then,
we remove the PAC from the pointer and perform the memory
operation safely. If the pointer participates in a pointer arith-
metic, we do not change the PAC signature since we use only
base bits of the address for signing. If the pointer arithmetic
operation leads outside of the signed power of two region,
the base bits of the pointer change, and the pointer fails au-
thentication. When an object is deallocated, the metadata is
updated to store an invalid random identifier. If the object is
moved to another subsystem in a cross-subsystem invocation,
the pointer is re-signed with a new random identifier. The
old random identifier is cleared from the metadata table (this
effectively revokes all aliases that might remain in the caller
subsystem, making them invalid).

4.4 ARM Morello
The ARM Morello architecture implements hardware bounds
checks on every pointer dereference, i.e., on every load and
store instruction. Hence, Morello allows one to implement an
isolation scheme similar to the one we discussed above for
ARM PAC but entirely in hardware (hence with virtually no
overhead). The architecture ensures that it is impossible to
make up capability pointers (they can only be obtained from
TCB), and enforces a bounds check on every memory access.
While appealing such straightforward isolation scheme has
a flaw in practice. Morello does not provide a way to revoke
capabilities and hence fails to support the move semantics
on cross-subsystem invocations. Capabilities may be freely
duplicated by the isolated subsystem, which can, for example,
store capabilities in memory and subsequently load and use

them even after moving them to another subsystem.
To support revocation and move semantics, we extend the

above isolation scheme with a special instrumentation pass
that tracks all capability stores in memory with the goal to
invalidate them when they are revoked. The compiler pass
inserts calls to a trusted runtime which records the fact that
capability has been stored in memory. When capability is
moved into another subsystem, we leverage recorded infor-
mation to invalidate (hence revoke) all copies of the moved
capability in memory.

Note that if we use the full capability mode, i.e., all mem-
ory accesses involve capability pointers, the instrumentation
becomes prohibitively expensive as we need to track memory
stores for all pointers in the code of the isolated subsystem.
We therefore leverage Morello’s hybrid mode that allows mix-
ing capability and non-capability (legacy) memory accesses.
Similar to MPK and MTE, we separate the memory of iso-
lated subsystems into a shared exchange heap and private
heaps and allow objects on the exchange heap to be moved be-
tween domains in a zero-copy manner. Objects on the private
heap are accessed through regular, non-capability memory
accesses (Morello uses the detaulf data capability (DDC) to
check the bounds of the address space). Objects on the shared
heap are accessed with explicit capability loads and stores.
This allows us to instrument only the store instructions for
the capability registers. Most loads and stores of subsystem-
local data are integer operations and therefore not subject to
instrumentation.

To transition between the executive and restricted modes,
the sealed function capabilities are used for both the forward
and return edges.

Finally, capabilities in Morello can remain resident in reg-
isters, meaning that a thread may retain access to a region of
memory even after the capability to this region is moved to
another subsystem by another thread. To restrict this behavior,
we associate each capability with a single thread that can use
it. Specifically, in each capability, the user-defined permission
bits are used to store the identifier of the owning thread. We
store the current thread identifier as a sealed capability in the
Compartment ID (cid) register, which is a capability register
whose semantics are software-defined. Like capability stores,
we also instrument capability loads to ensure each thread can
only load capabilities that it owns.

Morello trampoline For each valid cross-subsystem transi-
tion, we generate a trampoline page, which contains both the
trampoline code as well as a context. The context includes
the destination address as well as the DDCs of the caller and
callee domains. The TCB creates a sealed capability for the
trampoline page and passes it to the caller domain.

To evaluate the overheads of switching between the Ex-
ecutive and Restricted modes, we build two trampolines for
Morello. The first trampoline remains in Restricted mode and
loads the DDC of the callee from the context by offsetting
the now-unsealed Program Counter Capability. The second

USENIX Association 2024 USENIX Annual Technical Conference 355

0

0.5

1

1.5

2

2.5

40
1.

bz
ip
2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

61
9.

lb
m

63
8.

im
ag

ic
k

64
4.

na
b

60
5.

m
cf

62
0.

om
ne

tp
p

62
3.

xa
la
nc

bm
k

63
1.

de
ep

sj
en

g

O
v
e

rh
e

a
d

s
 n

o
rm

a
liz

e
d

 t
o

 C

MPK NaCl Segue

Figure 3: SPEC CPU 2006 and SPEC CPU 2017 (x86)

0

0.5

1

1.5

2

2.5

3

3.5

4

40
1.

bz
ip
2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

O
v
e

rh
e

a
d

s
 n

o
rm

a
liz

e
d

 t
o

 C NaCl MTE PAC

Figure 4: SPEC CPU 2006 and SPEC CPU 2017 (ARM)

trampoline switches to Executive mode and loads the DDC of
the callee using the Executive DDC. We find that switching
between the hardware-supported Executive and Restricted
contexts is about 60 cycles faster than switching the DDC
manually in the trusted trampoline.

5 Analysis: Limitations and Opportunities
To reason about the performance of different isolation mech-
anisms, we leverage several hardware platforms. For MPK
and CET on x86, we use a Framework Laptop 13 with Intel
Core i7-1165G7 and 32GB of DDR4 RAM. The machine
runs 64-bit NixOS Linux with a 6.5 kernel configured without
any speculative execution attack mitigations (mitigations=off),
reflecting the trend of recent Intel CPUs addressing a range of
speculative execution attacks in hardware. In all experiments,
we disable hyper-threading, turbo boost, CPU idle states, and
frequency scaling to reduce variance in benchmarking. To
evaluate isolation mechanisms based on ARM MTE and PAC,
we use a Pixel 8 phone with a Tensor G3 SoC (1x Cortex-
X3, 4x Cortex-A715, 4x Cortex-A510) [40]. The phone runs
Android 14 with the 5.15 Generic Kernel Image (GKI), and
we run all workloads on the Cortex-X3 core with the fre-
quency fixed at 2.9 GHz. For Morello experiments, we use
the Morello Hardware Development Platform, which runs a
custom SoC based on the Neoverse N1 core [86].

5.1 Overhead of enforcement
To understand the overhead of enforcing isolation, we run a
collection of SPEC CPU 2006 and SPEC CPU 2017 bench-
marks on Intel (Figure 3), ARM (Figure 4) and Morello
(Figure 5) CPUs. As a baseline, we also measure the per-
formance of a purely software SFI isolation scheme simi-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

40
1.

bz
ip
2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
3.

po
vr

ay

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

40
3.

gc
c

47
1.

om
ne

tp
p

61
9.

lb
m

63
8.

im
ag

ic
k

60
0.

pe
rlb

en
ch

60
5.

m
cf

62
5.

x2
64

63
1.

de
ep

sj
en

g

64
1.

le
el
a

O
v
e
rh

e
a
d
s
 n

o
rm

a
liz

e
d
 t
o
 m

a
in

lin
e
 L

in
u
x

CheriLinux-C

Figure 5: SPEC CPU 2006 and SPEC CPU 2017 (Morello)

lar to Google NaCl [95, 124]. Conceptually NaCl is similar
to well-optimized modern SFI implementations, e.g., ones
used by Wasm [2]. We implement the NaCl scheme from
scratch. Control over implementation allows us to selectively
disable individual bits of SFI enforcement, e.g., load and store
masking, return address masking, instruction bundling, etc.,
to reason about the impact of each mechanism on the overall
performance of the isolation scheme. We validate that our
implementation performs on par with modern SFI schemes
by comparing it with state of the art WASM compiler (we
omit these results for brevity, but at a high level our SFI im-
plementation is slightly faster than WASM).

A high-level observation from our SPEC experiments is
that all isolation schemes that rely on compiler instrumen-
tation have high overhead. On x86, NaCl has an average
overhead of 17.4%, whereas a combination of MPK and CET
has a negligible (0.4%) overhead. On ARM, NaCl-like SFI
has an average 18% overhead. As MTE requires two addi-
tional reserved registers, it results in 20% average overhead.
Due to complex software checks for memory accesses, PAC
performs the worst, with over 100% overhead.

On Morello we execute SPEC in two modes: with and
without hardware capabilities enabled. Surprisingly, enabling
hardware capabilities improves performance at least relative
to the regular ARM baseline. Note, however, that in abso-
lute terms, Morello hardware is significantly slower than the
ARM chip used on the Google Phone. On SPEC benchmarks
Morello hardware is slower than the ARM chip on the Google
Phone from 1.1x to 2.5x, averaging at 1.4x slowdown. Ar-
guably, this is expected as Morello is the first generation of
hardware. We assume that significant improvement is possible
in the future.
Performance breakdown To get a deeper insight into the
reasons for the overheads introduced by the SFI instrumenta-
tion, we leverage our purely software NaCl scheme. Several
implementation details are important for understanding our
analysis. Similar to NaCl, our SFI implementation relies on
address masking which is the fastest way of enforcing seg-
ment bounds according to our empirical analysis. For example,
on x86, we clear the upper bits of the 64bit register (rax) by
introducing an idempotent operation on the 32bit part of the
same register (e.g., mov). The regular mov instruction is then
used to combine the base of the isolated segment (r15 with the

356 2024 USENIX Annual Technical Conference USENIX Association

0

5

10

15

20

25

30

40
1.

bz
ip
2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
3.

po
vr

ay

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi
nx

3

40
3.

gc
c

47
1.

om
ne

tp
p

O
v
e

rh
e

a
d

 %
 n

o
rm

a
liz

e
d

 t
o

 C

reg reserve
forward/ret masking

nacl load store masking

Figure 6: SPEC CPU 2006 performance breakdown (x86)

0

5

10

15

20

25

30

35

40

40
1.

bz
ip
2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

O
v
e

rh
e

a
d

 %
 n

o
rm

a
liz

e
d

 t
o

 C

one reg reserve
forward/ret masking

ld/st masking

Figure 7: SPEC CPU 2006 performance breakdown (ARM)

32bit offset inside it.
1 ; load value at [rax] to rcx
2 mov eax, eax ; eax contains 0-4GB
3 mov rcx, [r15, rax, 1] ;memory access within [r15 + 0-4GB]

A reserved register (r15) is designated to keep the base of
the segment. As x86 allows complex addressing modes with
arithmetics on multiple registers, for memory operations in-
volving two address registers, we use load effective address
(lea) instead of mov to compute the address and clear its top 32
bits.

On ARM we utilize a bit-field instruction that copies a
subset of bits containing the number that encodes the base of
the segment (stored in a reserved x28 register) into the address
register.

1 ; load value at x2 into x1, x28 contains the base address
2 bfi x2, x28, #32, #32 ;x2 = segment + 0~4GB
3 ldr x1, [x2]; load is safe

Instead of enforcing complete control flow integrity, we
implement a lighter approach of grouping instructions into
basic instruction blocks that are aligned in memory [95, 124].
This allows us to avoid allocating additional registers required
to protect the stack. To ensure the integrity of the bounds
checks, we mask the indirect control flow transitions and
returns from procedures to land at the beginning of a basic
instruction block.

To understand the overheads of four mechanisms – register
reservation, control flow enforcement on forward and return
edge, re-grouping instructions, and masking of the address
itself – we selectively enable these mechanisms on a collec-
tion of SPEC 2006 benchmarks on Intel (Figure 6) and ARM
(Figure 7) CPUs.

On average, software instrumentation introduces an over-
head of 17.4% with the max of 28%, which is in-line with

0

60

120

180

240

300

2 4 6 8 10 12 14 16

C
y
c
le

s
 p

e
r

C
ro

s
s
in

g

Chain Length

x86-ideal
arm-ideal

morello-ideal
morello-exswitch

x86-mpk

Figure 8: Overhead of cross-subsystem invocations

0

40

80

120

160

200

2 4 6 8 10 12 14 16

C
y
c
le

s
 p

e
r

C
ro

s
s
in

g

Chain Length

x86-ideal-fxsave arm-ideal-simd morello-ideal-simd

Figure 9: Overhead of cross-subsystem invocations with extended
register saving

previous studies [2, 54]. Most of the overhead comes from
the added instructions that load the target addresses for load-
ing/storing into 32-bit registers. On Intel, these instructions
add from 0.4% (lbm) to 28% (povray) overhead, and 2-36% on
ARM.

We observe that shadow stack and indirect branch tracing
have negligible overhead (less than 1% on average). Reserv-
ing one register for storing the segment has 0%-2% perfor-
mance overhead one x86 architecture and less than 1% on
ARM. For MTE-based isolation, we reserve 2 additional reg-
isters (for replacing the stack pointer and keeping the MTE
tag), which increases the overhead to 2 to 5%. Instruction
bundling has less than 1% overhead on both x86 and ARM.
And forward/return edge address masking used in NaCl has
around 1% overhead on x86 and 0.5% on ARM.
Limitations ARM PAC and ARM MTE are inherently lim-
ited by the overhead of the compiler instrumentation required
to enforce isolation. Our analysis shows that even the mini-
mal instrumentation, e.g., a single instruction that masks the
address or enforces an MTE tag, adds overhead prohibitive on
modern workloads. The masking instruction is on the critical
path of the pipeline as the load and store after it depends on
it. The limitation above allows us to identify the following
design principle:

Software transparency Architectural mechanisms
should avoid relying on extensive software instru-
mentation for enforcement of isolation.

Possible solutions On x86 machines, MPK implements this
design principle through a combination of hardware access
checks (MPK tags) and control flow enforcement (CET). To-
gether, MPK and CET result in a negligible overhead as only
minimal control-flow related instrumentation is required to

USENIX Association 2024 USENIX Annual Technical Conference 357

enforce isolation.
Alternatively, a special mode of execution that enforces

the bounds checks in hardware can be used to minimize the
overhead of enforcing the isolation boundary. To confirm this
intuition, we develop an alternative isolation scheme similar
to Segue [79] (segue, Figure 6). Segue relies on the gs segment
register to enforce the bounds check on every memory access.
By using (gs) instead of (r15) to keep the base, we 1) free a
general purpose register, 2) avoid emitting an extra mov/lea
before a memory access, and 3) free an operand in memory
access operation.

1 ; load value at [rax + rbx] to rcx
2 mov rcx, gs:[eax, ebx, 1] ;memory access within [gs + 0-8GB]

The use of (gs) eliminates added instructions and therefore,
reduces the overhead down to 4%. Recently, Yedidia imple-
mented a similar scheme for ARM [123].

For ARM MTE, assume that it is possible to keep the tag as-
sociated with the heap of the current subsystem in a protected
register rather than in each pointer. This tag from the protected
register can then be applied in the MTE check against the tag
of the accessed memory region Essentially, this eliminates
the need for compiler instrumentation, as the tag comes from
a protected register rather than a pointer.

To verify the benefits of such an approach, we developed
a compiler pass that avoids overwriting the tag bits of the
pointer on each memory access assuming that it will come
from a CPU register We further assume that the register hold-
ing the tag can be accessed within the same cycle and hence in-
troduces no visible overhead. On average, SPEC benchmarks
incur only 2% overhead due to control flow enforcement and
reservation of one register for holding the tag.

5.2 Cross-Subsystem Invocations
We analyze the overheads of cross-subsystem invocations for
our isolation schemes on ARM and Intel machines (Figure 8).
To keep the overhead in perspective and reason about both
total costs of the hardware boundary switching and the cost of
saving and restoring the state of the thread across invocations,
we implement a version of the ideal trampoline, i.e., a cross-
subsystem invocation primitive that assumes a one cycle cost
of changing the isolation boundary. Specifically, instead of
accessing the hardware, e.g., updating pkru register on Intel or
changing the RDDC capability on Morello, we just invoke a
nop instruction (x86-ideal, arm-ideal, morello-ideal).

Our experiments measure invocation overheads on a chain
of cross-subsystem invocations. We vary the length of the
chain from 1 to 16. Each invocation simply invokes the next
subsystem in a chain and then returns. In all experiments,
we measure the total time to execute ten million iterations.
An ideal implementation needs 20-22 cycles to perform a
null cross-subsystem invocation on Intel, 12-14 cycles on
Pixel 8, and about 40 cycles on the Morello Development
Platform. On Morello, relying on hardware support to switch
to the executive mode turns out to be faster than deriving

1

50

2500

125000

6.25e+06

4 6 8 10 12 14 16 18 20 22

MPK-x86
Memcpy-x86
Memcpy-arm

MTE-arm
PAC-arm

Cheri-revocation

C
y
c
le

s
 p

e
r

C
ro

s
s
in

g

Buffer size (power of two)

Figure 10: Overhead of passing data

capabilities from the unsealed PCC capability at a difference
of about 100 cycles.

Saving and restoring extended registers introduce an over-
head of additional 137 cycles, bringing the total cost of a
cross-subsystem invocation to 156-162 cycles on Intel (Fig-
ure 9, x86-ideal-fxsave), 14 extra cycles on ARM (arm-ideal-simd),
and around 40 extra cycles on Morello (morello-ideal-simd).
Note that on all architectures, we save and restore the entire
FPU/SIMD state and do not take into account any specific
calling convention. We observe a greater variance on Morello
as we were unable to fix the CPU frequency reliabliy.
Limitations The overhead of cross-subsystem invocations is
limited by both the cost of changing the hardware isolation
boundary and by the cost of saving and restoring general and
extended registers.
Possible improvements Arguably, there are additional opti-
mizations that could be implemented to reduce the overhead
of saving both general and extended registers, as well as opti-
mizing the implementation of crossing the isolation boundary.
Saving and restoring extended registers constitute the most
significant portion of the overhead in a cross-subsystem invo-
cation and could potentially be optimized in hardware.

5.3 Zero-Copy
To understand the benefits of zero-copy, we analyze the over-
heads of passing data in cross-subsystem invocations by vary-
ing the size of the object in the incrementing powers of two
from 4 to 22 (i.e., from 16 bytes to 4MB). We evaluate the fol-
lowing IPC mechanisms: 1) transfer of an MPK tagged buffer
(MPK-x86); 2) memory copy for NaCl-like SFI schemes on Intel
and ARM (memcpy-x86 and memcpy-arm); 3) MTE retagging with
the stg and dc gva instructions; 4) moving of a PAC pointer,
i.e., upon moving the pointer is re-signed, a new random num-
ber is generated and the metadata table is updated (PAC-arm);
5) passing a capability and revoking one stored capability
from memory on Morello CHERI (Cheri-revocation).

PAC pointer re-signing shows the lowest overhead at
around 5 cycles. We use a fast pseudo-random hash function,
FNV-1 (the overhead reaches 50 cycles if we use rand() from
libc). Writing an MPK pkru register takes 49 cycles. Passing a
CHERI capability that was stored in memory once takes 142
cycles. The overhead of CHERI revocation increases linearly
with the number of times the capability is stored in memory.
Surprisingly, MTE retagging is only slightly faster than mem-

358 2024 USENIX Annual Technical Conference USENIX Association

ory copy. Depending on the size of the object, MTE retagging
is 1.2x to 2x faster than memory copy. There are three in-
structions available for MTE retagging: stg (tag 16 bytes), st2g
(tag 32 bytes), dc gva (tag a cache line size of memory). Their
performance vary depending on the size of the object. We
choose the optimal instruction for each individual object size.
Limitation The main limitation of the MPK scheme is the
inability to reflect the passing of zero-copied memory regions
across all cores of the system. Upon a cross-subsystem invo-
cation, the pkru register is updated on one core to reflect the
change in access rights between the caller and callee subsys-
tems. This change, however, is local to the core. Updates of
pkru registers on other cores require an expensive cross-core
synchronization similar to a TLB shootdown, i.e., a traditional
inter-processor interrupt (IPI) or an alternative synchroniza-
tion scheme. This limitation leads us to the following design
principle:

Core-coherent synchronization of rights Hard-
ware should support synchronization of access per-
missions across cores of the system.

Hardware support is essential for implementing both a general
programming model in which memory regions exchanged
across isolation boundaries are available to all threads as well
as revocation of rights (which we discuss below).
Possible solutions Implementation of core-coherent zero-
copy passing of memory regions for MPK might be possible
through a combination of instruction set extensions which
could provide controlled access to the tag bits in the page
table and support for core-coherent TLBs. Controlled and
secure modification of the tag bits stored inside the page table
can provide access to the bits themselves but not to the rest of
the page table entry. This would allow tag updates in a manner
similar to MTE. We can then assign each isolated subsystem
a unique tag and update the tag of the memory region to pass
it from caller to callee in a cross-subsystem invocation. Note
it is possible to implement a similar scheme in software by
mapping the pages of the page table inside the area accessi-
ble by the TCB, but the risks are high since a compromise
of the TCB provides an attacker with unrestricted access to
the page table and hence a system-wide control of memory.
Implementation of cross-core coherent updates would require
hardware support for coherent TLBs – an update of the tag
should be immediately reflected on all the cores, hence in-
validating stale TLB entries that might contain the old tag.
Hardware architects explored support for coherent TLBs in
the past [8, 16, 69, 93, 97, 108, 114, 121] which arguably can
be brought to modern commodity CPUs.
Limitation Tag-based schemes like MPK and MTE suffer
from a limited number of isolated subsystems (and in case
of MPK exchanged buffers as in order to support zero-copy
passing of buffers each buffer requires a separate tag).

Number of isolated subsystems: Hardware iso-
lation primitives should support practically large

number of isolated subsystems.

Possible solutions Increasing the number of supported tags
to a practically large number is challenging. For example, in
the case of MPK, the tag occupies unused bits in the page
table entry of each page. Increasing the number of tags will
require changes to the page table organization, e.g., the format
of the entry and, possibly, the overall layout of the page table.

In the case of MTE, the tag is limited by the number of
unused bits in the pointer. At the moment, MTE is using only
4 bits of the top unused byte, so theoretically the use of all 8
bits can increase the number of tags to 256. Since MTE does
not waste a tag for each zero-copied buffer, in practice 256
tags can be sufficient for isolation of typical applications, e.g.,
network functions, device drivers in the kernel, etc. Another
solution is to keep the tag in a special tag register instead of the
pointer itself (as we discussed above this also can eliminate
the overhead of compiler instrumentation required to enforce
the tag on each pointer).
Limitation MTE suffers from the overhead of retagging
which in our experiments is marginally faster than copying.
Possible solutions To address the overhead of retagging, it is
possible to implement support for variable granularity of tag
enforcement. Smaller tags would allow for finer granularity
of isolation, while larger tags can support faster passing of
data across subsystems. To support different tag sizes in a
single process, the tag size information can be kept in unused
bits of the page table entry (i.e., each page can have different
tag size).

5.4 Revocation
To understand the impact of implementing revocation for the
Morello architecture, we develop compiler instrumentation
that tracks capability stores in memory and invalidates them
on cross-subsystem invocations (Figure 10, Cheri-revocation).
Specifically, we implement an efficient hash table that tracks
memory addresses where each capability is saved and invali-
dates all capabilities that are moved into another subsystem.
On a cross-subsystem invocation, we look up the hash table
and invalidate capabilities stored in memory by overwriting
them. The overhead of a hash table lookup and invalidation
reaches 142 cycles. If the capability is never stored on the
heap, an empty hash table lookup takes only 70 cycles.
Limitations Capability schemes like CHERI are inherently
limited by the lack of support for revocation. Unrestricted
propagation of capabilities requires additional software mech-
anisms to either scan the private heap of the subsystem for
capabilities that need to be revoked [117, 120] or instrumenta-
tion that tracks memory locations where capabilities are saved
(the approach we suggest in this paper). Both techniques incur
significant overhead.

An additional challenge is tracking and revoking rights
to complex recursive data structures, e.g., linked lists and
even arrays of pointers. A revocation of the root capability

USENIX Association 2024 USENIX Annual Technical Conference 359

requires traversal of the data structure and revocation of all
leaves. Due to significant overheads of recursive revocation,
our work makes a tradeoff and limits the expressiveness of
data structures passed across subsystems, i.e., to avoid recur-
sive revocation, we allow only simple plain old data structures
to be exchanged on the heap (e.g., data buffers).

Hardware architectures that keep access rights in registers,
e.g., Intel MPK, CHERI and even PAC (despite the fact that
PAC relies on metadata in memory, after metadata is invalida-
teed, if the pointer is already authenticated, subsequent mem-
ory accesses through a pointer are allowed), are facing another
inherent limitation: it is impossible to perform revocation of
rights across the cores. For example, in a capability system
like CHERI, it is possible to share capabilities across cores
by saving them on one core and loading them in registers of
another core. This significantly complicates the revocation of
a capability since the core that revokes a capability needs to
ensure that no instances of the same capability exist in regis-
ters of other cores. Similar to TLB invalidation, such a check
requires an expensive cross-core synchronization mechanism
to preempt execution on all cores, scan registers of all threads
(some temporarily saved in memory) and invalidate them.

Revocation Hardware must support revocation as
a first-class citizen.

Possible solutions At the moment, MTE is the only solution
that leverages a centralized in-memory metadata region and
hence implements support for revocation (we assume that
the hardware avoids optimizations that eliminate tag checks
between accesses to the same memory location). Revocation
of all pointers is possible by simply updating the access bits
in the MTE metadata table and the update is synchronized
across all CPUs.

An MPK scheme can potentially be extended with support
for revocation but would require support for core-coherent
TLBs and controlled access to tags in the page table (in a
manner similar to core-coherent synchronization of rights
discussed above).

Implementing revocation for CHERI capabilities is ar-
guably the most challenging due to distributed nature and
unrestricted flow of capabilities. A classical object capability
approach is to revoke access rights with proxies [77], i.e., the
capability grants access to a proxy object which is controlled
by the granting authority and can stop functioning, effectively
revoking the access right. A similar approach is possible in
hardware by introducing a “proxy” capability that serves as
a distributed metadata associated with a memory region. In
such an approach, instead of pointing to the memory region,
a regular CHERI capability is pointing to a proxy capability
which in turn allows access to memory. If proxy capabilities
are restricted from being loaded in registers and stay in mem-
ory all the time, they can be revoked in a coherent manner
across the cores.

0

1

2

3

4

5

1 4 8 16 32

P
k
ts

/s
 (

M
ill

io
n

)

C C-idealHW MPK NaCl Segue

Figure 11: NFs performance on varying batch sizes (x86)

0

1

2

3

4

5

1 4 8 16 32

P
k
ts

/s
 (

M
ill

io
n

)

C-arm NaCl-arm MTE-arm PAC-arm

Figure 12: NFs performance on varying batch sizes (ARM)

5.5 End-to-End Application Use-Cases
To understand a combined impact of enforcing isolation in
software, we design several application benchmarks: 1) a
network function virtualization framework and 2) a video
processing pipeline typical for modern serverless workloads.
Network function virtualization To understand the impact
of cross-subsystem invocations on real-world applications,
we implement a network function virtualization framework
similar to Netbricks [88]. Today, a wide range of network func-
tions (NFs) handle the most complex network tasks such as
intrusion detection, packet filtering, load balancing, etc. NFs
often have conflicting reliability and security goals, necessitat-
ing isolation [71, 73, 101, 122, 125]. Isolation of NFs remains
a challenging problem due to stringent performance require-
ments of packet processing applications [6, 45, 48, 73, 92, 96].
Traditional mechanisms that can enforce isolation bound-
aries – hardware primitives, software fault isolation (SFI),
and language safety – impose overheads that are too high for
systems that execute at line rate.

We implement four network functions: (1) TTL which
decrements the time-to-live field in a packet’s IPv4 header,
(2) NAT which rewrites the source IP and port of a packet
according to a mapping, (3) ACL Firewall which allows
or drops a packet based on a list of pre-defined rules, and
(4) Maglev which is a load balancer developed by Google to
evenly distribute incoming client flows among a set of back-
end servers [28]. We configure Maglev with 65 K backend
servers and 1 M flows.

On small batch sizes, the cost of MPK-based isolation im-
pacts the performance of the network function chain (Fig-
ure 11, Figure 12 and Figure 13). On larger batch sizes an
ideal zero-cost primitive and MPK come close to the per-
formance of non-isolated code, at an average of only 8% of
overhead. All SFI schemes remain slow. NaCl-style isola-
tion on both x86 and ARM results in an average overhead
of around 35% due to frequent buffer copying. Similarly, Al-
though MTE retagging is faster than buffer copying, MTE

360 2024 USENIX Annual Technical Conference USENIX Association

0

1

2

3

4

5

1 4 8 16 32

P
k
ts

/s
 (

M
ill

io
n

) Linux-C
MorelloLinux-C

hybrid
hybrid-revocation

Figure 13: NFs performance on varying batch sizes (Morello)

still incurs around 15% overhead.
CHERI has four different configurations: 1) Linux-C runs

monolithic NFs with mainline Linux; 2) MorelloLinux-C runs
monolithic NFs but on top of the CHERI-enabled Linux;
3) hybrid executes TCB inside the CHERI executive mode with
isolated subsystems runing in restricted mode, network pack-
ets are passed on the shared heap using capability pointers;
4) hybrid-revocation is the same as above but with insrtumenta-
tion required for revocation of capabilities. Overall, CHERI
demonstrates good performance in this experiment. Without
load/store instrumentation, on batch of 32, hybrid mode has
only 1% overhead compared to unmodified C version under
the same kernel version. Switching from regular C pointers
to capability pointers has negligible overhead. Most overhead
comes from domain switching. In all network functions, no in-
stance of capability store is observed, and the capability loads
are very infrequent as well. As a result, even with revocation
and instrumentation on capability load/store, hybrid-revocation
has just 11% overhead compared to C.

Video processing Video processing is a workload typical for
modern serverless platforms [70] – fast serverless functions
extend interactive but relatively inefficient core of the web
application. We implement a video processing pipeline that
extracts frames from an input video to produce an animated
thumbnail (GIF). The pipeline is split into two compartments:
(1) Frame Extractor which decodes the input video into
raw frames, extracting one frame for every 100 frames, and
(2) Thumbnail Encoder which encodes the extracted frames
into an animated GIF file.

We implement the pipeline in C using the FFmpeg li-
brary [110]. We then isolate two processing stages with five
different isolation mechanisms: NaCl, Segue, MPK, MTE, and
PAC (Figure 14, Figure 15). We were unable to evaluate the
CHERI configuration as FFmpeg library requires an extensive
rewrite to use capability pointers for the data buffers passed
between isolated subsystems. Intel MPK and ARM MTE/-
PAC leverage benefits of zero-copy, i.e., extracted frames are
retagged/resigned and passed between compartments. NaCl
and Segue require a memory copy.

The frame extraction takes 33x more CPU time than thumb-
naiil processing (e.g., on x86 the frame extraction takes 5.3
billion cycles while thumbnail generation takes only 160 mil-
lion cycles). We therefore report normalized time to compare
overheads of individual stages side by side. Moreover, buffer
passing takes less than 0.1% of the total execution time for
all the tests (e.g., 5 million out of 5 billion cycles on x86).

0

0.5

1

1.5

2

ExF Thumb Total

O
v
e

rh
e

a
d

 n
o

rm
a

liz
e

d
 (

c
y
c
le

s
)

MPK NaCl Segue

Figure 14: Overhead of FFmpeg (x86)

0

0.5

1

1.5

2

2.5

3

ExF Thumb Total

O
v
e

rh
e

a
d

 n
o

rm
a

liz
e

d
 (

c
y
c
le

s
)

NaCl-arm MTE-arm PAC-arm

Figure 15: Overhead of FFmpeg (ARM)

Hence, lack of zero-copy does not impact this experiment
significantly.

On x86, MPK performs extremely close to non-isolated C
with less than 0.3% overhead. Software only SFI schemes, i.e.,
NaCl, suffer from high overheads of the bounds checks on all
memory accesses and from the impact of register reservation
(35% overhead on the Frame Extractor and 10% overhead
on the Thumbnail Encoder). Interestingly, leveraging the gs

segment trick, Segue has less than 3% overhead. On ARM,
NaCl has an average overhead of 17-20%. Similar to SPEC
benchmarks, the overhead of MTE is slightly higher than
NaCl and is around 20%. PAC has the worst performance
with the overhead reaching 100%.

6 Conclusions

After decades of relatively slow adoption, we finally see a
renewed interest in architectural support for isolation. Our
work studies advantages and limitations of the recent hard-
ware isolation mechanisms with the goal of deriving a set
of design principles critical for achieving practical isolation.
Our analysis identifies several problems in recent hardware
mechanisms, and suggests approaches to address them. We
hope that our work can be useful for development of the next
generation of hardware isolation mechanisms.

Acknowledgments

We would like to thank OSDI’23, EuroSys’23 and USENIX
ATC’24 reviewers as well as our shepherd, Emmett Witchel,
for numerous insights helping us to improve this work. This
research is supported in part by the National Science Founda-
tion under Grant Numbers 2313412, 2341138 and 2239615.

USENIX Association 2024 USENIX Annual Technical Conference 361

References
[1] seL4 Performance. https://sel4.systems/About/

Performance/.

[2] WebAssembly Specification. https://webassembly.
github.io/spec/core/.

[3] OpenArena Live. https://openarena.live, 2019.

[4] Akamai. Serverless Computing with Akamai Edge
Workers. https://www.akamai.com/products/
serverless-computing-edgeworkers, 2015.

[5] Alexander Gallego. Redpanda Wasm engine ar-
chitecture. https://redpanda.com/blog/wasm-
architecture, 2021.

[6] James W. Anderson, Ryan Braud, Rishi Kapoor,
George Porter, and Amin Vahdat. XOMB: Extensi-
ble open middleboxes with commodity servers. In
Proceedings of the Eighth ACM/IEEE Symposium on
Architectures for Networking and Communications Sys-
tems, ANCS’12, pages 49–60, New York, NY, USA,
2012.

[7] Arm. Armv8.5-A Memory Tagging Extension white
paper. https://developer.arm.com/-/media/
Arm%20Developer%20Community/PDF/Arm_
Memory_Tagging_Extension_Whitepaper.pdf.

[8] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan
Solihin, and Gabriel H. Loh. Avoiding TLB Shoot-
downs Through Self-Invalidating TLB Entries. In
2017 26th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages
273–287, 2017.

[9] Godmar Back and Wilson C Hsieh. The KaffeOS
Java Runtime System. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 27(4):583–
630, 2005.

[10] Steve Bannister. Memory Tagging extension: Enhanc-
ing memory safety through architecture, August 2019.
https://community.arm.com/developer/ip-
products/processors/b/processors-ip-
blog/posts/enhancing-memory-safety.

[11] Bomberger, A.C. and Frantz, A.P. and Frantz, W.S.
and Hardy, A.C. and Hardy, N. and Landau, C.R. and
Shapiro, J.S. The KeyKOS nanokernel architecture.
In Proceedings of the USENIX Workshop on Micro-
Kernels and Other Kernel Architectures, pages 95–112,
1992.

[12] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an experiment in operating system

structure and state management. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI’20), pages 1–19, 2020.

[13] Silas Boyd-Wickizer and Nickolai Zeldovich. Toler-
ating malicious device drivers in Linux. pages 9–22,
2010.

[14] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Prin-
ciples, SOSP’09, pages 45–58. ACM, 2009.

[15] Albert Chang and Mark F. Mergen. 801 Storage: Ar-
chitecture and Programming. ACM Trans. Comput.
Syst., 6(1):28–50, February 1988.

[16] Moon-Seek Chang and Kern Koh. Lazy TLB consis-
tency for large-scale multiprocessors. In Proceedings
of IEEE International Symposium on Parallel Algo-
rithms Architecture Synthesis, pages 308–315, 1997.

[17] Silviu Chiricescu, André DeHon, Delphine Demange,
Suraj Iyer, Aleksey Kliger, Greg Morrisett, Benjamin C
Pierce, Howard Reubenstein, Jonathan M Smith, Gre-
gory T Sullivan, et al. SAFE: A clean-slate architecture
for secure systems. In Technologies for Homeland Se-
curity (HST), 2013 IEEE International Conference on,
pages 570–576. IEEE, 2013.

[18] R. Joseph Connor, Tyler McDaniel, Jared M. Smith,
and Max Schuchard. PKU Pitfalls: Attacks on PKU-
Based Memory Isolation Systems. In Proceedings of
the 29th USENIX Conference on Security Symposium,
SEC’20, USA, 2020. USENIX Association.

[19] Intel Corporation. DPDK: Data Plane Development
Kit. http://dpdk.org/.

[20] Intel Corporation. Intel® Architecture Instruction Set
Extensions and Future Features Programming Ref-
erence. https://kib.kiev.ua/x86docs/Intel/
ISAFuture/319433-034.pdf, 2018.

[21] Data61 Trustworthy Systems. seL4 Reference Manual,
06 2017. http://sel4.systems/Info/Docs/seL4-
manual-latest.pdf.

[22] DDEKit and DDE for linux. http://os.inf.tu-
dresden.de/ddekit/.

[23] W. de Bruijn and H. Bos. Beltway Buffers: Avoiding
the OS Traffic Jam. In IEEE INFOCOM 2008 - The
27th Conference on Computer Communications, pages
136–140, 2008.

362 2024 USENIX Annual Technical Conference USENIX Association

https://sel4.systems/About/Performance/
https://sel4.systems/About/Performance/
https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/
https://openarena.live
https://www.akamai.com/products/serverless-computing-edgeworkers
https://www.akamai.com/products/serverless-computing-edgeworkers
https://redpanda.com/blog/wasm-architecture
https://redpanda.com/blog/wasm-architecture
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
http://dpdk.org/
https://kib.kiev.ua/x86docs/Intel/ISAFuture/319433-034.pdf
https://kib.kiev.ua/x86docs/Intel/ISAFuture/319433-034.pdf
http://sel4.systems/Info/Docs/seL4-manual-latest.pdf
http://sel4.systems/Info/Docs/seL4-manual-latest.pdf
http://os.inf.tu-dresden.de/ddekit/
http://os.inf.tu-dresden.de/ddekit/

[24] Joe Devietti, Colin Blundell, Milo M. K. Martin, and
Steve Zdancewic. HardBound: Architectural Support
for Spatial Safety of the C Programming Language.
SIGARCH Comput. Archit. News, 36(1):103–114, mar
2008.

[25] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu
Chiricescu, Jonathan M. Smith, Thomas F. Knight,
Benjamin C. Pierce, and André DeHon. PUMP: A
Programmable Unit for Metadata Processing. In Pro-
ceedings of the Third Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, HASP
’14, New York, NY, USA, 2014. Association for Com-
puting Machinery.

[26] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. XPC: Architectural support for secure and
efficient cross process call. In Proceedings of the 46th
International Symposium on Computer Architecture,
ISCA’19, pages 671–684, New York, NY, USA, 2019.

[27] Dylan Schiemann. Zoom on Web: WebAssem-
bly SIMD, WebTransport, and WebCodecs.
https://www.infoq.com/news/2020/08/zoom-
web-chrome-apis, 2020.

[28] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the
13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’16), pages 523–535,
March 2016.

[29] Kevin Elphinstone and Gernot Heiser. From L3 to
SeL4 What Have We Learnt in 20 Years of L4 Micro-
kernels? In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP’13), pages
133–150, 2013.

[30] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex
Egger, Esaú García Sánchez-Torija, Thomas Günzel,
Sebastian Di Luzio, Alexandru Obada, Maximilian
Stadlmeier, Sebastian Voit, et al. The Case for Writ-
ing Network Drivers in High-Level Programming Lan-
guages. In Proceedings of the 2019 ACM/IEEE Sym-
posium on Architectures for Networking and Commu-
nications Systems (ANCS), pages 1–13. IEEE, 2019.

[31] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. XFI: Software guards
for system address spaces. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation, OSDI’06, pages 75–88, 2006.

[32] Evan Wallace. WebAssembly cut Figma’s load time by
3x. https://www.figma.com/blog/webassembly-
cut-figmas-load-time-by-3x/, 2017.

[33] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long
Lu. PTAuth: Temporal Memory Safety via Robust
Points-to Authentication. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[34] Feske, N. and Helmuth, C. Design of the Bastei OS
architecture. Technische Universität, Dresden, Fakultät
Informatik, 2007.

[35] Bryan Ford and Russ Cox. Vx32: Lightweight User-
level Sandboxing on the x86. In USENIX Annual
Technical Conference, pages 293–306, 2008.

[36] Bryan Ford and Jay Lepreau. Evolving Mach 3.0
to a Migrating Thread Model. In Proceedings of
the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference (WTEC
’94), pages 97–114, 1994.

[37] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt,
Andrew Warfield, and Mark Williamson. Safe hard-
ware access with the Xen virtual machine monitor. In
In 1st Workshop on Operating System and Architec-
tural Support for the on demand IT InfraStructure (OA-
SIS, 2004.

[38] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther.
The SawMill Multiserver Approach. In Proceedings
of the 9th ACM SIGOPS European Workshop: Beyond
the PC: New Challenges for the Operating System,
pages 109–114. ACM, 2000.

[39] Richard Grisenthwaite, Graeme Barnes, Robert N. M.
Watson, Simon W. Moore, Peter Sewell, and Jonathan
Woodruff. The Arm Morello Evaluation Platform - Val-
idating CHERI-Based Security in a High-Performance
System. IEEE Micro, 43(3):50–57, 2023.

[40] GSMArena. Google Pixel 8’s Tensor G3 GPU
tests show weak performance but decent efficiency.
https://www.gsmarena.com/google_pixel_8s_
tensor_g3_gpu_tests_show_weak_performance_
but_decent_efficiency-news-60199.php, 2023.

[41] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC’19), pages 489–504, July 2019.

USENIX Association 2024 USENIX Annual Technical Conference 363

https://www.infoq.com/news/2020/08/zoom-web-chrome-apis
https://www.infoq.com/news/2020/08/zoom-web-chrome-apis
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.gsmarena.com/google_pixel_8s_tensor_g3_gpu_tests_show_weak_performance_but_decent_efficiency-news-60199.php
https://www.gsmarena.com/google_pixel_8s_tensor_g3_gpu_tests_show_weak_performance_but_decent_efficiency-news-60199.php
https://www.gsmarena.com/google_pixel_8s_tensor_g3_gpu_tests_show_weak_performance_but_decent_efficiency-news-60199.php

[42] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein,
G. and Petters, S.M. Towards Trustworthy Computing
Systems: Taking Microkernels to the Next Level. ACM
SIGOPS Operating Systems Review, 41(4):3–11, 2007.

[43] Herder, J.N. and Bos, H. and Gras, B. and Homburg, P.
and Tanenbaum, A.S. MINIX 3: A highly reliable, self-
repairing operating system. ACM SIGOPS Operating
Systems Review, 40(3):80–89, 2006.

[44] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro,
J.S. Reducing TCB size by using untrusted compo-
nents: small kernels versus virtual-machine monitors.
In Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22. ACM, 2004.

[45] Michio Honda, Felipe Huici, Giuseppe Lettieri, and
Luigi Rizzo. MSwitch: A Highly-Scalable, Modular
Software Switch. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research, SOSR’15, New York, NY, USA, 2015.

[46] Yongzhe Huang, Vikram Narayanan, David Detweiler,
Kaiming Huang, Gang Tan, Trent Jaeger, and Anton
Burtsev. KSplit: Automating Device Driver Isolation.
In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 613–631,
2022.

[47] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the Software Stack. SIGOPS Oper. Syst. Rev.,
41(2):37–49, apr 2007.

[48] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood.
NetVM: High Performance and Flexible Networking
Using Virtualization on Commodity Platforms. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’14), pages 445–458, Seat-
tle, WA, April 2014.

[49] J. K. Iliffe. Basic Machine Principles. American
Elsevier, Inc., New York, 1968.

[50] J. K. Iliffe. Elements of BLM. The Computer Journal,
12(3):251–258, 08 1969.

[51] J. K. Iliffe and Jane G. Jodeit. A Dynamic Storage
Allocation Scheme. The Computer Journal, 5(3):200–
209, 11 1962.

[52] Intel Corporation. Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual, 2020.
https://software.intel.com/content/www/us/
en/develop/download/intel-64-and-ia-32-
architectures-sdm-combined-volumes-1-2a-
2b-2c-2d-3a-3b-3c-3d-and-4.html.

[53] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block Oriented Programming: Au-
tomating Data-Only Attacks. pages 1868–1882. ACM,
2018.

[54] Abhinav Jangda, Bobby Powers, Emery D Berger, and
Arjun Guha. Not So Fast: Analyzing the Performance
of WebAssembly vs. Native Code. In USENIX Annual
Technical Conference, pages 107–120, 2019.

[55] Jane G. Jodeit. Storage organization in programming
systems. Commun. ACM, 11(11):741–746, nov 1968.

[56] Jordon Mears. How we’re bringing Google Earth to
the web. https://web.dev/earth-webassembly/,
2019.

[57] Antti Kantee. Flexible operating system internals: the
design and implementation of the anykernel and rump
kernels. PhD thesis, 2012.

[58] Kenton Varda. WebAssembly on Cloudflare Workers.
https://blog.cloudflare.com/webassembly-
on-cloudflare-workers, 2018.

[59] R B; Howarth D J Kilburn, T; Payne. The Atlas Super-
visor. 1962.

[60] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. seL4: Formal Verification of an OS Kernel. In
ACM SIGOPS Symposium on Operating Systems Prin-
ciples (SOSP), pages 207–220, 2009.

[61] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No Need to Hide:
Protecting Safe Regions on Commodity Hardware. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, page 437–452, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[62] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter:
Bare-Metal Extensions for Multi-Tenant Low-Latency
Storage. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18), pages
627–643, Carlsbad, CA, October 2018.

[63] Albert Kwon, Udit Dhawan, Jonathan M. Smith,
Thomas F. Knight, and Andre DeHon. Low-Fat Point-
ers: Compact Encoding and Efficient Gate-Level Im-
plementation of Fat Pointers for Spatial Safety and
Capability-based Security. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communica-
tions Security, CCS ’13, page 721–732, New York, NY,
USA, 2013. Association for Computing Machinery.

364 2024 USENIX Annual Technical Conference USENIX Association

 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://web.dev/earth-webassembly/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers
https://blog.cloudflare.com/webassembly-on-cloudflare-workers

[64] Henry M. Levy. Capability-based Computer Systems.
Digital Press, 1984.

[65] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang,
Mathias Payer, Ying Liu, and Chao Zhang. PACMem:
Enforcing Spatial and Temporal Memory Safety via
ARM Pointer Authentication. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1901–1915, 2022.

[66] Jochen Liedtke. Improving IPC by Kernel Design.
SIGOPS Oper. Syst. Rev., 27(5):175–188, dec 1993.

[67] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn,
Jan-Erik Ekberg, and N Asokan. PACStack: an Au-
thenticated Call Stack. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 357–374, 2021.

[68] J. H. Saltzer M. D. Schroeder, D. D. Clark and D. H.
Wells. Final report of the multics kernel design project.
1977.

[69] Steffen Maass, Mohan Kumar Kumar, Taesoo
Kim, Tushar Krishna, and Abhishek Bhattacharjee.
ECOTLB: Eventually Consistent TLBs. ACM Trans.
Archit. Code Optim., 17(4), sep 2020.

[70] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the Three Rights: Sizing,
Bundling, and Prewarming for Serverless DAGs. In
16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI’22), OSDI’22, pages
303–320, 2022.

[71] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is Lighter
(and Safer) than your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP’17), pages 218–233, 2017.

[72] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Software
Fault Isolation with API Integrity and Multi-Principal
Modules. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), page
115–128, 2011.

[73] Joao Martins, Mohamed Ahmed, Costin Raiciu,
Vladimir Olteanu, Michio Honda, Roberto Bifulco,
and Felipe Huici. ClickOS and the art of network
function virtualization. In 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI’14), pages 459–473, Seattle, WA, April 2014.

[74] Stephen McCamant and Greg Morrisett. Evaluating
SFI for a CISC Architecture. In Proceedings of the
15th Conference on USENIX Security Symposium -
Volume 15, USENIX-SS’06, USA, 2006. USENIX As-
sociation.

[75] McKee, Derrick and Giannaris, Yianni and Perez, Car-
olina Ortega and Shrobe, Howard and Payer, Mathias
and Okhravi, Hamed and Burow, Nathan. Prevent-
ing Kernel Hacks with HAKC. In Proceedings 2022
Network and Distributed System Security Symposium.
NDSS, volume 22, pages 1–17, 2022.

[76] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of
the 14th European Conference on Computer Systems
(EuroSys’19), 2019.

[77] Mark Samuel Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concurrency
Control. PhD thesis, Johns Hopkins University, May
2006.

[78] Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In Proceedings of
the 29th USENIX Conference on Security Symposium,
pages 699–716, 2020.

[79] Shravan Narayan, Tal Garfinkel, Evan Johnson, David
Thien, Joey Rudek, Michael LeMay, Anjo Vahldiek-
Oberwagner, Dean Tullsen, , and Deian Stefan. Segue
and ColorGuard: Optimizing SFI Performance and
Scalability on Modern x86. In Proceedings of Work-
shop on Programming Languages and Analysis for
Security (PLAS), 2022.

[80] Shravan Narayan, Tal Garfinkel, Mohammadkazem
Taram, Joey Rudek, Daniel Moghimi, Evan John-
son, Chris Fallin, Anjo Vahldiek-Oberwagner, Michael
LeMay, Ravi Sahita, Dean Tullsen, and Deian Stefan.
Going beyond the Limits of SFI: Flexible and Secure
Hardware-Assisted In-Process Isolation with HFI. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2023, page
266–281. Association for Computing Machinery, 2023.

[81] Vikram Narayanan, Abhiram Balasubramanian, Char-
lie Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, and Anton Burtsev. LXDs: Towards
Isolation of Kernel Subsystems. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages

USENIX Association 2024 USENIX Annual Technical Conference 365

269–284, Renton, WA, July 2019. USENIX Associa-
tion.

[82] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. RedLeaf: Isolation and communication in
a safe operating system. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI’20), pages 21–39, November 2020.

[83] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight Kernel Iso-
lation with Virtualization and VM Functions. In Pro-
ceedings of the 16th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments
(VEE’20), pages 157–171, 2020.

[84] Nathan Froyd. Securing Firefox with We-
bAssembly. https://hacks.mozilla.org/2020/
02/securing-firefox-with-webassembly.

[85] Ruslan Nikolaev and Godmar Back. VirtuOS: An
Operating System with Kernel Virtualization. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 116–
132. ACM, 2013.

[86] University of Cambridge. The Arm Morello
Board. https://www.cl.cam.ac.uk/research/
security/ctsrd/cheri/cheri-morello.html.

[87] Elliott I. Organick. Computer System Organization:
The B5700/B6700 Series. Academic Press, 1973.

[88] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI’16), pages 203–216, Savannah, GA, November
2016.

[89] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
and Taesoo Kim. libmpk: Software Abstraction for
Intel Memory Protection Keys (Intel MPK). In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 241–254, July 2019.

[90] Pat Hickey. Lucet Takes WebAssembly Be-
yond the Browser. https://www.fastly.com/
blog/announcing-lucet-fastly-native-
webassembly-compiler-runtime., 2019.

[91] Mathias Payer and Thomas R. Gross. Fine-Grained
User-Space Security Through Virtualization. In Pro-
ceedings of the 7th ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments
(VEE), pages 157–168, 2011.

[92] Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha,
and Scott Rixner. Hyper-Switch: A Scalable Software
Virtual Switching Architecture. In 2013 USENIX An-
nual Technical Conference (USENIX ATC’13), pages
13–24, San Jose, CA, June 2013.

[93] Bogdan Romanescu, Alvin Lebeck, Daniel Sorin, and
Alecia Bracy. Unified instruction/translation/data
(unitd) coherence: One protocol to rule them all. pages
1–12, 01 2010.

[94] David Sehr, Robert Muth, Cliff Biffle, Victor Khi-
menko, Egor Pasko, Karl Schimpf, Bennet Yee, and
Brad Chen. Adapting Software Fault Isolation to Con-
temporary CPU Architectures. In 19th USENIX Secu-
rity Symposium (USENIX Security 10), 2010.

[95] David Sehr, Robert Muth, Cliff L. Biffle, Victor Khi-
menko, Egor Pasko, Bennet Yee, Karl Schimpf, and
Brad Chen. Adapting Software Fault Isolation to Con-
temporary CPU Architectures. In 19th USENIX Secu-
rity Symposium, pages 1–11, 2010.

[96] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K.
Reiter, and Guangyu Shi. Design and Implementation
of a Consolidated Middlebox Architecture. In 9th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’12), pages 323–336, San
Jose, CA, April 2012.

[97] Byeong Seong, Donggook Kim, Yangwoo Roh, Kyu
Park, and Daeyeon Park. TLB Update-Hint: A Scal-
able TLB Consistency Algorithm for Cache-Coherent
Non-Uniform Memory Access Multiprocessors. IE-
ICE Transactions, 87-D:1682–1692, 07 2004.

[98] Christopher Small and Margo I. Seltzer. VINO: An In-
tegrated Platform for Operating System and Database
Research. Technical Report TR 30-94, Harvard Uni-
versity, Division of Engineering and Applied Sciences,
1994.

[99] Chengyu Song, Hyungon Moon, Monjur Alam, Insu
Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and
Yunheung Paek. HDFI: Hardware-Assisted Data-Flow
Isolation. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 1–17, 2016.

[100] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: Sanitizing for Security. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1275–
1295, 2019.

[101] Radu Stoenescu, Vladimir Olteanu, Matei Popovici,
Mohamed Ahmed, Joao Martins, Roberto Bifulco, Fil-
ipe Manco, Felipe Huici, Georgios Smaragdakis, Mark

366 2024 USENIX Annual Technical Conference USENIX Association

https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime.
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime.
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime.

Handley, and Costin Raiciu. In-Net: In-Network Pro-
cessing for the Masses. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys
’15, New York, NY, USA, 2015.

[102] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. AEGIS: Ar-
chitecture for Tamper-Evident and Tamper-Resistant
Processing. In Proceedings of the 17th Annual Interna-
tional Conference on Supercomputing, ICS ’03, page
160–171, New York, NY, USA, 2003. Association for
Computing Machinery.

[103] G. Edward Suh, Jae W. Lee, David Zhang, and Srini-
vas Devadas. Secure Program Execution via Dynamic
Information Flow Tracking. In Proceedings of the 11th
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XI, page 85–96, New York, NY, USA, 2004.
Association for Computing Machinery.

[104] Gregory T. Sullivan, André DeHon, Steven Milburn,
Eli Boling, Marco Ciaffi, Jothy Rosenberg, and Andrew
Sutherland. The Dover Inherently Secure Processor. In
2017 IEEE International Symposium on Technologies
for Homeland Security (HST), pages 1–5, 2017.

[105] Mark Sullivan and Michael Stonebraker. Using Write
Protected Data Structures To Improve Software Fault
Tolerance in Highly Available Database Management
Systems. In Proceedings of the 17th International
Conference on Very Large Data Bases, VLDB’91,
pages 171–180, San Francisco, CA, USA, 1991. Mor-
gan Kaufmann Publishers Inc.

[106] Michael M Swift, Steven Martin, Henry M Levy, and
Susan J Eggers. Nooks: An Architecture for Reliable
Device Drivers. In Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 102–107,
2002.

[107] László Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. SoK: Eternal War in Memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–62,
2013.

[108] Patricia Teller, R. Kenner, and Marc Snir. TLB Consis-
tency on Highly-Parallel Shared-Memory Multiproces-
sors. pages 184 – 193, 02 1988.

[109] The Istio Project. WebAssembly in the Istio
Proxy (Envoy). https://istio.io/latest/docs/
concepts/wasm/.

[110] Suramya Tomar. Converting video formats with ffm-
peg. Linux Journal, 2006(146):10, 2006.

[111] Neil Vachharajani, Matthew J. Bridges, Jonathan
Chang, Ram Rangan, Guilherme Ottoni, Jason A.
Blome, George A. Reis, Manish Vachharajani, and
David I. August. RIFLE: An Architectural Frame-
work for User-Centric Information-Flow Security. In
Proceedings of the 37th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 37,
page 243–254, USA, 2004. IEEE Computer Society.

[112] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation
with Protection Keys (MPK). In Proceedings of the
28th USENIX Security Symposium (USENIX Security
’19), pages 1221–1238, August 2019.

[113] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion,
and M. Valero. CODOMs: Protecting Software with
Code-centric Memory Domains. In Proceedings of
the 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pages 469–480, June
2014.

[114] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova,
Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho
Navarro, Adrian Cristal, and Osman S. Unsal. DiDi:
Mitigating the Performance Impact of TLB Shoot-
downs Using a Shared TLB Directory. In Proceedings
of the 2011 International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT ’11,
page 340–349, USA, 2011. IEEE Computer Society.

[115] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Cza-
jkowski, Chris Hawblitzel, Deyu Hu, and Dan Spoon-
hower. J-Kernel: A Capability-Based Operating Sys-
tem for Java. In Secure Internet Programming: Secu-
rity Issues for Mobile and Distributed Objects, pages
369–393. 1999.

[116] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient Software-based Fault
Isolation. In Proceedings of the Fourteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’93,
pages 203–216. ACM, 1993.

[117] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan
Woodruff, Sam Ainsworth, Lucian Paul-Trifu, Brooks
Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, David Chisnall,
Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M.
Norton, Michael Roe, Peter Sewell, Stacey Son, Tim-
othy M. Jones, Simon W. Moore, Peter G. Neumann,
and Robert N. M. Watson. Cornucopia: Temporal
Safety for CHERI Heaps. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 608–625, 2020.

USENIX Association 2024 USENIX Annual Technical Conference 367

https://istio.io/latest/docs/concepts/wasm/
https://istio.io/latest/docs/concepts/wasm/

[118] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian Memory Protection. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS X, page 304–316, New York, NY, USA, 2002.
Association for Computing Machinery.

[119] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W.
Moore, J. Anderson, B. Davis, B. Laurie, P. G. Neu-
mann, R. Norton, and M. Roe. The CHERI capability
model: Revisiting RISC in an age of risk. In Pro-
ceedings of the 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pages
457–468, 2014.

[120] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth,
Nathaniel W Filardo, Michael Roe, Alexander Richard-
son, Peter Rugg, Peter G Neumann, Simon W Moore,
Robert NM Watson, et al. CHERIvoke: Characteris-
ing Pointer Revocation using CHERI Capabilities for
Temporal Memory Safety. In 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
545–557, 2019.

[121] Zi Yan, Ján Veselý, Guilherme Cox, and Abhishek
Bhattacharjee. Hardware Translation Coherence for
Virtualized Systems. SIGARCH Comput. Archit. News,
45(2):430–443, jun 2017.

[122] Kenichi Yasukata, Felipe Huici, Vincenzo Maffione,
Giuseppe Lettieri, and Michio Honda. HyperNF: Build-
ing a High Performance, High Utilization and Fair NFV

Platform. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, pages 157–169, New
York, NY, USA, 2017.

[123] Zachary Yedidia. Lightweight Fault Isolation: Prac-
tical, Efficient, and Secure Software Sandboxing. In
Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’24, page
649–665, New York, NY, USA, 2024. Association for
Computing Machinery.

[124] Bennet Yee et al. Native Client: A Sandbox for
Portable, Untrusted x86 Native Code. In SSP, 2009.

[125] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K.
Ramakrishnan, and Timothy Wood. Flurries: Countless
Fine-Grained NFs for Flexible Per-Flow Customiza-
tion. In Proceedings of the 12th International on Con-
ference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 3–17, New York,
NY, USA, 2016.

[126] Lu Zhao, Guodong Li, Bjorn De Sutter, and John
Regehr. ARMor: Fully Verified Software Fault Isola-
tion. In 11th Intl. Conf. on Embedded Software. ACM,
2011.

[127] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi
Wang. ARMlock: Hardware-based Fault Isolation for
ARM. In 21st ACM Conference on Computer and Com-
munications Security (CCS), pages 558–569, 2014.

368 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Modern Isolation Primitives

	Design principles for efficient isolation
	Isolation with Modern Mechanisms
	Intel MPK + CET
	ARM MTE
	ARM PAC
	ARM Morello

	Analysis: Limitations and Opportunities
	Overhead of enforcement
	Cross-Subsystem Invocations
	Zero-Copy
	Revocation
	End-to-End Application Use-Cases

	Conclusions
	Acknowledgments

