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Abstract
Federated singular value decomposition (SVD) is a founda-
tion for many real-world distributed applications. Existing
federated SVD studies either require external servers which
downgrade privacy protection or leverage homomorphic en-
cryption (HE) to get rid of external servers (i.e., being decen-
tralized) but suffer from significant inefficiencies caused by
extensive computational and communication overhead.

This paper presents Excalibur1, an efficient decentralized
federated SVD system. At its core, Excalibur proposes a
lightweight matrix protection method to reduce the compu-
tational degradation caused by cryptographic operations, im-
proving computation performance. Furthermore, it designs a
communication-efficient decentralized SVD workflow based
on the quantitative analysis of the design space, optimizing
communication performance. To validate the efficiency of
Excalibur, we implement a fully functional Excalibur sys-
tem and evaluate it with real-world applications. Our results
show that Excalibur not only removes the external servers but
also achieves 3.1×∼ 6.0× faster performance than state-of-
the-art (SOTA) server-aided method on different shapes of
billion-scale data. In addition, Excalibur exhibits > 23000×
larger throughput than the SOTA HE-based system.

1 Introduction
Federated singular vector decomposition (SVD) enables
privacy-preserving factorization of matrices across distributed
systems. SVD is the base of many real-world applications
which cover a wide range of scenarios including genetic as-
sociation studies [7, 17, 25, 43], medical studies [4, 26, 49],
risk management in banks [19, 28, 48], language modeling
[15, 16, 30], etc. These applications usually involve large-
scale sensitive data, and one major challenge is that a sin-
gle party rarely holds enough data to produce accurate and
robust results [7, 9, 10, 17, 25, 34, 35]. For instance, the
genome-wide association studies (GWAS), which employ

1The legend says that Arthur pulled Excalibur, the sword of power, from
the stone and formed the Knights of the Round Table to protect the kingdom.
All knights were equal in ranks and levels, showing a decentralized ethos.

SVD for group stratification correction, reveal the correla-
tion between DNA sequences and human diseases. Obtaining
data in GWAS involves DNA sequencing, which is costly2,
while robust studies require million-scale samples [10]. This
clearly raises challenges for a single party regarding obtaining
enough data for robust analysis, hindering the development
in these areas. Federated learning is a promising direction
to solve this problem by enabling real-world SVD applica-
tions to utilize data from distributed datasets while protecting
privacy. While several federated SVD systems have been pro-
posed in the literature, many of them rely on external servers
(i.e., the server-aided approaches) [7, 9, 10, 25, 34].

Involving external servers significantly decreases the pri-
vacy protection of federated SVD systems. Existing server-
aided approaches [7, 9, 10, 25, 34] leaks private data to the
external servers, either directly or when the servers collude
with each other (§2.2). Because the external servers, which are
not data contributors, receive a substantial amount of sensi-
tive information during the system’s execution. Intuitive ideas
for enhancing the server-aided methods are also impractical
(§2.2). Removing the external servers to achieve a decentral-
ized federated SVD is essential to solve this problem.

However, existing decentralized federated SVD studies [17,
35] have substantial efficiency issues, making them impracti-
cal in real-world scenarios. The major issue is that they use
homomorphic encryption (HE) for privacy protection. While
HE’s strong confidentiality allows the exchange of encrypted
data without external servers, the encryption enlarges the data
size (e.g., from 64bits to 2048bits) [29] and brings expensive
operation (e.g., bootstrapping and ciphertext rotations [1]),
which incurs substantial computational overhead. Existing
work [7] shows that fully decomposing million-scale matrices
requires over 15 years using HE system [35], while real-world
applications typically deal with billion-scale data (e.g., ge-
netic studies). Moreover, [17] reports partial decomposition

2Although the cost of DNA sequencing is getting cheaper, sequencing
one person’s genome still costs ∼$1000 according to the National Human
Genome Research Institute (NHGRI). https://www.genome.gov/about-
genomics/fact-sheets/Sequencing-Human-Genome-cost
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(i.e., top 2∼ 5 singular vectors) of million-scale data using
severe hours, which is also far from practical for applica-
tions with billion-scale data or requiring more decomposition
results. The characteristic of SVD (e.g., computationally in-
tensive and sequential workflow) makes it hard to accelerate
HE-based SVD through stacking more hardware or designing
specific accelerators (§2.3).

In this paper, we ask: can we design a federated SVD sys-
tem that enhances privacy protection by removing the exter-
nal servers while achieving high efficiency? Our answer is
Excalibur, an efficient decentralized federated SVD system.
Excalibur confronts two challenges: 1) conventional HE (or
other cryptography techniques) causes dramatic computation
inefficiency, making the system orders of magnitude slower
[7, 60, 61]; 2) decentralized SVD itself causes communication
inefficiency due to the multiple rounds of communication and
large communication amounts, which will also be enlarged
if adding HE protection (e.g., encrypting data from 64bits to
2048bits enlarges by 32×).

To address the above two challenges, Excalibur: 1) pro-
poses multiplicative matrix sharing (MMS), a lightweight
matrix protection method dedicated to decentralized SVD,
to efficiently achieve privacy preservation (§4); 2) pro-
poses communication-efficient decentralized SVD workflow
through quantitatively analyzing the design space and over-
lapping system pipelines (§5). Specifically, MMS achieves
protection by randomly projecting data into different shares
held by all peers such that a single peer or a subset of peers
cannot recover the data unless obtaining consensus from all
peers (§4.1). MMS achieves better computational efficiency
than HE since MMS does not enlarge the data size, and we
optimize the additional multiplicative operations to efficiently
support large-scale data (§4.2). Excalibur proposes a decen-
tralized SVD workflow with low communication complexity
by quantitatively analyzing the design space (§5.1) and re-
duces 66% of communication rounds through overlapping
system pipelines (§5.2). Regarding privacy preservation, we
formally prove that Excalibur satisfies the security defini-
tion of secure multi-party computation (Definition 1 and §6),
which is also used by many widely known SMPC protocols,
e.g., garbled circuits and secret sharing [11, 27].

We implement a fully functional system of Excalibur and
perform comprehensive evaluations. The results show that:
1) comparing to SOTA server-aided system [7], Excalibur
not only eliminates external servers but also achieves better
efficiency (credits to the computational and communication
advances of Excalibur which is analyzed in §8.3), and it is
3.1× ∼ 6.0× faster than FedSVD [7] on billion-scale data
and reduces more than 68.4% amount of communication; 2)
comparing to SOTA HE-based system [17], Excalibur is far
more efficient and has > 23000× larger throughput.

To the best of our knowledge, Excalibur is among the first
federated SVD systems that support the efficient decomposi-
tion of large-scale data without needing external servers. Fur-

thermore, we note that the privacy protection and optimization
strategies used in Excalibur are also broadly applicable to the
design of other systems, e.g. secure database query [55] and
out-sourced matrix computations [14, 18, 42, 62], and thus of
independent interest.

2 Backgrounds and Motivation
2.1 Federated SVD
Federated SVD is an essential primitive to support many
real-world distributed federated learning applications, e.g., de-
composing large-scale gene data distributed in hospitals and
genetic sampling agencies to assist federated genetic studies
[7, 10, 17, 25], factorizing large-scale user profiles distributed
in banks and online shopping companies as dimensional re-
duction and linear regression tools to assist federated risk
management [7, 19, 28, 48, 59], decomposing large-scale
distributed word-document data to assist federated language
modeling [15, 16, 30], and so on. In this paper, following
previous work [7, 9, 10, 17, 25, 34, 35], we focus on the SVD
algorithm that decomposes a matrix X ∈ Rm×n into a product
of three matrices X = UΣΣΣVT, where U ∈ Rm×m,VT ∈ Rn×n

are orthogonal singular vectors and ΣΣΣ ∈ Rm×n is a diagonal
matrix containing all the singular values. In federated SVD,
the data matrix X is jointly possessed by different peers, e.g.,
each peer holds different columns of data if the matrix is
vertically split. Different split patterns (i.e. horizontally or
vertically) do not affect the SVD computation since one pat-
tern could be transferred to another through matrix transpose
[7]. In this paper, we assume X is vertically split. Follow-
ing previous works [7, 9, 10, 17, 25, 34, 35], we define the
problem of federated SVD as computing Equation (1):

[X1;X2; ...;Xk] = UΣΣΣ[VT
1 ;VT

2 ; ...;VT
k ] (1)

where k is the number of peers. After the federated SVD
computation, U,ΣΣΣ are shared among the peers, and VT

i are
privately possessed by each peer.

𝑿𝑿1 𝑿𝑿2

𝑿𝑿 = …
=𝑼𝑼𝜮𝜮 � [𝑽𝑽1𝑇𝑇,𝑽𝑽2𝑇𝑇, … ,𝑽𝑽𝑘𝑘𝑇𝑇]

Shared Feature

…

Private Individual Feature 

𝑿𝑿𝑘𝑘

Figure 1: Example of federated SVD on genetic data.

We present real-world examples to demonstrate the practi-
cality and validity of the problem definition. In genetic analy-
sis, as illustrated in Figure 1, the matrix X represents genetic
data, where different columns contain phenotype measure-
ments on one certain DNA segment of different samples (e.g.,
individuals). After the federated decomposition, the left sin-
gular vectors U characterize publicly shared DNA phenotype
patterns summarized from all individuals. The right singu-
lar vectors {VT

i }1≤i≤k are private representations for each
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individual, which can help the correction of population strati-
fication in downstream genetic association studies [10, 25]. In
latent semantic analysis (LSA), the matrix X represents word-
document data, where different columns are word frequencies
across different documents. After federated SVD, the left sin-
gular vectors U represent publicly shared word embeddings,
while the right singular vectors {VT

i }1≤i≤k represent private
document representations [7].

2.2 External Servers Downgrade the Privacy
Protection in Federated SVD

Most pioneered federated SVD works rely heavily on external
servers [7, 9, 10, 25, 34]. As shown in Table 1, the data con-
tributors in these systems only perform simple operations and
outsource complicated computations (e.g., the complete SVD)
to external servers. Using external servers reduces system de-
sign complexity by outsourcing complex SVD computations
to servers rather than performing joint computations among
data contributors.

Existing
Studies

# of
Servers

Job of Data
Contributors

Job of Server(s)
Threats of

Privacy Leakage
[7] Two X′ = PXQ SVD on X′ Raw Data
[9] Four XXT, XTX SVD on XXT, XTX Raw Data

[10] Three
Secret Sharing
X = Xa +Xb

SVD on Xa +Xb Raw Data

[25] One
Project X
H = XG

Orthogonal H
(e.g., Gram-Schmidt)

Projections of
Raw Data

[34] One
Project XTX
Y = XTXZ

Orthogonal Y
(e.g., Gram-Schmidt)

Projections of
Raw Data

Table 1: Workload summary of data contributors and external
servers in existing server-aided federated SVD systems. The
servers obtain excessive access to the private data and thus
significantly decrease the systems’ privacy protection.

However, the involvement of external servers results in a
significant degradation of the privacy protections of the sys-
tem. This is due to the fact that such servers, which are not
data contributors and lack a root of trust, receive a substan-
tial amount of sensitive information during system execution.
Specifically, FedSVD [7] protects clients’ data using random
masks and leverages two servers that are responsible for gener-
ating the random masks (i.e., masking server) and performing
computation on the masked data (i.e., computation server),
respectively. During SVD computation, the clients upload
masking-protected data to the computation server, while the
collusion between these two servers will completely leak
the raw data; [9] leverages several fog devices as servers to
perform the factorization but directly expose the covariance
matrices (i.e., XXT,XTX) to the servers, which can recover
the raw data after simple calculations; [10] designed a system
of conducting genetic studies through secret sharing the data
on three external servers, while the collusion between any
two servers will completely leak the raw data; [34] and [25]
followed conventional federated learning protocol to design

the system, in which the clients jointly upload projections
of raw data to one server, which iteratively orthonormalize
these projections. However, the projections are sent to the
server without protection, which could be utilized to recover
the raw data or launch attacks (e.g., membership inference
attacks [63]). Table 1 summarizes the external servers’ job
and the corresponding threats of privacy leakage.

From the perspective of real-world applications, involving
external servers limits the potential use cases. Institutions
that handle highly sensitive data, such as banks and genetic
research organizations, usually prefer federated SVD without
involving the external servers [37, 41, 45, 50, 53]. This is due
to the fact that they prefer not to place trust in external servers
and their unwillingness to compromise privacy preservation
by relying on potentially untrustworthy servers, given strict
supervision and privacy restrictions.

Intuitive ideas of enhancing privacy protection in server-
aided approaches are impractical. Regarding the privacy
issue brought by external servers, there are intuitive ideas to
enhance privacy protection. Next, we will discuss these ideas
and their limitations.

• Pick data contributors to work as the "servers" instead of
involving external parties. Existing server-aided federated
SVD systems rely on 1 ∼ 4 external servers. One naive
idea is directly selecting 1∼ 4 data contributors working
as the servers. However, this idea will not work since pri-
vacy issues still exist among the selected data contributors,
i.e., private data is directly leaked to these contributors or
leaked when they collude. The system workflow does not
change in the view of non-selected data contributors, and
their privacy concerns still exist.

• Deploy trusted execution environment (TEE) at the servers
to increase privacy protection. TEE can provide encrypted
memory and secure code execution at the external servers
to improve privacy protection. However, this idea has the
following issues, making it not practical in the decentral-
ized SVD system: 1) TEE requires additional hardware in
the system, while we want to build a lightweight and plug-
and-play system with low adaption cost; 2) the limited
memory of TEE making it not suitable for federated SVD
system. Typical TEE system offers limited secure memory
region (e.g., 92MB for Intel SGX [2, 56]) to store the data
while federated SVD deals with matrices much larger. For
example, more than 1TB of storage is required to store
billion-scale genetic data and perform the decomposition
[7]. Although some modern TEE systems can support up to
1TB encrypted memory [32], it is limited to very specific
hardware, which clearly increases the adaption cost; 3) the
issue of distrust, particularly in the server-aided approach,
poses a significant challenge. TEE is susceptible to vari-
ous attacks [40], including software-based, side-channel,
and architectural attacks. Such vulnerabilities raise privacy
concerns and instill a lack of trust in the data contributors,
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even when TEE is employed [56]. Meanwhile, the security
of TEEs relies on trusted assumptions, such as the integrity
of the underlying hardware and firmware. However, data
contributors have reservations about trusting TEE, as they
are aware of the potential for servers to compromise the
supply chains, compromise TEE integrity, and ultimately
gain access to private data.

• Leverage HE to protect the computation at the servers.
Similar to existing studies that explored HE to remove
the external servers [17, 35], leveraging HE to protect the
computation at external servers suffers from severe com-
putation overheads. We will discuss the efficiency issue of
HE-based SVD in more detail in §2.3.

Conclusion. Existing server-aided federated SVD studies
involve external servers, which significantly downgrade the
systems’ privacy protection. Intuitive ideas of enhancing the
protection in these systems (e.g., using HE or TEE) are im-
practical. To solve this problem, it is essential to eliminate the
servers and achieve a decentralized system.

2.3 Efficient Decentralization is Challenging

Existing federated SVD studies [17, 35] have explored lever-
aging the strong protection of HE to remove the servers, and
the data contributors could peer-to-peer exchange encrypted
sensitive data without the servers. However, they suffer from
a significant efficiency downgrade brought by HE. Designing
an efficient decentralized federated SVD system raises both
computation and communication challenges.

Computation challenge. SVD involves a substantial amount
of computations, such as matrix multiplication. Accord-
ing to [20], the complexity of SVD for a m× n matrix is
O(mn ·min(m,n)). Although existing studies [17, 35] have
shown the viability of leveraging HE to achieve a decentral-
ized solution, HE-based SVD [35] is 4∼ 5 orders of magni-
tudes slower than server-aided approach [7] and centralized
SVD (i.e., collecting data centrally without considering pri-
vacy protection), which is presented in Figure 2. HE’s effi-
ciency issue will be particularly severe in large-scale SVD
since the amount of computation increases cubically with the
data size. Existing work has shown that HE-based solutions
require more than 15 years (single CPU with eight cores) to
factorize million-scale matrices, while real-world applications
(e.g., genetic studies) usually deal with billion-scale data [7].

Meanwhile, accelerating HE operations in SVD using hard-
ware is also challenging. First, we cannot continuously im-
prove the efficiency through stacking more hardware since
the computation process of SVD consists of a sequence of
orthogonal transformations that need to be computed in se-
quential order since one transformation relies on the result of
the last transformation [20]. Second, designing new hardware
accelerators for HE-based SVD is also challenging. SOTA
hardware accelerator for HE-based FL [60] can improve the

multiplicative operations by 14× compared to CPU, while
HE-based SVD is 4∼ 5 orders slower.

1K*100 1K*300 1K*500 1K*1K 1K*2K
Data Size

10−2

101

104

Ti
m

e(
s)

Centralized Server-aided HE-based

Figure 2: HE-based solution [35] is 4 ∼ 5 orders of magni-
tudes slower than server-aided [7] and centralized SVD (i.e.,
collecting data centrally without considering privacy).

Communicaiton challenge. Decentralized SVD itself causes
severe communication inefficiency since it involves enormous
numerical operations across the distributed matrices, which
causes a large peer-to-peer communication size and rounds.
Meanwhile, the HE-based approach has more communication
overheads since HE encrypts data from 64 to 2048 bits (or
more). Next, we analyze the communication cost in detail.
• Overhead of communication size. Existing HE-based ap-

proaches [17, 35] achieve decentralized SVD through lever-
aging the strong protection of HE to collect enough data
(e.g., the covariance matrix) at all peers to perform the
decomposition locally. Thus, the communication size will
be at least the same size as the raw data to successfully
perform SVD. In real-world applications that deal with
billion-scale data, e.g., 1K×50M matrix [7], the commu-
nication size of each peer will be 372GB before encryp-
tion and 11.6TB after encrypted by a 2048-bits key, which
causes significant communication overhead.

• Overhead of communication rounds. To reduce the com-
munication size, we can design a decentralized SVD proto-
col to only peer-to-peer exchange necessary intermediate
results during the execution rather than directly gather-
ing all the raw data. However, this approach will cause a
large amount of communication rounds. Briefly, we trans-
fer the most popular SVD algorithm, the two-side bidi-
agonalization with divide-and-conquer bidiagonal SVD,
which is widely used in packages like LAPACK, NumPy,
and SciPy, into decentralized system (§5). We find that
the communication size could be reduced from O(mn) to
O(m ·min(m,n)), which is superior when n≫m. However,
it increases the communication rounds to 4m(k−1), which
is O(km). In particular, when m = 10,000, k = 10 (i.e.,
10 participants), and the RTT is 50ms, the total overhead
caused by network latency will be 2.5 hours, while the
SVD computation could be done in minutes.

Optimization targets of decentralized federated SVD. We
formulate the target of decentralized federated SVD system
as reducing the cost C in Equation (2).

min(C) =Ccomp +Ccomm s.t.,

{
||Xi−UΣΣΣVT

i || ≤ ε

III(νi)≤ III(X,U,ΣΣΣ,VT
i )

(2)
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where Ccomp and Ccomm are the additional computation and
communication cost brought by decentralization and privacy
protection, ε is a small positive number constraining the er-
ror of SVD results. We denote νi as the viewed message
of peer-i during the system execution, and III(m) is a func-
tion to measure the information of m. Informally, restricting
III(νi)≤ III(X,U,ΣΣΣ,VT

i ) represents that the viewed message of
peer-i contains no more information than its final local out-
puts. This is the intuitive idea of protecting privacy in secure
multi-party computation [11]. We give formal security defini-
tion and threat model in §3.1. Overall, Equation (2) illustrates
a big picture regarding how to define the utility and security,
and our design target is reducing the additional computation
and communication cost while satisfying the security and
utility requirements.

3 System Overview
3.1 Threat Model and Security Goals
Threat model. Following previous work [7, 9, 10, 17, 25,
34, 35], we assume all peers (i.e., the data contributors) are
semi-honest, which is one of the most widely-used assump-
tions in federated learning [59]. It means that the peers will
correctly follow the protocol but try to reveal private data by
analyzing the received messages. We consider the threat that
the adversaries can compromise up to k− 1 peers and see
all of their internal states (e.g., local private data, memory
contents, access patterns, and data sent/received) but without
altering its execution, where k is the total number of peers.
Security definition. Since federated SVD is a typical se-
cure multi-party computation (SMPC) system, we follow the
definition in SMPC [11, 27] to define the security, which
is presented in Definition 1. This definition is also used by
many widely known SMPC protocols, e.g., garbled circuits
and secret sharing [11, 27]. It ensures that adversaries with
certain colluding subsets of participants can learn nothing
from executing the system that they could not have learned
from the outputs [27].
Definition 1 (Security Definition). Let {xi,yi}1≤i≤k be the
input (xi) and output (yi) of a multi-party computation system,
where k is the number of participants. Let {vi}1≤i≤k be the
viewed messages during the system execution. Considering
the adversary compromises C (|C|< k) participants, then the
system is secure if there exists an efficient simulator S such
that S({xi,yi}i∈C) has the same distribution with {vi}i∈C.
Attacks out of scope. Similar to other federated SVD studies
[7, 9, 10, 17, 25, 34, 35], the following attacks are out of
scope for our study: 1) attacks of revealing private data from
final results. Protecting final results is out of the scope of
SMPC [11, 27]. However, if the peers wish to protect the final
results, Excalibur can work with differential privacy (DP) to
achieve such guarantees, and more details are discussed in
§9; 2) malicious attacks by not following the protocol. By as-
suming semi-honest, we expect all peers will correctly follow

the system’s protocol, which is reasonable as the data contrib-
utors in real-world SVD applications, e.g., genetic research
institutions and banks, usually do not have the motivation to
be malicious since it harms their reputations if being caught.
Nevertheless, we provide discussions showing it is feasible to
defend against malicious attacks in Excalibur (§9).

3.2 Overview of Excalibur
Figure 3 shows an overview of Excalibur, and its design has
the following two components to address the computational
and communication challenges.

Computation-efficient matrix protection (§4). Instead of
using HE, Excalibur proposes a computational-efficient pro-
tection method for decentralized federated SVD, called mul-
tiplicative matrix sharing (MMS). MMS uses multiplicative
operations to randomly rotate and project each peer’s raw
data into multiple low-dimensional shares held by different
peers separately (§4.1). Intuitively, MMS achieves protection
as recovering any certain peer’s raw data requires shares from
all peers. We provide rigorous proof showing that Excalibur,
under the protection of MMS, satisfies the security defined
in Definition 1. MMS achieves much higher efficiency than
HE because HE typically enlarges the data (e.g., from 64
to 2048 bits) and involves time-consuming operations (e.g.,
bootstrapping [1, 61]), while MMS keeps the data size un-
changed. Meanwhile, regarding the additional multiplicative
operations when creating the shares, we propose optimiza-
tions to improve the efficiency when dealing with large-scale
data (§4.2).

Communication-efficient decentralized SVD (§5). Excal-
ibur achieves superior communication efficiency as we have
thoughtfully designed the decentralized system to transfer
only necessary messages, and we address latency issues by
overlapping the pipelines. Compared with directly gathering
all required data, Excalibur significantly decreases the com-
munication size. Compared with designing a decentralized
system by empirically selecting one SVD solver, we compre-
hensively analyze the design space of the decentralized SVD
system and choose the path with the minimum communication
complexity (§5.1). Regarding latency overhead, we carefully
overlap the system pipelines, reducing communication rounds
by 66% (§5.2).

4 Excalibur’s Matrix Protection
In this section, we first introduce multiplicative matrix sharing
(MMS) (§4.1), the efficient matrix protection in Excalibur, and
then present optimizations to decrease MMS’s computational
overhead when processing large-scale data (§4.2).

4.1 Multiplicative Matrix Sharing
Excalibur proposes MMS based on the following observa-
tions: 1) HE protects matrix data by encrypting each number
or vector, which overlooks the data’s inherent structure. Given
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Peer1

Create multiplicative matrix shares (MMS)

𝑿𝑿1 𝑿𝑿2 ... ...𝑿𝑿𝑖𝑖 𝑿𝑿𝑘𝑘
𝑿𝑿𝑖𝑖

Private matrices held by 𝑘𝑘 peers

...

... ...... ...

Peer-1

All peers do

Decentralized SVD on data shares (peers hold shares from others)

Peer-2 Peer-𝑖𝑖

Peer-𝑘𝑘

Peer2 Peer𝑖𝑖 Peer𝑘𝑘

...

... ... ...

Figure 3: System overview of Excalibur.

that SVD consistently deals with matrix data rather than indi-
vidual numbers or vectors, we can develop efficient techniques
to protect the matrix as a whole, e.g., randomly rotating and
stretching the matrix. 2) In SMPC, a common strategy for
protecting data while enabling joint computation is creating
data shares among the participants [11]. Specifically, each
party’s local data is divided into additive shares held by dif-
ferent parties. A single party cannot recover the data as the
recovery requires shares from multiple parties.

Excalibur employs multiplicative operations to randomly
rotate and project the raw data into different low-dimensional
shares, i.e., the MMS, which is formally defined in Defini-
tion 2. Specifically, the random matrix B randomly rotates
X and A projects the rotated matrix into different vectors.
These vectors are MMS of X and recovering X require
all {aiXB}1≤i≤m as well as the random matrices A,B, i.e.,
X = A−1{AXB}B−1.

Definition 2 (Multiplicative Matrix Sharing). Let X ∈ Rm×n

be the private data, A ∈ Rm×m and B ∈ Rn×n are random
inversible matrices (i.e., non-singular). We define the MMS
of X as different rows of AXB, which are {aiXB}1≤i≤m and
ai is the i-th row of A.

Now we adopt MMS into decentralized SVD, in which the
private data X = [X1,X2, . . . ,Xi, . . . ,Xk] are jointly held by
k peers. Following the notation in Definition 2, we denote
B = diag([B1, . . . ,Bi, . . . ,Bk]) are the local random rotations
independently generated and performed by the peers, and
A is the global random projection matrix. Plugging them
into AXB, we get Equation (3), which is formulated into
a k× k block matrix, where A = [A1

T , . . . ,Ai
T , . . . ,Ak

T ]T .
In the k× k block matrix, each block represents one group
of data share (i.e., multiple vectors) of a certain peer. Af-
ter the data sharing, we let peer-i hold the following blocks
{AiXpBp}1≤p≤k, which is exactly the i-th row of block ma-
trices in Equation (3). Then all peers jointly perform SVD
over the data shares. MMS brings some extra communication
while creating the data shares, i.e., peers need to distribute
local shares to others. However, the size of extra communica-

tion for each peer is proportional to its local data size rather
than the overall data size. Furthermore, the communication in
MMS could be implemented in parallel.

AXB =



A1X1B1 A1X2B2 . . . A1XiBi . . . A1XkBk
A2X1B1 A2X2B2 . . . A2XiBi . . . A2XkBk

...
...

...
...

AiX1B1 AiX2B2 . . . AiXiBi . . . AiXkBk
...

...
...

...
AkX1B1 AkX2B2 . . . AkXiBi . . . AkXkBk


(3)

Empirical Evidence why MMS achieves the protection.
Empirically, MMS achieves protection for two reasons: 1)
each peer’s data is projected into k shares held by different
peers and recovering one certain peer’s data require all the
shares as well as the local rotation matrix Bi; 2) decentral-
ized SVD peer-to-peer exchanges orthogonal transformations
which are also randomized by A and {Bi}1≤i≤k while creating
the data shares.
Formal proof of MMS. Theorem 1 shows that Excalibur
protected by MMS can produce SVD results with no accu-
racy loss and satisfy the security definition of SMPC (i.e.,
Definition 1). Uniformly generating random matrices (e.g.,
Bi) from the orthogonal compact group under Haar measure
could be achieved by QR decomposition on random matri-
ces with standard Gaussian distributed values [3, 47]. The
proof of no accuracy loss is quite straightforward since or-
thonormal rotations of a matrix could be reverted from the
SVD results. The security proof is more complicated since
it also depends on the subsequent system workflow. Briefly,
we conduct a detailed mathematical analysis showing that we
can efficiently compute the distribution of all intermediate
results in Excalibur from the federated SVD outputs, which
is precisely Definition 1.

Theorem 1. Denote On as the compact group of n×n orthog-
onal matrices under Haar measure, if we choose dense matrix
A∈Om and uniformly generate Bi ∈Oni , Excalibur produces
federated SVD results with no accuracy loss and can satisfy
the security defined in Definition 1 while the adversary can
compromise up to k−1 peers (|C|= k−1).

Proof. We put the proof in §6 since it also involves the subse-
quent decentralized SVD workflow of Excalibur.

Difference to other multiplicative matrix protections. Ex-
isting studies also have explored protecting data by mul-
tiplicating with random matrices, such as random masks
[5, 7, 38, 55]. However, these studies are limited to outsourced
[38, 55] or server-aided [5, 7] scenarios. While these studies
employ random masks to protect computations at external
servers, Excalibur leverages multiplicative operations to gen-
erate matrix shares among different peers, thereby achieving
an efficient decentralized system. Thus, Excalibur has an en-
tirely different system workflow and design target.

1034    2024 USENIX Annual Technical Conference USENIX Association



Computation path of one rowPair-wise Multiplication (𝛿𝛿 = 3)

1…

1

…

(1) Form as  
Rectangular

(2) Left Mask (3) Shift (4) Two-side 
Mask 

Figure 4: An example of 3 times of pair-wise multiplication
and the computation path of one row.
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Figure 5: Experiments that guide the design of efficient multi-
plicative operations.

4.2 Accelerating the Multiplicative Operations
According to Theorem 1, the multiplicative operation involves
generating orthogonal matrices A,{Bi}1≤i≤k and multiply
them with raw data X. However, generating and multiplying
orthogonal matrices have a large computation overhead when
dealing with large-scale data. SOTA method [47] costs O(m2)
complexity to generate A∈Rm×n and multiplying A with X∈
Rm×n has O(m2n) complexity. Thus, the overall complexity is
O(m2n), which is computationally inefficient when m is large.
Next, we introduce Excalibur’s optimizations to accelerate
these multiplicative operations.
Acceleration of protection (i.e., Matrix A). Instead of gener-
ating and applying A, we randomly group rows of data matrix
(i.e., X) into pairs (i.e., m/2 pairs in total) and multiply the
pairs using random 2×2 orthogonal matrices. Then, we re-
peat this pair-wise multiplication δ times. This idea works
since the multiplication result of orthogonal matrices remains
orthogonal. Figure 4 illustrates an example when δ = 3 and
the computation path of one row from the results. We do not
explicitly form A, but gradually apply many 2×2 matrices to
the data. Theoretically, we only need to perform δ = log2(m)
times of pair-wise multiplication to make each dimension of
A not sparse, i.e., each row is mixed with all the other rows.
Each time of pair-wise multiplication has O(mn) complexity.
Thus, the proposed approach reduces the complexity of gen-
erating and multiplicating A from O(m2n) to O(mn · log(m)),
which is significantly faster on large-scale data.

The proposed pair-wise multiplication reduces complexity
but causes repeated loading of different rows of data from
memory to CPU cache and back. It brings significant I/O over-
head and becomes a bottleneck for large-scale data. Figure 5
shows that the efficiency advantage of pair-wise multiplica-
tion decreases with larger data scales. To solve this problem,
we propose two optimizations:

• We process data by columns instead of by rows. Each col-
umn is accessed only once and written back after all of its
computations are finished. This transforms pair-wise mul-
tiplication from I/O-intensive to computation-intensive.

• When the data is very large-scale (e.g., billion-scale), load-
ing one column of data can be inefficient if it exceeds
the size of CPU L1 caches. To address this, we reduce
the required data in each computation episode by forming
one column of data into a rectangular matrix and then re-
cursively processing each column of the new rectangular
matrix. This optimization allows us to load only

√
m data

instead of m, enabling efficient computation when the size
of A is up to 1B×1B.

Acceleration of local rotation (i.e., Matrix Bi). According
to Theorem 1, the random matrix B should follow uniform
distribution over the compact orthogonal group. We follow
existing work [47] to generate B that satisfies the distribution
requirement. Overall, generating and multiplicating Bi with
Xi has O(mn2

i ) complexity, which becomes the efficiency bot-
tleneck when the local matrix is short and wide, i.e., m≪ ni.
We leverage data pre-processing to improve efficiency. Specif-
ically, we locally reduce the dimension of the data through QR
decomposition such that Xi = RT

i QT
i where Ri ∈ Rm×m and

Qi ∈ Rm×ni . Then, peers can use Ri instead of Xi in the SVD
computation. After the SVD computation, each peer can apply
Qi back to private local singular vectors VT

i . Thus, the pre-
processing does not harm the SVD’s accuracy. Notably, the
peer only needs to generate and multiply Bi to Ri, which is far
more efficient than working with Xi. The complexity of QR
decomposition is O(m2ni). Thus, the pre-processing strategy
reduces the complexity from O(mn2

i ) to O(m2ni +m3), sig-
nificantly reducing the computation overhead when m≪ ni.

5 Excalibur’s Decentralized SVD Workflow
To solve the communication challenge, Excalibur first com-
prehensively analyzes the design space of decentralized SVD
and selects the path with the least communication cost (§5.1).
Furthermore, Excalibur overlaps the pipelines to reduce 66%
of communication rounds (§5.2). This section may involve
some linear algebra concepts, and we have prepared prelimi-
naries of necessary computations in Appendix A.

5.1 Analyzing the Design Space
In this section, we first analyze the categorization of SVD
solvers that constitute the design space of decentralized SVD,
then analyze the complexity of each path in that space, and
finally, we present Excalibur’s decentralized SVD workflow.

Existing SVD solvers can be broadly classified into two
categories: 1) methods without bidiagonalization, e.g., power
iteration [34, 46] and Jacobi iteration [12]. These methods di-
rectly use orthogonal transformations to iteratively eliminate
the off-diagonal elements; 2) methods with bidiagonalization,
e.g., Golub-Kahan SVD [20], divide-and-conquer SVD [22],
and bisection-twisted SVD [54]. These methods have two
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Figure 6: Design space of decentralized SVD. The path used
in Excalibur is indicated in red color.

steps: first, the matrix is bidiagonalized such that only the di-
agonal and sub-diagonal positions contain non-zero elements,
and second, used orthogonal transformations to eliminate the
sub-diagonal elements, which is also known as bidiagonal
SVD (bSVD). In this paper, we analyze the communication
complexity of four methods from both categories, which are
Jacobi iteration [12], Golub-Kahan SVD [20], divide-and-
conquer SVD [22], and bisection-twisted SVD [54].
Design space of decentralized SVD. The design space of
adopting those conventional SVD solvers into the decentral-
ized system is illustrated in Figure 6, and it is based on the
following observations:
• Different shapes of input matrix may have very different

efficiency. For clarity, we name two types of data shapes:
tall-skinny matrix (i.e., m > n) and short-wide matrix (i.e.,
m≤ n). We observe that tall-skinny matrices tend to have
more communication overhead than short-wide matrices
due to more complex data interactions. Thus we use decen-
tralized QR decomposition to transfer tall-skinny matrix to
short-wide matrices, i.e., all peers jointly exchange house-
holder reflectors to reduce the matrix. Due to the space
limitation, we put the detailed workflow of decentralized
QR in Appendix B.

• Golub-Kahan SVD [20], divide-and-conquer SVD [22],
and bisection-twisted SVD [54] can share the same bidiag-
onalization computation and only differ at the bidiagonal
SVD (i.e., bSVD). Meanwhile, the bidiagonalization ac-
counts for most of the computation and communication
[20], thus we mainly focus on analyzing two different bidi-
agonalization methods: the two-side [20] and one-side [44]
approaches.
In summary, as illustrated in Figure 6, the design space

has the following three paths: 1) Jacobi iteration; 2) two-side
bidiagonalization with bSVD; 3) one-side bidiagonalization
with bSVD. The bSVD could be one of these three methods:
Golub-Kahan SVD, divide-and-conquer SVD, and bisection-
twisted SVD. We only analyze the complexity under short-
wide matrices for simplicity since the tall-skinny matrices
share the same computation path after federated QR.
Results of analyzing the design space. Table 2 shows the

Decentralized
SVD Path

Short-Wide Matrix
X ∈ Rm×n m≤ n; k peers

CommAmount
(Bandwidth)

CommTimes
(Latency)

Jacobi iteration
(1 iteration)

3 k−1
k (m2−m)

⇒ O(m2)

m(m−1)(k−1)
⇒ O(km2)

Two-side
Bidiagonal + bSVD

(k−1)( 3
2 m2 + 7

2 m)

⇒ O(km2)

4m(k−1)
⇒ O(km)

One-side
Bidiagonal + bSVD

k−1
k (m2−m)

⇒ O(m2)

(6m−6)(k−1)
⇒ O(km)

Table 2: Quantitative communication analysis of three decen-
tralized SVD paths.

analyzing results and we put the detailed computation in Ap-
pendix C due to the space limitation. It is worth noting that
our analyzing results are calculated after necessary optimiza-
tions, including packing all intermediate results together if
they could be sent in one round of communication and avoid-
ing transferring redundant data (e.g., only transfer half of the
matrix if it is symmetric). The analysis shows that:

• Jacobi iteration has significantly higher communication
rounds (i.e., O(km2)) compared to the other two methods
(i.e., O(km)), leading to more network latency overhead.
Meanwhile, Jacobi iteration usually requires more than one
iteration to converge, affected by the data distribution, and
the increased iterations can further cause large overhead
regarding communication size.

• Compared to the one-side approach, the two-side bidiag-
onalization with bSVD is the most popular method for
centralized SVD (e.g., used by NumPy, LAPACK, etc.),
but its communication size is large and increases with the
number of peers (i.e., O(km2)), making it unsuitable for
decentralized SVD.

• The one-side bidiagonalization approach has the minimum
complexity of communication size (i.e., O(m2)) and com-
munication rounds (i.e., O(km)), making it the best choice
for Excalibur.

Excalibur’s decentralized SVD workflow. Based on the
analysis, Excalibur selects the one-side bidiagonalization with
bSVD as the most efficient path, which is also indicated in Fig-
ure 6. We present the detailed workflow in Algorithm 1. Since
Excalibur’s decentralized workflow is designed on MMS, the
final SVD results are also in the form of data shares between
the peers. The recovery of these data shares is a straightfor-
ward process, and we put detailed procedures in Appendix E.

5.2 Overlapping the Pipelines
To further reduce the communication rounds, we perform an
in-depth study on Algorithm 1. We find that Algorithm 1 in-
volves three looped ring all-reduce communications, which
are highlighted and could be further optimized through over-
lapping the system pipelines.
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Algorithm 1: Excalibur’s decentralized SVD work-
flow. (The three looped ring all-reduce are highlighted
and we will reduce them to only one through overlap-
ping the pipelines (§5.2).)

Input: Matrix X = [X1,X2, ...,Xk] held by k peers, where
X ∈ Rm×n, m≤ n, Xi ∈ Rm×ni , and ∑

k
i=1 ni = n.

Output: U,ΣΣΣ, [VT
1 ,V

T
2 , ...,V

T
k ] (i.e., SVD of X)

1 Function DecSVD(X):
// All peers run this function in parallel

2 U← I,c←MyPeerID ▷ e.g., c = 1 for peer-1
3 for i = 1, 2, ..., m-2 do
4 h← RingAllReduce(Xc[i]∗Xc[i+1 :]T )

// Apply reflector to X and U
5 Xc[i+1 :]← house(h)⊗Xc[i+1 :]
6 U[i+1 :]← house(h)⊗U[i+1 :]
7 end

// α contains the diagonal elements.
// β contains the subdiagonal elements.

8 α←{0}m,β←{0}m−1

9 α[1]←
√

RingAllReduce(||Xc[1]||22)
10 VT

c [1] = Xc[1]/α[1]
11 for i = 2, 3, ..., m do
12 β[i−1] = RingAllReduce(Xc[i]∗Vc[i−1])
13 Xc[i]← Xc[i]−β[i−1]∗VT

c [i−1]

14 α[i]←
√

RingAllReduce(||Xc[i]||22)

15 VT
c [i] = Xc[i]/α[i]

16 end
17 Ub,ΣΣΣ,VT

b ← bSV D(α,β)
// Combine results together

18 U← U∗Ub
19 VT

c ← VT
b ∗VT

c
20 return U,ΣΣΣ, [VT

1 ,V
T
2 , ...,V

T
k ]

21 End Function

Iter 1
Iter 2

Iter 𝒎− 𝟐

…

Iter 1

Iter 
𝒎− 𝟏

…

Bidiagonalize Compute 𝜶, 𝜷
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Iter 1
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Iter 𝒎− 𝟐

…
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Iter 1

𝜷𝜶

𝑿𝒊𝑿[𝒊#𝟏:]

Bidiagonalize Compute 𝜶, 𝜷

Iter 𝒎− 𝟑
Iter 𝒎− 𝟐

[𝑿𝒊𝑿 𝒊#𝟏: , 𝜽𝒊'𝟏]

𝒎 − 𝟏

Iter 0

Iter 2

Iter 0

Figure 7: Overlapping the pipeline reduces the number of
ring all-reduce communication from 3m−3 to m, i.e., approx-
imately reduced by 66%.

We first analyze the third loop ring all-reduce in Algo-
rithm 1, which could be represented by Equation (4):

α
2
i =

k

∑
j=1
||Xi

j||
2
2 =

k

∑
j=1
||Xi

j−βi−1(Vi−1
j )T||22 (4)

Plugging in βi−1 = ∑
k
l=1 Xi

lV
i−1
l , which is exactly the sec-

ond looped ring all-reduce communication, and we get:

α
2
i =

k

∑
j=1
||Xi

j− (
k

∑
l=1

Xi
lV

i−1
l )(Vi−1

j )T||22

=
k

∑
j=1

Xi
j(X

i
j)

T−2(
k

∑
l=1

Xi
lV

i−1
l )(

k

∑
j=1

Xi
jV

i−1
j )+

(
k

∑
l=1

Xi
lV

i−1
l )2

k

∑
j=1

[(Vi−1
j )TVi−1

j ]

(5)

If we denote θi
1 = ∑

k
j=1 Xi

j(X
i
j)

T, θi
2 = ∑

k
j=1 Xi

jV
i−1
j , θi

3 =

∑
k
j=1[(V

i−1
j )TVi−1

j ], then αi,βi−1 could be represented as:

αi =
√

θi
1−2(θi

2)
2 +(θi

2)
2θi

3 , βi−1 = θ
i
2 (6)

Thus we can compute αi and βi−1 through only one time
of ring all-reduce communication on θi = [θi

1,θ
i
2,θ

i
3].

Additionally, the computation of αi and βi−1 require bidi-
agonalized Xi which is computed by the first looped ring all-
reduce at iteration i, thus we can parallel these two pipelines
by computing αi and βi−1 in a delayed manner, i.e., comput-
ing αi,βi−1 in iteration i+1. Figure 7 illustrates the pipelines
before and after the optimization, and our optimization re-
duces 66% ring all-reduce communication.

6 Security Analysis
Now we formally prove Theorem 1.
Proof. (Accuracy) The proof of no accuracy loss is quite
straightforward. The random rotation and projection are
orthogonal transformations that could be inverted from
SVD results. Thus Excalibur does not impact model ac-
curacy. (Security) When the adversary compromises C =
{peeri}1≤i≤k−1 and try to attack peer-k, the adversary holds
the input and output {A,Xi,Bi,U,ΣΣΣ,VT

i }i∈C. The adversary
views the following messages from peer-k: 1) the data share
from peer-k: {AiXkBk}1≤i≤k−1; 2) partial implicit matrix of
one-side bidiagonalization: {BT

k XT
k AT

k AkXiBi}1≤i≤k. These
two groups of messages correspond to the two stages of Ex-
calibur’s computation: creating MMS and decentralized SVD.

Pick Vnull ∈ Rn×nk as an orthogonal base in the null space
of the subspace spanned by {VT

i }i∈C. Then VnullR1, where
R1 uniformly distributed in Onk , uniformly distributed on all
the possible orthogonal base on the corresponding null space.
According to the definition of SVD, VT

k is also an orthogonal
base in the null space of the subspace spanned by {VT

i }i∈C.
Meanwhile, Bk is uniformly distributed in Onk . Thus we have

VnullR1
d
= VT

k Bk, i.e., they have the same distribution which
is uniformly distributed over all possible orthogonal bases.
Since AiXkBk = AiUΣΣΣVT

k Bk, we can deduce:

AiXkBk
d
= AiUΣΣΣVnullR1 1≤ i≤ k−1 (7)
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Similarly, we can deduce that:

BT
k XT

k AT
k AkXiBi

d
={

RT
1 VT

nullΣΣΣ
T UT AT

k AkXiBi 1≤ i≤ k−1

RT
1 VT

nullΣΣΣ
T UT AT

k AkUΣΣΣVnullR1 i = k

(8)

We can build a simulator S based on Equation (7) and Equa-
tion (8) that produces messages with the same distribution to
the viewed messages from peer-k during the system execution.
Specifically, we can generate Vnull through Gram–Schmidt
process and uniformly generate R1 ∈ Onk following [47].
Thus, Excalibur satisfies security defined in Definition 1 while
the adversary compromises k−1 peers.

7 Implementation
We implement a fully functional prototype of Excalibur using
C/C++. Peers communicate with others through sockets. We
use BLAS and LAPACKE from Intel MKL [52] as the major
library for matrix computation and use double precision (i.e.,
64bit) in the whole system.

Parallelism. For computations not included in BLAS and LA-
PACKE, e.g., computation for creating MMS, we implement
from scratch and use OMP [8] and AVX2 for parallelism. For
computations included in BLAS and LAPACKE, we directly
use multi-threading and SIMD from MKL library. Implemen-
tations of baseline methods also leverage similar parallelism,
e.g., [7] used NumPy with MKL, which already includes the
above parallel methods.

Handling large-scale data. For very large-scale matrices
that cannot fit into memory, we create memory-mapped files
such that the large matrices are physically stored on disk.
Then, we schedule I/O such that the frequently used data are
loaded to RAM before computation and written back only
when all computations in certain steps are finished.

Choice of δ. δ is the number of pair-wise multiplication
times when applying the matrix A in MMS (§4.2). We find
setting δ = 32 can support data up to (232)2 = 264 rows or
columns, which is enough to support any real-world datasets
with satisfactory computation efficiency. Thus, we directly
set δ = 32 in all evaluations.

Applications based on SVD. We implement three applica-
tions based on SVD results in Excalibur, including principal
component analysis (PCA), latent semantic analysis (LSA),
and linear regression (LR). We put the detailed workflow in
Appendix F.

8 Evaluation
In this section, we comprehensively evaluate Excalibur, and
the key results are:

• Compared to the SOTA server-aided system, Excalibur not
only removes the external servers but also achieves better
efficiency. Briefly, Excalibur is 3.1× ∼ 6.0× faster than

FedSVD [7] on different shapes of billion-scale data and
reduces more than 68.4% amount of communication.

• Compared to the SOTA HE-based system that attempted
to remove the servers, Excalibur is far more efficient and
has > 23000× larger throughput.

• Comparing to two widely used federated LR systems:
FATE [36] and SecureML [39], Excalibur is 100x and
1000x faster, respectively.

8.1 Experimental Setup
Testbed setup. To simulate different network settings, we
follow previous work [7] and put all peers in separated docker
containers, which are connected using the docker bridge net-
work, and use traffic control tools to change the bandwidth
and latency between the containers. Each container (i.e., one
peer) uses 4 CPU cores and 64GB of memory. Unless stated
otherwise, following previous work [7], the default bandwidth
and round trip time (RTT) between the peers used in our eval-
uation is 1Gbps and 50ms.
Datasets, baselines, and tasks. We have used four datasets
in our evaluation: MNIST [33], Wine [13], ML100K [24],
and synthetic data [21]. We evaluate Excalibur on SVD tasks
and three applications (i.e., PCA, LSA, and LR), and compare
it with: FedSVD [7] which is the SOTA server-aided feder-
ated SVD system that leverages random masks as protection,
and SF-PCA [17] which is the SOTA multi-key HE based
SVD system. Regarding the LR application, we also com-
pare Excalibur with two most popular federated LR systems:
FATE [36] which leverages partial HE as protection and Se-
cureML [39] which is an SS-based system and relies on two
non-colluding servers. Due to the space limitation, we put
detailed parameters of datasets and baselines in Appendix D.

8.2 High Accuracy
Before diving into efficiency evaluations, we would like to
first demonstrate Excalibur’s high accuracy after the overall
computations. Table 3 shows the reconstruction error (i.e.,
||X−UΣΣΣVT ||2) on SVD of Excalibur and FedSVD [7]. Ex-
calibur achieves very high accuracy with only 10−13 ∼ 10−17

reconstruction error on different datasets. We only report the
accuracy of SVD since SVD-based applications (i.e., PCA,
LSA, and LR) will also have high accuracy if SVD is accurate.

Method Wine MNIST ML100K Synthetic

FedSVD 1.44×10−13 2.66×10−10 2.56×10−12 5.67×10−15

Excalibur 3.56×10−14 2.15×10−13 3.76×10−15 2.96×10−17

Table 3: Reconstruction error of SVD on three real-world
datasets and synthetic data.

8.3 Efficiency on SVD Task
Compaing to SOTA server-aided system on SVD. To
demonstrate the high efficiency of Excalibur, we compare it
with FedSVD which is the SOTA server-aided federated SVD
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Figure 8: Comparing Excalibur and FedSVD on SVD task
using billion-scale tall-skinny (TS) and short-wide (SW) data.

system. The evaluation results are illustrated in Figure 8. We
use billion-scale synthetic data which is uniformly partitioned
on two peers, and specify two types of data shapes: the tall-
skinny (TS) and short-wide (SW) matrices. For the TS matrix,
we set n = 1K and vary m from 1M to 50M to control the data
scale from 1B to 50B. Similarly, we set m = 1K for the SW
matrix and change n to control the data scale. Excalibur has
different optimizations for these two data shapes thus has dif-
ferent time consumption which are denoted as Excalibur (TS)
and Excalibur (SW) in Figure 8, while FedSVD does not spec-
ify matrix shapes and has identical performance under TS and
SW matrices. The evaluation results show that Excalibur not
only eliminates the privacy concerns brought by involving the
external servers but also has better efficiency than FedSVD on
billion-scale data. Specifically, 1) on billion-scale tall-skinny
matrices, Excalibur is 3.1x faster than FedSVD and reduces
68.4% communication amount; 2) on billion-scale short-wide
matrices, Excalibur is 6.0x faster than FedSVD and reduces
99.9% communication amount; 3) Excalibur consistently has
better performance than FedSVD under different network
bandwidth and latency.

Superior performance on short-wide matrices. It is worth
noting that Excalibur has superior performance and very
low communication amount on short-wide matrix, as illus-
trated in Figures 8(a) and 8(b), because we choose the most
communication-efficient decentralized SVD path. Accord-
ing to our analysis (i.e., Table 2), the communication amount
under the short-wide matrix is k−1

k (m2−m) which is only cor-
related with m and does not change if the peers horizontally
increase more data (i.e., increasing n).

Analyzing why Excalibur performs better than FedSVD.
We perform a fine-grained performance comparison between
Excalibur and FedSVD, and Figure 9 shows the result. If we

Excalibur

FedSVD 16.33 hours

5.18 hours

Transfer data to server 
under protection

Server SVD Retrieve & 
recover results

Create MMS Decentralized SVD Recover results

1 2 3

1 2 3

Figure 9: Fine-grained efficiency comparison between Excal-
ibur and FedSVD on 50B tall-skinny data (Figure 8(a)). For
easy comparison, we divide both systems into three phases:
1) applying protection, 2) SVD, and 3) revealing final results.

compare the SVD computation process solely (i.e., ignoring
the overhead of protecting the data), the server-aided approach
does run faster than decentralized SVD, which is reasonable
since decentralized SVD involves peer-to-peer communica-
tion. However, the server-aided approach requires collecting
all data on the server before the computation, which brings
large communication overhead and raises privacy concerns.
Technically, Excalibur outperforms the SOTA server-aided
system (i.e., FedSVD) for two reasons: 1) Excalibur has better
communication efficiency. It thoroughly analyzes the design
space of decentralized SVD, ensuring that only necessary in-
termediate results are exchanged from peer to peer. In contrast,
clients in FedSVD roughly upload all the masked data to the
servers. As a result, Excalibur has 68.4%∼99.9% less com-
munication size than FedSVD. 2) Excalibur has better com-
putational efficiency. FedSVD involves many additional com-
putations for privacy preservation, including random masking
and secure aggregation, while Excalibur only leverages multi-
plicative operation to create MMS. Moreover, the complexity
of random masking in FedSVD is O(mnk),where k is a hyper-
parameter to balance the privacy protection and computation
complexity and they set k = 1000. The complexity of cre-
ating MMS in Excalibur is O(mnlog(m)) on the tall-skinny
matrix. Excalibur has lower computation complexity (i.e.,
log(m) < k). In summary, Excalibur outperforms FedSVD
in both computation and communication efficiency. We also
notice that the computational optimizations for creating MMS
in Excalibur could be adopted in FedSVD to improve effi-
ciency. However, the communication optimizations cannot
be used in FedSVD since they are specifically proposed for
decentralized systems.

8.4 Efficiency on SVD Applications

Comparing to SOTA HE-based system on PCA. Table 4
shows the results of Excalibur and SF-PCA on PCA task.
Although SF-PCA also does not rely on external servers, it
has significant efficiency overhead caused by HE. Excalibur
has >23000x larger throughput compared with SF-PCA.

Comparing to SOTA server-aided system on LR. Figure 10
illustrates the LR evaluation results. The time consumptions
reported for FATE and SecureML are the running time of one
epoch and it is worth noting that they usually require many
epochs to coverage, while Excalibur only needs one factor-
ization to get final results. The results show that Excalibur is
1000× faster than SecureML (one epoch), 100× faster than
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Solution Data
CPU
Cores

Time
Single Core
Throughput

SF-PCA[17]
45.6M

(760×60K)
72 2.22 Hours 0.28 M/H

Excalibur
10000M

(1K×10M)
24 0.063 Hours 6595.55 M/H

Table 4: Comparing Excalibur with SF-PCA on PCA ap-
plication, while computing the top-5 principal components
(bandwidth=1Gb/s, RTT=20ms, six peers).
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Figure 10: Comparing Excalibur with FedSVD, FATE, and
SecureML on LR application.

FATE (one epoch), and 3.6× faster than FedSVD on billion-
scale data. Excalibur consistently has smaller communication
size on different data scales and reduces the communication
by 81.7% on 50B data compared with FedSVD.

8.5 Scalability
We evaluate Excalibur’s scalability when increasing the num-
ber of peers. We assume all peers hold the same amount of
data and test the efficiency when more peers join the feder-
ation. Figure 11 presents results on the SVD task and LSA
application when each peer holds a 100K×250 matrix and the
number of peers increases from 2 to 20. This setting simulates
real-world genetic studies in which peers hold large-scale
gene features (i.e., 100K) of a few samples (i.e., 250), and
they cooperate to increase the sample size. The results show
that Excalibur has better scalability than the FedSVD and is
continuously more efficient when increasing the # of peers.

8.6 Effectiveness of the Optimizations
To measure the effectiveness of the proposed optimizations,
we report Excalibur’s end-to-end time consumption with and
without these optimizations, and the results are presented in
Figure 12. We divided the total system runtime into computa-
tion and communication parts. Regarding the communication,
overlapping pipeline (i.e., Opt2) stably reduces about 60% of
the communication time under different data scales. The op-
timization of accelerating multiplicative operations in MMS
(i.e., Opt1) becomes more significant when the scale of data
increases. Overall, when the data scale is 1B (100K×10K),
using both optimizations reduces the total runtime by 73.8%.

9 Discussion
Excalibur and DP. Federated SVD systems protected by DP
[21] have different security goals from our system as they
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(a) End-to-end time consumption
when increasing the # of peers.
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Figure 11: Scalability in SVD task and LSA application.

20K 40K 60K 80K 100K
m (n=10k)

0

2000

4000

6000
E

nd
-t

o-
en

d 
Ti

m
e 

(s
)

No
Opt

100.0%

Opt
1

51.7%

Opt
1&2

26.2%

Synthetic Data (SVD)
Computation Communication

Figure 12: Measuring the effectiveness of system optimiza-
tions in Excalibur, while NoOpt means no optimization, Opt1
is optimizing the multiplicative operations in MMS, and Opt
2 is overlapping pipelines to reduce communication rounds.

introduce unremovable noises to protect both intermediate
and final results but make the final results less accurate. Excal-
ibur proposes MMS as protection and thus does not need DP
during the computation. However, if the peers wish to protect
the final results, Excalibur can follow [21] to work with DP
and achieve such guarantees.

Excalibur and HE. The semantic security of HE, as defined
in cryptography, ensures that no information is leaked from
the ciphertext. Consequently, HE can be utilized in various
scenarios beyond SMPC, such as outsourced computation.
Excalibur is primarily designed as an SMPC system and is
focused on the security definition in SMPC (i.e., Definition 1).
In the SMPC scenario, Excalibur achieves the same level
of security as HE-based solutions because they both satisfy
Definition 1. It is important to note that if we were to extend
part of Excalibur’s idea, such as MMS, to support scenarios
beyond SMPC, such as outsourced computation [51], it would
be necessary to enhance the security to match the strength of
HE’s definition.

Defending malicious attacks in Excalibur. We assume the
data contributors are semi-honest, meaning they will follow
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the system protocol correctly. Now we show it is feasible to
defend the malicious attacks (i.e., not following the protocol)
in Excalibur. The main idea is that Excalibur produces lossless
SVD results. Thus, the correctness of the workflow could
be locally verified by checking whether Xi equals to UΣΣΣVT

i .
If some peers tamper with data shares or messages during
decentralized SVD, any peer could locally find the federated
SVD results do not match local data, i.e., Xi ̸= UΣΣΣVT

i .

10 Related Work
Apart from the studies introduced in §2, there are also other
research topics that are closely related to our work:

Randomized SVD. Randomized SVD was first proposed
by [23] in 2011 to improve the SVD efficiency by randomly
projecting the data from high dimensions to low dimensions
but sacrificing the accuracy and numerical stability. Excalibur
focuses on SVD that produces accurate and stable results.
However, Excalibur could be adapted to randomized SVD by
adding one random projection procedure.

Large-scale sparse SVD. SVD on large-scale sparse matri-
ces usually has different computation workflow and applica-
tion scenarios (e.g., recommender systems [31]) compared
to SVD on large-scale dense matrices. Many studies have
explored the federated factorization of sparse matrices in Rec-
Sys [6, 58]. In this paper, we focus on the SVD of large-scale
dense matrices, and large-scale sparse SVD will be covered
in our future work.

11 Conclusion
In this paper, we propose Excalibur, an efficient decentralized
federated SVD that not only eliminates the privacy concerns
caused by external servers but also can efficiently decom-
pose large-scale matrices. Extensive evaluations show that
Excalibur effectively achieves its design targets.
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Appendix
A Preliminaries
In this section, we review the necessary linear algebra com-
putations used in our design.

Givens Rotation and Householder Reflector Givens rota-
tion and householder reflectors are techniques used to zero
selected components of a vector through orthogonal trans-
formations [20]. They only rotate the vector and keep the
vector’s norm unchanged. Equation (9) shows an definition
of givens rotation (i.e., [[c,s], [−s,c]]]) that rotates the vector
[a,b]T such that the second element (i.e., one specified entry)
becomes zero. Given a,b, there are algorithms [20] that allow
us to compute c,s that satisfies Equation (9).[

c s
−s c

]T [a
b

]
=

[√
a2 +b2

0

]
(9)

While Givens rotation can zero one selected entry in one
rotation, the householder reflector can zero at most n−1 en-
tries of size n vector in one transformation. The householder
reflector is defined as P = I−βvvT, where I is identity ma-
trix, v ∈ Rn is the householder vector, β = 2/vTv is a scaler,
and P is a n× n orthogonal matrix. Applying householder
reflector to a vector x is multiplying x with P, i.e., Px. By
setting v = house(x) = x−||x||2e1, where e1 = [1,0, ...,0]T ,
P can zero all the element in x except for the first one, which
is presented in Equation (10). It is worth noting that there is
more than one way to compute the householder vector given
x (i.e., house(x)), and a more practical solution is provided in
[20].

Equation (10) shows the computation of applying house-
holder reflector P = I−βvvT to vector x, where v is the house-
holder vector and β = 2/(vTv). Equation (10) holds when set-
ting v = house(x) = x−||x||2e1, i.e., the householder vector
that zeros all the element in x except for the first one. The
detailed computation inside house() function could be found
in [20].

Px = (I−βvvT)x =


||x||2

0
...
0

 s.t. v = house(x) (10)

Givens rotation is more flexible and preferred when it is
necessary to zero elements more selectively [20], and house-
holder reflector tends to have lower computation complexity
and is preferred when plenty of continuous entries in one
vector need to be zeroed (e.g., QR decomposition).
QR Decomposition QR decomposition transfer matrix X
into X = QR where Q is an orthogonal matrix and R is an
upper diagonal matrix. Figure 13 illustrates the process of
performing QR decomposition using householder reflectors,
which gradually zero elements below the diagonal.

𝑿
𝑷𝟏𝑿 𝑷𝟐𝑷𝟏𝑿

𝑷𝟑𝑷𝟐𝑷𝟏𝑿 𝑷𝟒𝑷𝟑𝑷𝟐𝑷𝟏𝑿 𝑹

Figure 13: An illustration of using householder reflectors to
perform QR decomposition and Q = PT

1 PT
2 PT

3 PT
4 .

Bidiagonalization Bidiagonalization reduces matrix X to
bidiagonal form, which only contains non-zero values at di-
agonal and subdiagonal positions. Figure 14 illustrates the
process of two-side bidiagonalization [20], which uses house-
holder reflectors to gradually eliminate the elements outside
the diagonal and subdiagoanl positions. Apart from the two-
side bidiagonalization, another type of approach is one-side
bidiagonalization [44]. The main idea of one-side bidiagonal-
ization is firstly implicitly tridiagonalizing the matrix XXT,
then explicitly forming the bidiagonal matrix using a modi-
fied Gram-Schmidt algorithm, and the detail could be found
in [44].

B Decentralized Federated QR Decomposition
Algorithm 2 presents the detailed workflow of decentralized
federated QR decomposition.

C Detailed Analysis of the Design Space
Base operations Assuming we have k peers. During the quan-
titative analysis, we will use the communication complexity
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𝑿
𝑷𝟏𝑿 𝑷𝟏𝑿𝑸𝟏

𝑷𝟐𝑷𝟏𝑿𝑸𝟏 𝑷𝟐𝑷𝟏𝑿𝑸𝟏𝑸𝟐

𝑷𝟑𝑷𝟐𝑷𝟏𝑿𝑸𝟏𝑸𝟐 𝑷𝟑𝑷𝟐𝑷𝟏𝑿𝑸𝟏𝑸𝟐𝑸𝟑

𝑷𝟒𝑷𝟑𝑷𝟐𝑷𝟏𝑿𝑸𝟏𝑸𝟐𝑸𝟑

Figure 14: An illustration of two-side bidiagonalization using
householder reflectors.
of the following four basic operations as the primitives:

• CommTimes of one ring all-reduce: rl = 2(k−1).

• CommSize of one ring all-reduce on size t message:
rb(t) = 2t(k−1)/k.

• CommTimes of left householder reflector: hl = (k−1).

• CommuSize of left householder reflector with size t:
hb(t) = t(k−1).

Jacobi iteration Jacobi iteration gradually eliminates the
off-diagonal values of XXT in a implicit manner, i.e., XXT is
not explicitly computed. One single Jacobi rotation requires
XiXT

i ,XiXT
j ,XjXT

j which needs one round of ring all-reduce
communication on three numbers, and each Jacobi iteration
needs m(m−1)

2 Jacobi rotations.
Thus, the communication size of one Jacobi iteration is:

m(m−1)
2

∗ rb(3) = 3
k−1

k
(m2−m) (11)

The communication time of one Jacobi iteration is:

m(m−1)
2

∗ rl = m(m−1)(k−1) (12)

Two-side bidiagonalization + bSVD The two-side bidiago-
nalization involves both left and right householder reflectors.
The analysis of left householder reflectors is quite simple:
each peer locally computes the vector and broadcasts it to the
others through AllGather. The analysis of right householder
reflectors is complicated since it involves column-wise data
exchange between adjacent peers. As illustrated in fig. 15,
we use a normal householder reflector inside each peer and
leverage Givens rotation when crossing the peers. Each time
crossing the peer on size t element costs three times 2t + 2
communication. During the whole two-side bidiagonaliza-
tion, it requires m times of right householder reflectors and
m(k−1) times of transmission between the peers.

Algorithm 2: Decentralized QR via Householder Re-
flectors for Tall-Skinny Matrices.

Input: Matrix X = [X1,X2, ...,Xk] held by k peers, where
X ∈ Rm×n, Xi ∈ Rm×ni , and ∑

k
i=1 ni = n.

Output: Decompose [X1,X2, ...,Xk] to Q[R1,R2, ...,Rk],
where [R1,R2, ...,Rk] overall is an upper triangular
matrix.

1 Function DecQR(X):
// All peers run this function in parallel

2 counter← 0, Q← I
3 for i = 1, 2, ..., k do
4 if i == MyPeerID then

// Local QR using householder reflectors H
5 [H,Ri]← Xi[counter :] ▷ Rows after counter
6 Broadcast(H)
7 else
8 Receive(H) ▷ Receive from peer-i

// Apply H to Xi
9 Xi[counter :]←H⊗Xi[counter :]

10 end
// Apply H to Q

11 Q[counter :]←H⊗Q[counter :]
12 counter← counter+ni

13 end
14 return Q, [R1,R2, ...,Rk]

15 End Function

Overall, the two-side bidiagonalization + bSVD has the
following amount of communication:

m

∑
t=1

hb(t)+(k−1)
m−1

∑
j=0

(2(m− j)+2) = (k−1)(
3
2

m2 +
7
2

m)

(13)
And the following times of communication:

m∗hl +3∗ (k−1)m = 4m(k−1) (14)

Peer 𝑖 Peer 𝑖 + 1
Step 1 Householder reflector

Step 2 Givens Rotation Step 3 Householder reflector

Figure 15: An illustration of right-side householder reflectors
when crossing the adjacent peers.

One-side bidiagonalization and bSVD The one-side bidi-
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agonalization only involves left householder reflectors and
additional communication for computing the bidiagonal ma-
trix (i.e., α and β).

The total communication amount of one-side bidiagonal-
ization and bSVD is:

m−1

∑
t=1

rb(t) =
k−1

k
(m2−m) (15)

The total communication times are:

(m−1)∗ rl +(2m−2)∗ rm = (6m−6)(k−1) (16)

D Parameters of Datasets and Baselines
Datasets: We have used the four datasets in the experiments.
Following are the detailed description and the parameter set-
tings:
• MNIST [33]: MNIST is a standard hand-written digits

image dataset containing 70K samples, and each image
contains 784 (i.e., 28×28) features.

• Wine [13]: The physicochemical data for 6498 variants of
red and white wine, and each sample has 12 features.

• MovieLens (ML100K) [24]: MovieLens dataset consists
of people’s ratings on different movies. ML100k contains
943 users’ rating on 1682 movies.

• Synthetic data [21]: Apart from the real-world datasets,
we also use one synthetic data in the experiment. The
synthetic data is generated from a power-law spec-
trum Yα ∼ Synth(α)m×n using α = 0.01. More specif-
ically, Y = UΣV T , where [U,∼] = QR(Nm×m), [V,∼] =
QR(Nm×n),Σi,i = i−α, and Nm×n is an matrix with i.i.d
entries drawn from N (0,1).

Baseline Models: Following are the parameter settings for
baseline work:
• FedSVD [7]: FedSVD is a lossless and efficient federated

SVD solution which leverages random masks as protection.
Following the setting in their paper, we set the block size of
random masks to 1000. For all the experiments on FedSVD,
we directly use the open-sourced code published by the
author of [7].

• SF-PCA [17]: SF-PCA is the SOTA HE-based federated
PCA. Since their code is not open-sourced, we directly use
the results from their paper and compare the throughput of
a single CPU core between SF-PCA and Excalibur under
the same number of peers and network settings. SF-PCA
runs the experiments on 6 machines, each with a 12-Cores
CPU and 256GB RAM.

• FATE [36] and SecureML [39]: For FATE and SecureML,
we use the default parameters provided by their systems,
and use the same logic for controlling the network condi-
tions, i.e., deploying their peers in separated containers and
use traffic control (tc) tool to change the bandwidth and
latency.

E Recovering the SVD Results
Since Excalibur’s decentralized workflow is designed on
MMS, the final SVD results are also in the form of data
shares between the peers. Now, we show how to recover the
final results from the data shares. Specifically, each peer only
possesses low-dimensional shares of the left singular vectors
(i.e., U). Thus, getting U requires data shares from all the
peers. The VT

i could be recovered by peer i locally through
VT

i BT
i since Vi is locally possessed. To recover U, the peers

all gather AiU, and vertically concatenate to get AU. Then
recover U through U = AT ·AU.

F Workflow of PCA, LSA, and LR
These three applications have the same workflow as SVD and
only differ in processing the final results (e.g., LR needs to
compute the parameters based on the results of SVD).
Workflow of PCA and LSA. After running the decentralized
SVD protocol, the peers all gather top-r columns of AiUr and
vertically concatenate to get AUr which is m× r. Then obtain
the results through Ur = AT ·AUr. All peers can recover VT

i
locally without communication.
Workflow of LR. LR requires the model parameters based
on the results of SVD. In this paper, we focus on vertical
LR since it is the most popular application in banks [7]. We
assume m is the sample dimension, n is the feature dimension
and peer k holds all the labels. Given matrix X, LR tries to
find parameter matrix w such that y = Xw. If we factorize X
into UΣΣΣVT, then w = VΣΣΣ

−1UTy. Since X is jointly hold by k
parties, then [wT

1 ,w
T
2 , ...,w

T
k ]

T = [VT
1 ,V

T
2 , ...,V

T
k , ]

TΣΣΣ
−1UTy,

where wT
i is the parameter held by peer-i. Our protocol for

privately compute wT
i has three steps: 1) peer k protect the la-

bel vector y using A into y′ = Ay, split vector y′ into k shares,
and send y′i to peer-i; 2) all peers compute the randomized
parameter w′ = BTVΣΣΣ

−1UTy = BTVΣΣΣ
−1

∑
k
j=1 UTAT

j Ajy =

∑
k
j=1(BTVΣΣΣ

−1UTAT
j Ajy). Denote ΓΓΓ jjj = BTVΣΣΣ

−1UTAT
j Ajy,

all peers locally compute ΓΓΓ jjj, split it into k parts, and send the
i-th part ΓΓΓ

iii
jjj to peer-i; 3) all peers compute w′i = ∑

k
j=1 ΓΓΓ

iii
jjj and

recover wi = BT
i w′i.

G Artifact Appendix
Abstract
Excalibur is an efficient decentralized federated SVD system.
The artifact provides the source code of a fully functional
Excalibur system and the guidelines to reproduce the experi-
mental results in our paper. We provide scripts and Dockerfile
to quickly build the experimental settings.

Scope
The system’s implementation primarily comprises two com-
ponents: 1) matrix computations, and 2) the communication
workflow. Matrix computations encompass computational
optimizations (e.g., accelerating multiplicative operations in
MMS) and engineering efforts to implement SVD methods
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that are not supported by existing libraries (e.g., the bisection-
twisted bSVD), which is beneficial to the community. The
system workflow pertains to the communication-efficient de-
centralized SVD and includes efforts to overlap pipelines,
thereby reducing communication costs. In terms of repro-
ducibility, we have provided scripts to reproduce all evalua-
tion results presented in the paper.

Hosting
The system is open-sourced and hosted on GitHub. The link is
https://github.com/Di-Chai/Excalibur. We introduce
the project structure in README and provide instructions to
build and reproduce the experimental results.

Requirements
The hardware requirements depend on the scale of the exper-
iments. We provide the detailed hardware requirement and
approximate runtime for each evaluation on GitHub. Gener-
ally, we assign four CPU cores for each peer, which could
be configured in the scripts, meaning that one machine with
an 80-core CPU can support 20 peers. To support large-scale
data, a fast SSD is recommended. We use a 2TB NVMe SSD
in our experiments. The system is tested on Ubuntu 20.04.
Comprehensive instructions for setting up the environment
can be found in the README file of our GitHub repository.
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