
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Config-Snob: Tuning for the Best Configurations
of Networking Protocol Stack

Manaf Bin-Yahya, Yifei Zhao, and Hossein Shafieirad, Huawei Technologies Canada;
Anthony Ho, Huawei Technologies Canada and University of Waterloo; Shijun Yin and

Fanzhao Wang, Huawei Technologies China; Geng Li, Huawei Technologies Canada
https://www.usenix.org/conference/atc24/presentation/bin-yahya

Config-Snob: Tuning for the Best Configurations of Networking Protocol Stack

Manaf Bin-Yahya1, Yifei Zhao1, Hossein Shafieirad1, Anthony Ho1,3, Shijun Yin2, Fanzhao Wang2, and
Geng Li1,*

1Huawei Technologies Canada
2Huawei Technologies China

3University of Waterloo

Abstract
Web servers usually use predefined configurations, yet em-

pirical studies have shown that performance can be signifi-
cantly improved when the configurations of the networking
protocol stack (e.g., TCP, QUIC, and congestion control pa-
rameters) are carefully tuned due to the fact that a “one-size-
fits-all” strategy does not exist. However, dynamically tuning
the protocol stack’s configurations is challenging: first, the
configuration space is ample, and parameters with complex
dependencies must be tuned jointly; second, the network con-
dition space is also large, so an adaptive solution is needed to
handle clients’ diversity and network dynamics; and finally,
clients endure unsatisfactory performance degradation due to
learning exploration. To this end, we propose Config-Snob, a
protocol tuning solution that selects the best configurations
based on historical data. Config-Snob exploits the configura-
tion space by tuning several configuration knobs and provides
a practical fine-grained client grouping while handling the net-
work environment dynamics. Config-Snob uses a controlled
exploration approach to minimize the performance degrada-
tion. Config-Snob utilizes causal inference (CI) algorithms to
boost the tuning optimization. Config-Snob is implemented
in a QUIC-based server and deployed in a large-scale pro-
duction environment. Our extensive experiments show that
the proposed solution improves the completion time over the
default configurations by 15% to 36% (mean) and 62% to
70% (median) in the real deployment.

1 Introduction

User experience is one of the most valuable metrics that im-
pact web services. Many studies show that a very small im-
provement in the Page Load Time (PLT) can lead to a signifi-
cant impact on user experiences [22]. In the protocol stack,
there are plenty of configuration knobs that can be tuned to
improve the user experience. Web servers usually use prede-
fined choices for the configuration knobs’ values [17]. The

*Corresponding author: Geng Li (ligeng23@huawei.com)

Figure 1: Problem Overview: the server receives numerous di-
verse client requests that endure different network conditions.
The server has to set the best configurations for each request.

“One-configuration-fits-all” strategy does not suit all network
scenarios. Initial configurations greatly impact not only the
starting phase performance of the web services (e.g., connec-
tion establishment time) but also the overall performance (e.g.,
completion time). The initial configurations are often used in
the connections (e.g., paces restart every time applications go
idle) [10]. Different initial pacing rates and initial cwnds can
result in different performances depending on the network
conditions. Manual protocol tuning [2] is a non-flexible and
static approach that is constructed based on observations to
meet limited requirements.

Learning the best configuration (i.e., protocol tuning) is
a challenging task due to network dynamics, client diver-
sity, and large configuration space. Fig. 1 shows an example
of a client/server scenario that gives an overview of proto-
col tuning challenges. Diverse clients (based on, e.g., geolo-
cation, ISP, network interface) face different network con-
ditions (e.g., bandwidth, packet loss rate, and RTT), which
affect the performance; thus, the effectiveness of protocol
tuning. Each scenario has its optimal configurations. Tremen-
dous efforts have been made to find the optimal configura-

USENIX Association 2024 USENIX Annual Technical Conference 749

tions [1–4, 15, 26, 29, 32, 33, 47, 48]. However, none of them
fulfill all the requirements of generality, adaptability, stability,
scalability, low overhead, and reliability. Generality: Config-
uration types and their knobs’ ranges vary from one system to
another [17]. The solution must support a wide range of con-
figuration knobs with complex dependencies [29]. Some exist-
ing approaches are very specific to the knobs; thus, they can-
not be applied to jointly tune a different set of knobs [4,32,33].
Adaptability and Stability: The solution must provide the
best performance across fluctuating network conditions and
sometimes performance metrics [8]. Scalability: The num-
ber of flows/clients connected to a server might be large. As
a result, the solution cannot deal with connections individ-
ually, as it typically results in a few data samples for learn-
ing, along with higher processing overhead. Overhead: The
search space is very large, and searching for the best con-
figuration is expensive [3]. Also, extracting, processing, and
returning the configuration in a timely manner is required.
Reliability: Solutions usually endure performance degrada-
tion, and they cannot learn agilely during exploration due to
the random or predefined trials [3, 29].

In this paper, we propose Config-Snob that tunes a set of
protocol stack’s configuration knobs to improve the perfor-
mance (e.g., completion time). Config-Snob leverages the
Multi-armed Bandit (MAB) approach; it trains Bayesian Op-
timization (BO) models that can be used to select the best
configurations for the received connections. Config-Snob is
a black-box solution that is not tied to certain configuration
types or knobs. In order to handle the high-dimensional client
features and variable network conditions, a two-level client
profiling approach is used to help find a suitable model for a
given client. To deal with new clients, initially, Config-Snob
uses configurations that result from training a model using
similar clients’ data to less enduring performance degrada-
tion. Additionally, a controlled exploration approach is used
to cope with the exploration cost by limiting the search space
to a subset that has been evaluated to have a positive impact.
To deal with unstable and fluctuating performance metrics
that are used as rewards in the learning model due to a small
number of samples, a causal inference algorithm is used [5].

Config-Snob is implemented in a QUIC-based application
server (Nginx). The solution is deployed in a large-scale
production environment, with 3M to 19M user requests per
day. It is demonstrated that Config-Snob reduces the com-
pletion time over the default configurations by 15% to 36%
(mean) and 62% to 70% (median). Additionally, Config-Snob
is evaluated through an oracle testbed of client/server ses-
sions over simulated network tunnels (i.e., FCC [16], cellular
networks [28, 43], and Pantheon [44]). Config-Snob is com-
pared with configanator [29] and cherrypick [3]. The results
demonstrate that Config-Snob overcomes the challenges of
data-driven protocol tuning. For the oracle testbed scenarios,
Config-Snob improves the completion time by 35% to 49%
(mean). The number of performance degradation cases is min-

Figure 2: Theoretical analysis of the effect of Initial Pacing
Rate on the startup (and drain phase) duration of a scenario
of actual BW = 200Mbps and RTT = 30ms.

imized to 0 out of 94K cases for the FCC and cellular network
tunnels. At the same time, performance degradation is 87%
less than other approaches for Pantheon traces.

Our main contributions can be summarized as follows:

• By proposing Config-Snob, we demonstrate that con-
nection completion time can be improved by using an
adaptive "Black-box" solution to tune a set of configura-
tion knobs. A controlled exploration is used to minimize
the performance cost of the black-box approach.

• Config-Snob handles clients’ diversity and network dy-
namics using a two-level fine-grained client profiling.
Similar clients are classified based on their profile infor-
mation and historical network statistics.

• To the best of our knowledge, Config-Snob is the first pro-
tocol tuning solution that utilizes causal inference (CI)
algorithms to boost the optimization system. A causal
forest (CF) algorithm is used to limit the search space
and estimate the inaccurate reward.

• Config-Snob is deployed in a QUIC-based server. Config-
Snob achieves comparable completion time improve-
ment over the default, which is approximately near to
the optimal configurations. Moreover, it achieves depend-
able performance in a large-scale production environ-
ment.

2 Background and Motivations

2.1 Problem Analysis
The one-size-fits-all strategy for setting the protocol stack
configurations cannot adapt to the diversity of cloud networks.
For example, geolocation has a large impact on web perfor-
mance. Clients in developing regions endure worse network
conditions than in developed regions [17]. For example, in
China, the average delay of the first video frame is smaller

750 2024 USENIX Annual Technical Conference USENIX Association

Table 1: Comparison between Config-Snob and related works

TCP-RL [33] Cherrypick** [3] Configanator [29] Config-Snob
C1 2 knobs (IW, CC)* Set of knobs Set of knobs Set of knobs
C2 Multiple features N/A Multiple features + NC* Two-level of client grouping

C3
RL agent with

predefined initials
BO exploration with

random sampling initials
BO exploration with

random sampling initials Controlled-BO exploration

C4 No No No Yes
* CC = Congestion Control Protocol, IW = Initial Congestion Window, NC = Network Classification.
** Cherrypick is used to set cloud setup-related configurations that doesn’t deal with clients’ connections directly.

than 400ms, while in Southeast Asia, it is smaller than 650ms.
On the other hand, the internet speed is continuously evolv-
ing, which leads to an unutilized room in the network capac-
ity [41]. Also, bandwidth can be a huge difference between
ISPs/network access interfaces [16]. Moreover, connections at
peak time face more severe network conditions compared with
off-peak time. In addition, the congestion control algorithm’s
performance can vary based on the device types (e.g., run-
ning BBR in mobile devices might lead to poor goodput [40]).
Thus, each scenario can have its optimal configurations.

As an example, the best initial pacing rate and initial cwnd
depend on the scenario’s network conditions. Connections
have the highest goodput and lowest RTT whenever the pac-
ing rate equals bottleneck bandwidth, and the data in flight is
equal to the bandwidth-delay product (full pipe) [9]. Operat-
ing at this optimal point maximizes the delivered bandwidth
while minimizing delay and loss. Thus, the performance im-
proved (i.e., fast convergence) if the connection starts with
the pacing rate and initial cwnd that meet this optimal point.
In BBR, the algorithm searches for the optimal point in the
startup phase and then drains the resulting queue [9]. Still,
most of the internet sessions are short flows which means the
duration of startup and drain phases is influential to the flow
completion time [7]. The startup duration for estimating the
bottleneck bandwidth can be shortened using a near equiva-
lent initial pacing rate (as shown in Fig. 2). Also, increasing
the initial cwnd will reduce the number of RTT rounds to
send the data in the startup phase. However, larger values than
the optimal point lead to packet losses and higher RTT due to
retransmissions because it exceeds the pipe capacity.

2.2 Challenges

The design of a data-driven protocol tuning solution encoun-
ters several challenges. Table 1 shows a comparison between
Config-Snob and some of the most related work. The motiva-
tion of Config-Snob is to handle these challenges:

C1: Utilizing large configuration space. Most of the works
in the literature do not utilize the configuration knobs and just
tune one or two knobs [1, 4, 33, 47, 48]. Only the configana-

tor utilizes a set of configuration knobs for TCP and HTTP
protocols [29]. The protocol stack has a large and diverse
configuration stack. As a result, we propose a "Black-box"
solution that jointly tunes a set of configuration knobs with
complex dependencies. Searching for the best configuration is
expensive due to the large configuration space. Thus, we eval-
uate the impact of configurations on different profiles using
the causal relationships between the network conditions.

C2: Handling diverse clients. Dealing with connections in-
dividually usually leads to few data samples [1]. Having fine-
grained client grouping using only IP-prefix will not overcome
the shortage problem [33]. To address client space diversity,
we propose a two-level client grouping approach. This ensures
that each group has sufficient samples and effectively han-
dles the dynamic network environment by classifying similar
profiles.

C3: Handling exploration cost. Randomly selecting con-
figurations results in poor performance and typically suits a
small and limited decision space [26,33]. Existing approaches
highly suffer from performance degradation in the exploration
phase [3, 29]. Clients cannot afford such poor performance
even for a few connections before getting the optimal or near-
optimal configurations. Thus, the number of negative experi-
ences is significant when applying the tuning solutions. We
exploit the historical configuration performance to bootstrap
the exploration with the best suitable configurations from over-
lapping profiles. Furthermore, we use a function that assists
the exploration by excluding a subset of the space that might
have a negative impact on the outcomes (i.e., performance
degradation).

C4: Dealing with inaccurate rewards. The average reward
is calculated to evaluate the impact of configurations, which
may not be accurate due to randomness and complex depen-
dencies between data samples, as well as insufficient data in
some realistic scenarios. For example, short flows are usually
ended before collecting precise network statistics or applying
any control decisions [14, 33, 48]. As a result, the learning
models are trained with noisy and loose data, and it becomes
difficult to train (predict) the best configurations. We use a re-

USENIX Association 2024 USENIX Annual Technical Conference 751

Figure 3: Config-Snob Design Overview.

ward estimator technique that provides an efficient and robust
prediction of the impacts of the changes in the configura-
tions by using the causal relationships among the network
conditions.

2.3 Config-Snob
Below, we describe some of the design choices to handle the
aforementioned challenges:

Profiling (§3.1). The main purpose of profiling is to achieve
scalability as it’s impractical to fine-tune configurations indi-
vidually for each connection. Our profiling approach tackles
additional challenges encountered in large-scale deployments,
including dynamic network conditions and efficient learning.
Initially, we use fixed features to group requests into profiles.
Profile features such as geolocation (city), ISP, IP subnet,
and connection time are used to provide context continuity.
However, profiles may result in a smaller number of samples,
which is suboptimal for training. To address this, we employ
a clustering method to create profile groups characterized by
similar network conditions, allowing for joint training.

Bayesian Optimization (§3.2.1). Config-Snob uses BO as
the learning model because it provides black-box optimization
that can adaptively explore the search space and find the best
set of parameters that maximize the objective function with
limited data using a prior probability function.

Multi-Armed Bandit (§3.2.2). Config-Snob uses MAB to
handle the exploration-exploitation trade-off. One arm is used
to perform controlled exploration when the profile group
does not have enough samples or the reward distribution is
not stable. Multiple arms are used during the steady state to
exploit the best predictions and continue the exploration to
avoid local optimum but in a conservative manner.

Causal Inference (§3.3). Config-Snob uses CI to precisely
estimate rewards and to ensure that the selected configurations
for new connections are less prone to negative experiences.
The average reward may not be accurate due to correlated
noise, randomness and complex dependencies between data

samples, and insufficient observational data, especially in real-
time scenarios. The CI-based reward estimator, by predicting
the impacts of the changes in the configurations, improves the
accuracy of the calculated reward. Moreover, CI is utilized
to refine the search space by excluding configurations that
detrimentally impact performance.

3 Config-Snob Design

The central principle of Config-Snob is to utilize historical
data in order to select the best configurations for connections
considering diverse client features and network conditions.
The decision is made per profile group; thus, Config-Snob
holds several models. Fig. 3 shows the design overview.

3.1 Profiling
To address the challenge of the diverse network scenarios,
Config-Snob applies the learning models at the profile group
granularity. First, different profile features (e.g., geolocation,
ISP, network interface, connection speed, OS, IP subnet, and
connection time category) are combined to create a profile
as they are most likely to face very similar network condi-
tions. Second, profiles that have similar network features are
grouped in clusters to produce profile groups that are used
for the learning model. We assume that the network condi-
tions of one profile are stable within some time (some up-
dating cycles). The main idea is to apply online exploration-
exploitation for each profile group (§3.2).

3.1.1 Profile Tree

A tree-based design is used for the profiling that is easy to train
and create overlapping groups, and has efficient inference.
The profile tree is created and updated (constantly) based on
collected samples from the previous updating cycle. Each
level represents a predefined profile feature. Thus, a path to
a leaf node represents a profile (sample IDs are stored in the
leaves). Algorithm 1 gives an overview of level 1 profiling

752 2024 USENIX Annual Technical Conference USENIX Association

Figure 4: Example of profile tree; (a) Creating profile tree including overlap nodes and determining sufficiency; (b) Learning
models based on the profile type and its sufficiency. (c) Traversing the tree to get the assigned configurations (inference phase).

steps. In Fig. 4, the profile features are location and ISP (for
simplicity). A path to a leaf node represents a profile. At the
training, profiles are associated with learning models, while
profiles are associated with predicted configurations at the
inference. In Fig. 4(c), the green line represents a connection
with a profile (Toronto, Bell) which is already seen in the
trained data; thus, Config 1 and Config 2 are returned after
traversing the tree.

Algorithm 1 Level 1 Profiling Algorithm
if Profile Tree not exist then

create Profile Tree;
end if
for each profile ∈ Profiles do

if Profile exist then
insert profile samples;
update overlap groups;

else
create profile;
insert profile samples;
create/update overlap groups;

end if
end for

3.1.2 Unseen Profiles

Some connections might come from unseen clients (i.e., there
is no profile yet for these clients). In Config-Snob, the initial
configurations for these clients are the outcome of BO mod-
els that are specifically trained by samples with overlapping
profile features (thus, closer network conditions). These over-
lapping groups are created during the training phase, and their
outcomes are used for new profiles’ inference. Note that these
extra groups are not the most fine-grained; thus, these groups
do not operate in the exploitation mode. The overlap nodes
are labeled as “Unknown” nodes in the inference. In Fig. 4(a),
(Toronto, overlap) is a group that combines (Toronto, Bell)
and (Toronto, Rogers) samples. While (overlap, overlap) is a

combination of all seen profiles. In Fig. 4(c), the yellow line
represents a connection with unseen features such as (Ottawa,
Bell), thus, Config 5 will be used.

3.1.3 Sufficiency

Config-Snob checks the profile’s sufficiency to ensure that ad-
equate historical data is collected to provide steady decisions.
A profile is sufficient when there are enough samples (at least
k samples) to train and the reward distribution is stable over
time. A reward constraint from TCP-RL [33] is used. On the
other hand, an insufficient profile shapes a profile group alone.
In Fig. 4(b), (Waterloo, Bell) profile is insufficient; thus, it
will continue/move to the exploration phase.

3.1.4 Clustering

Clustering profiles with similar network conditions can im-
prove performance. Config-Snob uses network features (i.e.,
goodput, packet loss rate, and RTT) to cluster the profiles
using the k-means algorithm. The output of clustering is as-
signed to profile groups. Profile groups are groups resulting
from clustering and overlapping groups.

3.1.5 Time Category

We split the day and time into several time categories. In
the current design, the time categories are weekday offPeak,
weekday Peak, and weekend (anytime on the weekends and
holidays). We observe that during the same time category, the
network conditions and the number of received connections
are similar. However, sharp changes (spark) in the network
might occur during the Peak or offPeak time categories (e.g.,
peaks may occur in the offPeak time category and valleys in
the Peak time category). The spark duration is usually short
(in time) but can last for a few updating cycles. As a result,
when the spark is detected during the training process, the
solution uses the previous time category models’ outcomes

USENIX Association 2024 USENIX Annual Technical Conference 753

for the inference. For example, if a valley is detected during
the Peak time category, the solution will not train the Peak-
specific (profile) models with the new samples; otherwise, it
will use the stored offPeak models’ outcomes and send it for
inference in the next updating cycle.

3.2 Learning Model
Learning models are created for each profile group and trained
to generate the predicted configurations. There are two phases
in the training cycle. At the exploration (cold start) phase,
the data is collected to learn about the network distribution
for a certain profile and explore the search space. At the
exploitation (steady-state) phase, the profile must satisfy the
sufficiency check, and the solution fully utilizes data from
previous updating cycles to find the optimal configurations.

3.2.1 Bayesian Optimization

Our problem formulation is to find the optimal values for a set
of configuration knobs, denoted as θ. The objective is to max-
imize the reward function (based on completion time), which
is denoted as f (θ). f is the mapping function that maps con-
figuration θ from the search space Θ to the reward. Bayesian
optimization (BO) is a strategy for the global optimization
of black-box functions [37]. We use BO in the granularity
of the profile group to consider multiple parameters (profile
features and network conditions). BO can adaptively explore
the search space and find the optimal points with limited data.
The BO model starts with an initial set of values, which can
be random (e.g., LHS) or based on prior knowledge (e.g.,
overlap group model). Furthermore, a set of box constraints
(i.e., the CF limited search space) is defined as Θ̂ = g(Θ,θ)
where Θ̂ is the limited space, and g is the CF function that
limits the search space (§ 3.3.3).

3.2.2 Multi-Armed Bandit

Config-Snob uses a four-armed bandit. Case 1: The profile
is sufficient (steady-state); three arms are used to generate
configurations (exploitation arm (Best), exploitation arm (BO
Model 2), and exploration arm (BO Model 3)). The two BO
models are utilized to mitigate the overfitting issue that might
be introduced by profiles. In the inference, different frequen-
cies are assigned to each arm outcome (0.5, 0.4, and 0.1,
respectively). Case 2: The profile is insufficient (cold start);
an exploration arm (BO Model 1) is used to generate next
cycle configurations. Case 3: for overlapping groups that are
used for new profiles, an exploration arm (BO Model 1) is
used to generate initial trials for new profiles. Prior knowl-
edge (i.e., overlap group model) is used as initial trials for
the new profiles. The goal is to minimize performance regret
and focus the search on promising regions of the space. This
set of initial trials is created from similar profiles, and it is
regularly updated and explored.

Figure 5: Config-Snob Learning Models (MAB).

Fig. 5 shows the MAB learning flowchart for each profile
group. In Fig. 4(b), (Toronto, Bell) and (Waterloo, Rogers)
profiles are sufficient groups, thus, the steady-state models
are used. However, (Toronto, Rogers) and (Waterloo, Bell)
profiles are insufficient; thus, only the exploration arm is used.
Finally, overlapping groups use exploration BO models.

Exploration Arm (BO Model 1). This BO model is used for
the exploration process. First, each overlapping group will
train a specific model. The outcomes will be used for the new
profiles to create a set of initials (based on prior knowledge)
for their specific BO model. Second, for seen profiles, if the
profile group already has enough samples, then use it to train
its BO model to do further exploration; otherwise, use the
previous cycle inference.

Exploitation Arm (BO Model 2). This exploitation arm is
the first steady-state arm in the MAB. This BO model uses a
smaller step size than the one in the exploration arm.

Exploitation Arm (Best). We use the best-seen configura-
tions so far (based on the reward) for the profile group in the
inference. We re-evaluated it every few updating cycles.

Exploration Arm (BO Model 3). Apart from the two ex-
ploitation arms, in order to tackle non-Gaussian noises and
further utilize the recent history records, BO Model 3 with
a resampling mechanism is used to do moderate exploration
in the steady phase under specific conditions [29]. Resam-
pling in a steady state happens for each profile group if the
number of configurations tried (seen) by the BO exploitation
arm is greater than a threshold. Thus, another BO model is
created for exploration with larger step sizes. This BO model
is initialized with the top five configurations (largest rewards).

3.2.3 Reward

We argue that the reward for such a solution must be a perfor-
mance metric that is closely tied to the user experience, such
as PLT in the web services and Time to First Frame (TTFF) in
video services. In Config-Snob design, we use the connection
completion time (CT). During the training phase, the reward
is calculated for each profile group. This calculation is based
on all requests’ data that belong to the group and were gath-
ered from the previous cycle. Thus, the reward is as follows:

754 2024 USENIX Annual Technical Conference USENIX Association

RG
t =

∑ f∈FG

CTf
size f

len(FG)
(1)

where G is the profile group, t is the updating cycle, FG is
the connection set of group G, CTf and size f are comple-
tion time and sent data size of connection f , respectively.
In some cases, averaging the reward is not efficient due to
the fluctuation within the same group. Thus, we propose a
reward estimator method based on the CI method (§ 3.3.4).
Furthermore, to determine the profile sufficiency, the reward
distribution factor for a profile is calculated to measure the
changes in the normalized reward between two consecutive
updating cycles [33].

3.3 Causal Inference

Causal inference (CI) is a statistical technique that allows us
to ascertain the causal relationship between different problem
variables, as well as identify the impact of a specific variable
(called treatment) on an outcome, while accounting for the
influence of other variables, referred to as confounders and
covariates [45]. Although the optimization tools can provide
valuable insights into the optimal configuration of protocol
parameters, they may not accurately evaluate the impact of
configuration changes on performance. In this regard, CI tech-
niques can be used to estimate the causal effect of parameter
changes on the outcome of interest, while accounting for the
impact of other potential variables. The CI techniques can
also enhance our understanding of how modifications of dif-
ferent parameters affect the reward. As an extension of the
random forest algorithm, Causal Forest (CF) algorithm [5] is
designed explicitly for CI learning tasks, as an efficient tool,
used in this work.

3.3.1 Methodology

The CF’s procedure comprises six key steps: 1) Initiate the
process by specifying a treatment, which consists of a se-
quence of N configuration parameters for assessing their im-
pact on the reward, 2) Prepare the dataset through data normal-
ization and standardization techniques, 3) Efficiently select
features from the network logs dataset (referred to as covari-
ates) using the combination of the CovSel [18] algorithm and
domain expertise, 4) Assess the overlap between the treat-
ment and control groups as a necessary requirement for CI
analysis, and apply matching techniques to the dataset before
utilizing the CF model, 5) Train a tuned CF algorithm using
the pre-processed and matched data to estimate the Condi-
tional Average Treatment Effect (CATE), indicating expected
difference in potential outcomes under various treatment con-
ditions, considering observed covariates, and 6) Evaluate the
outcomes based on the ground-truth (GT), which here, repre-
sents the average reward obtained from the dataset .

To implement these steps, data is initially collected for
one day, and all six steps are executed at the end of the first
day. Starting from the second day, all steps are repeated daily,
except for the feature selection part (step 3), which is per-
formed weekly to accommodate potential changes in feature
importance. Concerning steps 3−4, in CI, obtaining unbiased
treatment effect estimates necessitates comparable treatment
and control groups. Ensuring overlap, where each covariate
level includes both treated and control units, is crucial [19].
Without overlap, causal estimates may be skewed, reflecting
covariate differences rather than true treatment effects. Covsel,
a covariate selection method, plays a vital role by identifying
covariates that significantly influence treatment assignment
and outcomes.

Following Covsel, matching is performed to pair similar
treated and control units, further enhancing comparability and
reducing bias. For feature selection, the initial step involves
using the Covsel tool, followed by filtering the selected covari-
ates based on domain expert knowledge. This process selects
covariates such as maximum estimated bandwidth, minRTT,
and bytes sent. Matching is achieved through the propensity
score matching techniques, which attempts to estimate the
treatment effect while accounting for covariates predicting
treatment reception [25]. Hence, ensuring overlap, covariates
selection, and matching are pivotal components of CI.

3.3.2 Causal Forest Algorithm

CF algorithm, renowned for its versatility in handling various
types of features, is an efficient tool for CI learning. It achieves
this by constructing a forest of decision trees, a technique that
ensures unbiased and robust results. To enhance accuracy
and mitigate overfitting, CF employs random feature subsets
during the tree-building process. The splitting criteria in CF
focuses on outcome variations between treatment and control
groups, considering other relevant factors to optimize the iden-
tification of group differences. Our goal here is to estimate
the Heterogeneous Treatment Effect (HTE). HTE unveils the
variance in treatment effects across different subsets of the
population, enabling us to discern how various scenarios are
influenced by configuration parameters (treatments).

In this work, we opt for the CF algorithm as the corner-
stone of our CI learning tasks, owing to its myriad advantages.
Notably, the CF algorithm has consistently demonstrated a
high level of accuracy across a wide array of applications. It
is worth highlighting that the algorithm does not make any
assumptions about the data distribution, rendering it a robust
and adaptable choice for diverse datasets [5].

Given our emphasis on addressing realistic large-scale sce-
narios, scalability becomes a paramount advantage of the CF
algorithm. Additionally, another key strength lies in the fact
that the CF algorithm does not necessitate the variables under
consideration [5]. This attribute proves especially valuable in
complex networking scenarios where the precise relationship

USENIX Association 2024 USENIX Annual Technical Conference 755

between variables remains unknown. However, it is crucial to
acknowledge that the CF approach, like many CI methodolo-
gies, operates under certain assumptions. These assumptions
encompass concepts such as unconfoundedness or ignorabil-
ity (ensuring that every sample has a positive probability of
receiving either treatment, and given the covariates, the poten-
tial outcomes are independent of the treatment assignment). It
is essential to recognize that these assumptions are common
elements within most CI approaches.

3.3.3 Limited Search Space

Given the extensive configuration space Θ, we employ the
Limit the Space module, utilizing CI techniques, to pinpoint
and eliminate configuration values that typically result in
undesirable outcomes, such as increased PLT or TTFF. This
module operates by leveraging the trained CF and evaluating
the CATE for each profile.

Using the current state of the configuration parameters
as input, the module assesses the consequences (impacts)
of transitioning to all potential future configuration knobs
(future states). It identifies the future states that negatively
impact the reward and subsequently pinpoints subsets of the
configuration space likely to have an adverse effect on each
profile. These identified subsets constitute the output and
are removed, leaving the remaining areas as the permissible
search space Θ̂ for the BO models.

3.3.4 Reward Estimator

The CI Reward Estimator module functions to generate reli-
able and precise estimates of rewards, specifically in situations
where data samples are limited, thereby making the average
reward inaccurate. Utilizing the trained CF algorithm, this
module is employed to provide reward estimates for profiles
with insufficient data. This method deviates from the con-
ventional use of average rewards, substituting them with the
CF-derived estimates, if the number of captured samples for
each configuration, denoted by k, is less than 40. This module
intakes specific profile samples and outputs the CATE cor-
responding to that profile, thereby streamlining the reward
estimation process.

4 Implementation

We implement the Config-Snob in a QUIC-based application
server that provides both web and video-based services to
clients. The solution tunes a set of configuration knobs for
QUIC sessions to improve the completion time performance
(thus, PLT or TTFF). A modified version of the OpenResty
server (Nginx platform) is used [35] to allow Config-Snob
to assign configurations to the QUIC sessions. Fig. 6 gives
an overview of Config-Snob’s system architecture and work-
flow. The Config-Snob is written in Python and C++ with

about 2500 lines of code, excluding the legacy part of the
OpenResty server. The architecture of Config-Snob meets
three deployment requirements (§5.3): Scalability: We tested
it with over 800K connections per minute. Responsiveness:
It responds to requests for inference within an average of 42
microseconds. Fault tolerance: The performance does not
significantly impact when any system component fails.

4.1 APP Server

Config-Snob has five main modules in the APP Server that
are developed in C++.

Client Information Parser. To enable Config-Snob’s profil-
ing, it must collect client information before establishing the
QUIC session. Since the inference part of the solution is em-
bedded into the APP server, we can extract client information
(profile features) at the handshaking. The parser gets the IP
address and obtains geolocation, ISP, and IP subnet by looking
up existing IP databases [12, 27]. Furthermore, the interface
type and the client OS are extracted from the SSL/TLS [30].
The time category is determined by the connection receiving
time (§ 3.1.5).

Inferencing. The inferencing module takes the profile fea-
tures from the parser as input to search the profile tree and re-
turn the configurations that will be used for the QUIC session.
We use a pointer-based tree (a modified version of BTree) for
profile tree implementation. It is faster in search (traversal);
the time complexity is O(l), where l is the number of profile
features. Thus, our method is scalable over a large number
of diverse clients. We set default configurations to initial ran-
dom configurations generated by Latin Hypercube Sampling
(LHS) [38]. It is only used if the prediction data does not exist
or the interface fails to load the configurations.

Session Interface. We implemented an interface that allows
Config-Snob to simply configure the server stack. This in-
terface gets the selected configurations and sets them for the
current session by modifying the callback function of setting
up the QUIC session.

Data Collection. Config-Snob collects all the report data
from the Nginx server and pushes it to the AI training server.
Profile information, network statistics, used configurations,
and performance metrics (completion time) are stored in the
local database after the connection is closed. We use HTTP
cURL to push the report data for the previous updating cycle.

Preprocessing. The inferencing module must have access to
the updated profile tree associated with configurations that
are received through the prediction receiver (pushed by the
AI Training server using HTTP cURL) every updating cy-
cle (around 6 minutes). An open socket is used to dispatch
the prediction data from the AI Training server to the APP
server. The inference profile tree is created if it does not exist;
otherwise, update the current one based on the received data.

756 2024 USENIX Annual Technical Conference USENIX Association

Figure 6: Implementation Overview of Config-Snob.

4.2 AI Training Server
Config-Snob has four main modules in the AI Training Server
that are developed in Python. We use a workflow platform
that orchestrates and schedules the task workflow and the data
pipeline. Each module represents a task unit to be executed,
including its dependencies.

Data Collection. We integrated the workflow platform with
a compatible object storage library. It handles all the data
pipelines in the architecture, including storing the report
dataset. The report data coming from the APP server through
the data receiver process are stored in this report dataset.

Profiling. Similar to the inference profile tree, Config-Snob
uses modified B-tree implementation in the training phase.
For clustering, Lloyd’s KMeans algorithm [42] is used with
a maximum number of iterations for a single run of 500 and
a random state of 42 [36]. Config-Snob uses the scikit-learn
machine learning library for k-means.

Learning Models. Open-sourced Bayesian Optimization
package is used for BO implementation [34]. The initial num-
ber of samples in each user group for training is 20. The
minimum number of configurations to switch from cold to
steady state is 10. The minimum number of samples to enable
BO resampling is 15. xi is set (0.1, 0.0001, and 0.007) for BO
Model 1, 2, and 3, respectively.

Causal Inference. We use the CF algorithm from the
EconML library [23] on the normalized, standardized and
matched dataset, using the set of the most efficient covariates
selected using the CovSel algorithm as well as domain ex-
pert knowledge. For matching, we use the propensity score
matching technique. We run the CF algorithm using 100 trees,
and the trained model is used to estimate the impact of con-
figurations on the performance. For the training of the CF
algorithm, we use the captured network logs, including the
GT reward.

4.3 QUIC and Configuraion Knobs
QUIC, as a cross-layer protocol, has plenty of configuration
knobs that can be tuned to improve the user experience. We
focus on tuning a set of 8 configuration knobs: (1-3) The first

three knobs are initial pacing mechanism parameters (i.e.,
initial pacing rate and bytes, and if pacing stops when the
first data is acknowledged). These parameters affect the du-
ration of BBR phases, particularly the startup phase, which
in turn impacts connection completion time. In §2.1, we dis-
cussed the influence of pacing mechanism parameters; (4)
The buffered data threshold knob which specifies the size of
the internal transmitting buffer on the server side for each
single QUIC session; (5) Ping in tail configuration which is
used when Tail Loss Probe (TLP) [20] algorithm is enabled;
(6) Retransmission timeout; (7-8) The last two knobs are to
enable the probe up mode of BBR.

5 Evaluation

To evaluate Config-Snob, we conduct large-scale experiments
in both emulated and real-world environments. First, we use
a large-scale trace-driven testbed to build an oracle. All ex-
periments are QUIC sessions over simulated network tunnels
(Mahimahi [31]). Second, we evaluate the real-world deploy-
ment of Config-Snob in a video-based service. Third, we
evaluate the deployed solution’s reliability, and last, we eval-
uate the design choices of our solution. In our experiments,
we calculate improvement in CT relative to the CT of default
configurations. Performance degradation means that the se-
lected configurations result in a lower CT compared to the
default configurations..

5.1 Oracle Testbed

Setup. The testbed is built based on FCC report [16] and cel-
lular networks [28, 43]. Additionally, real-world trace-driven
network tunnels are simulated (Pantheon [44]). QUIC clients
send requests to the QUIC server via Mahimahi simulator
tunnels which are configured with different sets of network
conditions (i.e., latency, stochastic packet loss rate, and band-
width traces). Clients connect to the server and load webpage
files of different sizes (i.e., 50KB, 100KB, 200KB, 500KB,
1MB, and 2MB). We run five of client/server QUIC sessions
for all of the configuration templates including the default

USENIX Association 2024 USENIX Annual Technical Conference 757

(a) FCC+ (ECDF). (b) FCC+ (box whiskers). (c) Pantheon (box whiskers).

Figure 7: Overall completion time (CT) improvement (oracle).

Figure 8: Distribution of goodput (oracle).

configurations, simulated network tunnels and webpage sizes
(more details in Appendix A).

We compare Config-Snob performance with the optimal
configurations (oracle) as well as different customized strate-
gies. Cherrypick [3]: we implemented the strategy that selects
the best configurations by exploiting the existing data for
the seen profiles while random samples is used for the new
profiles. GPyOpt [6] is used for BO implementation with
initial samples = 3, expected improvement (EI) = 10%, and
the minimum of samples tested = 6. Configanator [29]: we
implemented the strategy that uses a decision tree to predict
the configurations for existing profiles while it uses BO for
exploration and LHS generates the initial trials. The Optimal
is the set of configurations with the lowest completion time
by brute-forcing the oracle.

Results. Fig. 7 compares Config-Snob with other strategies.
Config-Snob improves the CT by 49% (mean) and 55% (me-
dian) over the default configurations for FCC+, and 35%
(mean) and 28% (median) for Pantheon. The 95th percentile
CT improvement reaches more than 90% in both setups. Cher-
rypick results into poor performance due to random explo-
ration. Moreover, the two strategies use a limited profiling
approach. The decision tree in the configanator improves the
results when used in place of BO for the existing profiles.
Config-Snob shows significant improvement due to the MAB

model, two-level profiling approach, and the controlled explo-
ration that starts with prior knowledge initials. All strategies
endure some performance degradation due to the new profiles
(§5.4). Besides, Fig. 8 shows that Config-Snob also outper-
forms other strategies in terms of the goodput, calculated by
dividing CT by the total bytes sent.

5.2 Real-world Deployment

Setup. We deploy Config-Snob in a large-scale production
environment of video-service application. The solution is de-
ployed in two regions, namely Turkey (TUR) and Philippines
(PHL). In TUR, it serves three edge nodes with 140K user
requests per hour (3M per day) and one edge node in PHL
with 800K user requests per hour (19M per day). Config-Snob
has been deployed in this service for more than a month. The
clients are diverse and endure dynamic network conditions.
We configure the servers to keep using the default configura-
tions for 20% of user requests. The default configurations are
the predefined values in each server that were set previously
by engineers.

Results. Fig. 9 shows the CT improvement of Config-Snob
deployment. Config-Snob improves the CT for video sessions
over the default configurations by 36% (mean) and 70% (me-
dian), and 15% (mean) and 62% (median) for PHL and TUR
servers, respectively (Fig. 9a). TUR servers experience worse
network conditions than the PHL server. Consequently, the
solution converges to better predictions, leading to better per-
formance for PHL. For the 10th percentile CT improvement,
Config-Snob has 1.84% for PHL, while −8.94% for TUR. In
general, we analyze the performance degradation cases which
occur mostly due to harsh network conditions of some con-
nections with high loss rates. Fig. 9b shows that Config-Snob
achieves higher goodput in both regions. Fig. 9c represents
the completion time improvement with different transfer size
categories in both regions. Config-Snob reduces the overall
completion time for small data transfers (less than 100KB)
by a median of 67% to 70% and 88% to 90% in the 90th
percentile.

758 2024 USENIX Annual Technical Conference USENIX Association

(a) Overall CT improvement. (b) Distribution of goodput. (c) Different transfer sizes.

Figure 9: Real-world deployment results.

(a) PHL. (b) TUR.

Figure 10: CT improvement for PHL and TUR ISPs.

Fig. 10 shows the performance of Config-Snob for a num-
ber of ISPs in both regions. Despite ISPs having different
capabilities, Config-Snob reduces the completion time by a
median of 43% to 72% and 51% to 91% in the 90th percentile
for the PHL region. Although the PHY server receives very
few connections from ISP6, Config-Snob shows a reasonable
CT improvement. For the TUR region, it reduces the com-
pletion time by a median of 51% to 63% and 83% to 87% in
the 90th percentile. TUR’s ISP4 has very fluctuating network
conditions which is reflected in the solution performance.

5.3 System Benchmark
We evaluate the scalability and responsiveness of our imple-
mentation. The experiments are performed in a testbed with
an upper limit of 800K connections per minute involving 500
machines. The latency of the inferencing module is 0.042ms
on average. The corresponding training time for the testbed is
3000ms on average. The latency of pushing the predictions
through the interface is 300ms on average and a maximum of
2000ms. We tested reliability of the system against its compo-
nents failure (e.g., the inferencing module will use the existing
predictions when the AI Training server is not available).

5.4 Solution Choices

Setup. The same oracle testbed in §5.1 is used.

Profiling. Fig. 11 shows the goodput and average RTT com-
pared to the solution without profiling (i.e., all connections
are grouped and one BO model is used). Thus, the same con-
figurations is used by the profiles every updating cycle). The
profiling helps the models to learn efficiently, which improves
the overall performance.

Controlled Exploration. Fig. 12 shows the results from the
exploration phase of different strategies. Random approach
shows a poor CT performance. Using the exploration ap-
proach in configanator shows a high number of performance
degradation cases because the algorithm starts the exploration
with a set of random trials. The utilization of existing data with
overlapping profiles and the reduced search space provide
Config-Snob stable results with lesser performance degrada-
tion cases. We achieved zero performance degradation cases
out of 94K cases for FCC+. For Pantheon real-world traces,
performance degradation is minimized by 87% compared to
strategies that use random trials.

Reducing the Search Space. Table 2 demonstrates the im-
pact of changing the configuration parameters from their de-
fault values to the new values, for different profiles with dif-
ferent BW values ranging from 25 to 100 Mbps. The results
are averaged over each profile. To derive the CF estimated re-
ward, denoted by RCF , we employ the CF algorithm, utilizing
a dataset of up to k = 100 gathered from each configuration.
To evaluate the accuracy of the CF estimates, we compare
RCF with the GT reward, denoted by RGT , which represents
the average CT. We use Root Mean Square Error (RMSE)
as the performance metric. For instance, an RMSE value of
0.01 for profiles 3 and 4 signifies an error of 1% in the CF
estimated reward when compared to the GT reward. This
outcome underscores the CF approach’s capability to pro-
vide highly accurate estimates of configuration parameters
impacts, which can be used for reducing the search space.

In this experiment, for each profile, we rank both the RGT
and RCF for different configurations. We select the configura-
tions which are negatively impacted (indicated by having the
lowest rank), denoted by Min rGT and Min rCF , to access the
CF’s capability to accurately identify the configurations with

USENIX Association 2024 USENIX Annual Technical Conference 759

Figure 11: Goodput and average RTT with and without profiling.

(a) FCC+. (b) Pantheon.

Figure 12: CT improvement in the exploration phase (oracle).

negative impacts. Our results show that across all profiles, the
CF algorithm excels in producing the same ranking as the
expected outcomes, for the worst configuration, denoted by
True in the second column of Table 2.

Inaccurate Average Reward. Fig. 13 illustrates how the Re-
ward Estimator module provides accurate and robust results
even with insufficient data, demonstrating that averaging re-
wards from observational data fails to capture the nuanced esti-
mates that CI provides. The figure demonstrates the impact of
the number of samples per configuration on the performance
(i.e., when the number of samples for each configuration, de-
noted by k, is less than 40).

For all configurations in each profile, we generate the GT
reward, RGT , as well as the CF estimated reward, RCF , with
the reward achieved from k samples, denoted by Rk. The RGT
(Rk) for each configuration is calculated using the average
CT for up to 100 (= k) samples for each configuration. For
each profile, we sort RGT , RCF and Rk and compare the GT
reward ranking with both RCF and Rk, using the Ranking
Score function. This function provides a score based on the
number of configurations that the RCF and Rk ranks match
the RG ranks. For each profile, after sorting RGT , RCF and Rk,
the Ranking Score function compares the RG rankings with
that of both RCF and Rk results, and calculates the number of
configurations that match between the CF estimates and GT
reward as well as between the average reward of k samples
and GT reward. This function provides the average number
of configurations in both CF and the average reward of k

Profiles Min rGT = Min rCF RCF RMSE
1 True 0.06
2 True 0.03
3 True 0.01
4 True 0.01

Table 2: Evaluating the CF algorithm results with GT, for the
CI Limited Space module

Figure 13: Comparing the results of CF algorithm and average
reward of k samples with GT reward

samples with the same (or close enough) ranks as the GT
reward. For evaluation purposes only, we consider a threshold
value, denoted by ε = 0.02, to account for small variations
(less than 2% difference from the GT reward) between the
mismatched ranks. In this way, we can ignore the mismatch
configurations in which the difference between the GT reward
and the RCF or Rk is less than ε. In other words, for each
rank, if the following condition is valid for any of the average
reward of k samples, the achieved Rk is assumed to be true
and matched with the GT reward.

|RGT [rank]−Rk[rank]|
RGT [rank]

≤ ε. (2)

The condition (2) is written for the average reward of k sam-
ples. However, we similarly apply it to the CF results, by
replacing Rk with RCF in (2). The rank score for the CF esti-
mates and average reward of k samples are denoted by SCF
and Sk, consecutively.

In Fig. 13, for k= 5 up to 45, we plot the difference between
SCF and Sk. This number for each value of k represents for
how many more configurations on average the CF estimates
are matched with the GT reward, compared to the average
reward over k samples. By increasing the number of samples,
the average reward gets closer to the GT reward, and therefore,
more configurations match with the GT ranking.

6 Related Work

In networking, data-driven approaches for configuration tun-
ing are highlighted for several scenarios [3, 11]. Several re-
search studies consider TCP stack tuning [1,2,4,15,26,29,32,

760 2024 USENIX Annual Technical Conference USENIX Association

33, 48]. Static protocol tuning [2, 15] fails to provide the best
performance across fluctuating network conditions and some-
times may even result in performance degradation (compared
to default configurations performance).

Reinforcement learning (RL) [26, 33, 47], supervised learn-
ing [4, 48], and multi-armed bandits [29] techniques are used
to tune the configurations. The design of these approaches
is very specific to the knobs; thus, it cannot be applied to
jointly tune a different set of knobs [4, 32]. For example,
TCP-RL [33] uses two separate RL models for two different
configurations (initial cwnd and congestion control algorithm)
to deal with scenarios of short and long flows. Only a few ex-
isting solutions support a wide range of configuration knobs
with complex dependencies [29]. On the other hand, solutions
that use live explorations of the configurations space suffer
performance degradation for the new connections [3, 29]. So-
lutions cannot react agilely to these new connections due to
the random trials that are applied to the first sessions. Addi-
tionally, the solution may continue the online exploration even
after the bootstrapping phase. Also, it is challenging to collect
firm network statistics on the server side in some cases (e.g.,
short flows) [33, 48]. However, none of the existing works
dealt with the inaccurate rewards in their design.

On the other hand, contextual Gaussian Process (GP) [24,
39] is a well-established approach in black-box optimiza-
tion. In this method, network conditions can be treated as
direct contextual inputs to the GP. Our approach, however,
takes a different perspective. We ensure that all user groups
share a common context by dividing the user space into mul-
tiple groups based on profile features and network conditions.
Therefore, we create multiple models to address contextual
variations effectively. We believe that incorporating network
conditions directly as inputs to the inference process can be
challenging. Our approach only requires profile features to
inference the best configurations, which allows us to handle
the complexity more effectively.

7 Discussion

Configuration Knobs Selection. Config-Snob is a black-box
solution that tunes a set of knobs. However, the selection of
knobs is a challenging task [17]. Each system, application,
and service has a wide range of knobs. The impact of knobs
can differ from one use case to another. A deep analysis is
needed to investigate the impact of knobs for each use case.

Client Privacy. As we pointed out that client information
is used for profiling. Features like IP address, geolocation,
and ISP information are learned during the connection setup.
Generally, we need to ensure that clients’ private information
is collected with their permission and used safely without
breaking user privacy [13, 46]. Config-snob emphasizes pri-
vacy by design. It ensures that only essential data required
for system functionality is collected. Additionally, the stored

data is abstracted into a profile guarantee that isn’t tied to
specific individuals. Furthermore, it adheres to data retention
policies, deleting information after a specified period. We
firmly believe users must be well-informed about data col-
lection practices and provide them with options to opt out
and customize privacy settings (e.g., geolocation). Another
direction is to improve privacy by implementing profiling and
inference on the client side (e.g., user APP). This approach is
quick and can accurately collect the profile features but it has
some challenges, such as overhead and model freshness.

Training Server Placement. Having both APP and Training
servers on the same machine can be cost-effective, provide
more user privacy protection, and be fast. However, the train-
ing server can serve different applications at the same time.
Furthermore, a hierarchical approach can be used to deal with
complex scenarios with multiple training servers (e.g., Pyth-
eas framework [21])

Dynamic Updating Cycle. In the current deployment, we
use a time-driven model updating. However, an event-driven
approach can be used to boost the training process. For exam-
ple, triggers can be used, such as the number of profiles that
have been seen and the number of samples per profile.

Causal Inference. Considering online CI learning tools, in-
stead of offline methods, can be beneficial for data-driven
networking scenarios. This is more crucial for scenarios that
have to deal with an insufficient amount of data, or if storing
a large amount of data is not possible.

8 Conclusion

In this paper, we show that thoughtfully tuning the configura-
tions for QUIC-based servers leads to significant performance
improvement. We propose Config-Snob, a data-driven solu-
tion that utilizes the Bayesian Optimization approach and
a causal inference algorithm to find the best configurations
for the diverse network environment. Our solution can be
applied to different networking protocol stacks (e.g., TCP,
QUIC, HTTP, RTC, etc.) and services (e.g., web, video, etc.).
Config-Snob fulfills all requirements of protocol tuning solu-
tions including generality, adaptability, stability, scalability,
low overhead, and reliability. In our future work, we aim to
extend our design to tune the online parameters of the proto-
col stack. In addition, causal inference techniques show great
potential to overcome some of the optimization tools issues.
Therefore, further investigation and analysis are required.

References

[1] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao.
Wanna make your tcp scheme great for cellular net-
works? let machines do it for you! IEEE Journal
on Selected Areas in Communications, 39(1):265–279,
2020.

USENIX Association 2024 USENIX Annual Technical Conference 761

[2] Mohammad Al-Fares, Khaled Elmeleegy, Benjamin
Reed, and Igor Gashinsky. Overclocking the yahoo! cdn
for faster web page loads. In Proceedings of the 2011
acm sigcomm conference on internet measurement
conference, pages 569–584, 2011.

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu
Chen, Shivaram Venkataraman, Minlan Yu, and Ming
Zhang. {CherryPick}: Adaptively unearthing the best
cloud configurations for big data analytics. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 469–482, 2017.

[4] Hamidreza Anvari and Paul Lu. Machine-learned recog-
nition of network traffic for optimization through proto-
col selection. Computers, 10(6):76, 2021.

[5] Susan Athey and Stefan Wager. Estimating treatment ef-
fects with causal forests: An application. Observational
Studies, 5:37–51, 01 2019.

[6] The GPyOpt authors. GPyOpt: A bayesian optimization
framework in python, 2020. Accessed: 2022-07-20.

[7] Simon Bauer, Benedikt Jaeger, Fabian Helfert, Philippe
Barias, and Georg Carle. On the evolution of inter-
net flow characteristics. In Proceedings of the Applied
Networking Research Workshop, pages 29–35, 2021.

[8] Theophilus A Benson. Illuminating the hidden chal-
lenges of data-driven cdns. In Proceedings of the 3rd
Workshop on Machine Learning and Systems, pages 94–
103, 2023.

[9] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. Queue,
14(5):20–53, 2016.

[10] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh,
and Van Jacobson. Bbr congestion control. IETF Draft
draft-cardwell-iccrg-bbr-congestion-control-00, 2017.

[11] Jie Chuai, Zhitang Chen, Guochen Liu, Xueying Guo,
Xiaoxiao Wang, Xin Liu, Chongming Zhu, and Feiyi
Shen. A collaborative learning based approach for
parameter configuration of cellular networks. In
IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pages 1396–1404. IEEE, 2019.

[12] DB-IP. IP to Location + ISP database. https:
//db-ip.com/db/ip-to-location-isp, 2022. Ac-
cessed: 2022-07-20.

[13] Martin Degeling, Christine Utz, Christopher Lentzsch,
Henry Hosseini, Florian Schaub, and Thorsten Holz. We

value your privacy... now take some cookies: Measur-
ing the gdpr’s impact on web privacy. arXiv preprint
arXiv:1808.05096, 2018.

[14] Haiwei Dong, Ali Munir, Hanine Tout, and Yashar Gan-
jali. Next-generation data center network enabled by
machine learning: Review, challenges, and opportunities.
IEEE Access, 2021.

[15] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng,
Jerry Chu, Tom Herbert, Amit Agarwal, Arvind Jain,
and Natalia Sutin. An argument for increasing tcp’s ini-
tial congestion window. ACM SIGCOMM Computer
Communication Review, 40(3):26–33, 2010.

[16] FCC. Measuring Fixed Broadband - Eleventh Re-
port. https://www.fcc.gov/reports-research/
reports/measuring-broadband-america/
measuring-fixed-broadband-eleventh-report,
2021. Accessed: 2022-07-20.

[17] Sishuai Gong, Usama Naseer, and Theophilus A Ben-
son. Inspector gadget: A framework for inferring tcp
congestion control algorithms and protocol configura-
tions. In Network Traffic Measurement and Analysis
Conference, 2020.

[18] Jenny Häggström, Emma Persson, Ingeborg Waern-
baum, and Xavier de Luna. Covsel: An r package for
covariate selection when estimating average causal ef-
fects. Journal of Statistical Software, 68(1):1–20, 2015.

[19] Kosuke Imai, In Song Kim, and Erik H. Wang. Match-
ing methods for causal inference with time-series cross-
sectional data. American Journal of Political Science,
n/a(n/a).

[20] Iyengar, J., Swett, I. QUIC Loss Detection and Con-
gestion Control. https://datatracker.ietf.org/
doc/rfc9002/, 2021. Accessed: 2022-07-20.

[21] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui
Zhang. Pytheas: Enabling Data-Driven Qual-
ity of Experience Optimization Using Group-Based
Exploration-Exploitation. In 14th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 17), pages 393–406, 2017.

[22] Arash Molavi Kakhki, Samuel Jero, David Choffnes,
Cristina Nita-Rotaru, and Alan Mislove. Taking a long
look at quic: an approach for rigorous evaluation of
rapidly evolving transport protocols. In proceedings of
the 2017 internet measurement conference, pages 290–
303, 2017.

762 2024 USENIX Annual Technical Conference USENIX Association

https://db-ip.com/db/ip-to-location-isp
https://db-ip.com/db/ip-to-location-isp
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://datatracker.ietf.org/doc/rfc9002/
https://datatracker.ietf.org/doc/rfc9002/

[23] Maggie Hei Greg Lewis Paul Oka Miruna Oprescu
Vasilis Syrgkanis Keith Battocchi, Eleanor Dil-
lon. EconML: A Python Package for ML-
Based Heterogeneous Treatment Effects Estimation.
https://github.com/py-why/EconML, 2019. Version 0.x.

[24] Andreas Krause and Cheng Ong. Contextual gaus-
sian process bandit optimization. Advances in neural
information processing systems, 24, 2011.

[25] Fan Li, Laine E Thomas, and Fan Li. Addressing
Extreme Propensity Scores via the Overlap Weights.
American Journal of Epidemiology, 188(1):250–257,
09 2018.

[26] Wei Li, Fan Zhou, Kaushik Roy Chowdhury, and Waleed
Meleis. Qtcp: Adaptive congestion control with re-
inforcement learning. IEEE Transactions on Network
Science and Engineering, 6(3):445–458, 2018.

[27] MaxMind. GeoIP2 City Database. https://www.
maxmind.com/en/geoip2-city, 2022. Accessed:
2022-07-20.

[28] Usama Naseer and Theophilus Benson. Inspectorgadget:
Inferring network protocol configuration for web ser-
vices. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 1624–
1629. IEEE, 2018.

[29] Usama Naseer and Theophilus A Benson. Configanator:
A data-driven approach to improving {CDN} perfor-
mance. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
1135–1158, 2022.

[30] Marcin Nawrocki, Pouyan Fotouhi Tehrani, Raphael
Hiesgen, Jonas Mücke, Thomas C Schmidt, and
Matthias Wählisch. On the interplay between tls
certificates and quic performance. In Proceedings
of the 18th International Conference on emerging
Networking EXperiments and Technologies, pages 204–
213, 2022.

[31] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for http. In Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’15, page 417–429, USA, 2015. USENIX
Association.

[32] Xiaohui Nie, Youjian Zhao, Guo Chen, Kaixin Sui,
Yazheng Chen, Dan Pei, Miao Zhang, and Jiyang
Zhang. Tcp wise: One initial congestion window is not
enough. In 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC),
pages 1–8. IEEE, 2017.

[33] Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen,
Kaixin Sui, Jiyang Zhang, Zijie Ye, and Dan Pei.
Dynamic tcp initial windows and congestion control
schemes through reinforcement learning. IEEE Journal
on Selected Areas in Communications, 37(6):1231–
1247, 2019.

[34] Fernando Nogueira. Bayesian Optimization: Open
source constrained global optimization tool for Python,
2014–.

[35] OpenResty. OpenResty. Scalable Web Platform by Ex-
tending NGINX with Lua. https://openresty.org/
en/, 2022. Accessed: 2022-07-20.

[36] scikit-learn. Clustering: K-means. https:
//scikit-learn.org/stable/modules/
clustering.html#k-means, 2022. Accessed:
2022-07-20.

[37] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. Taking the human
out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2015.

[38] Michael Stein. Large sample properties of simula-
tions using latin hypercube sampling. Technometrics,
29(2):143–151, 1987.

[39] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas
Krause. Safe exploration for optimization with gaus-
sian processes. In International conference on machine
learning, pages 997–1005. PMLR, 2015.

[40] Santiago Vargas, Gautham Gunapati, Anshul Gandhi,
and Aruna Balasubramanian. Are mobiles ready for bbr?
In Proceedings of the 22nd ACM Internet Measurement
Conference, pages 551–559, 2022.

[41] Michael Welzl, Peyman Teymoori, Safiqul Islam, David
Hutchison, and Stein Gjessing. Future internet conges-
tion control: The diminishing feedback problem. IEEE
Communications Magazine, 60(9):87–92, 2022.

[42] Gregory A Wilkin and Xiuzhen Huang. K-means clus-
tering algorithms: implementation and comparison. In
Second International Multi-Symposiums on Computer
and Computational Sciences (IMSCCS 2007), pages
133–136. IEEE, 2007.

[43] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver
Hohlfeld. A performance perspective on web op-
timized protocol stacks: Tcp+ tls+ http/2 vs. quic.
In Proceedings of the Applied Networking Research
Workshop, pages 1–7, 2019.

[44] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Ragha-
van, Riad S Wahby, Philip Levis, and Keith Winstein.

USENIX Association 2024 USENIX Annual Technical Conference 763

https://www.maxmind.com/en/geoip2-city
https://www.maxmind.com/en/geoip2-city
https://openresty.org/en/
https://openresty.org/en/
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means

Pantheon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 731–743, 2018.

[45] Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao,
and Aidong Zhang. A survey on causal inference. ACM
Trans. Knowl. Discov. Data, 15(5), may 2021.

[46] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu,
and Martin Abadi. Host fingerprinting and tracking on
the web: Privacy and security implications. In NDSS,
volume 62, page 66, 2012.

[47] Jia Zhang, Yixuan Zhang, Enhuan Dong, Yan Zhang,
Shaorui Ren, Zili Meng, Mingwei Xu, Xiaotian Li,
Zongzhi Hou, Zhicheng Yang, and Xiaoming Fu. Bridg-
ing the gap between QoE and QoS in congestion control:
A large-scale mobile web service perspective. In 2023
USENIX Annual Technical Conference (USENIX ATC
23), pages 553–569, Boston, MA, July 2023. USENIX
Association.

[48] Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing
Li, Jingpu Duan, and Yi Wang. Antelope: A frame-
work for dynamic selection of congestion control algo-
rithms. In 2021 IEEE 29th International Conference on
Network Protocols (ICNP), pages 1–11. IEEE, 2021.

Figure 14: Oracle Experiment Setup.

Table 3: Used QUIC configuration knobs

Knobs Values*
stream_init_data_pacing_bytes 20KB, 100KB, 300KB
stream_init_data_pacing_rate 20M, 90M, 120M
stream_init_data_pacing _first_data_ack on, off
buffered_data_threshold 0, 1M, 10M
ping_in_tail on, off
retransmission_timeout_multiples 0, 0.25, 1
loss_threshold_in_probe_up 2%, 10%, 50%
disable_condition_in_probe_up on, off
*Default values are in Bold

A Oracle Description

Fig. 14 presents the data collection process. The system con-
sists of three main parts: QUIC server, clients, and Mahimahi
tunnel. Mahimahi is used to emulate different network scenar-
ios. First, the Measuring Fixed Broadband report by FCC [16]
is used which is summarized in Table 4. Additionally, the
table shows the simulated network setup for the cellular net-
works [28, 43]. Second, real-world trace-driven network tun-
nels are simulated (Pantheon [44]). Last, we used traces that
were collected from an online production server of the video-
based service for three days. We replayed all the connections
over the collected traces in video downloading granularity.
The performance metrics, network statistics, and the used
QUIC configurations are collected and stored in a dataset.

As we mentioned, we focus on tuning a set of configuration
knobs listed in Table 3. Some of these knobs are continuous.
Config-Snob uses BO models that support both discrete and
continuous values. In the real deployment, continuous values
of these knobs is used while a discrete number of values is
used in the oracle. Thus, in the oracle, a certain number of
configuration templates are created from all combinations
of knobs’ values. The number of used QUIC configuration
combinations is 1944 templates. Table 3 shows the default and
the used values for the configuration knobs. The default values
in the table are selected just for the oracle testbed. While in
real deployments, engineers set predefined configurations.

764 2024 USENIX Annual Technical Conference USENIX Association

Min RTT ≤ 21133.5
CATE Mean: -11059.16

CATE Std: 10717.39

Min RTT ≤ 16262.0
CATE Mean: -16772.34

CATE Std: 7726.74

CATE Mean: -22407.03
CATE Std: 5203.54

CATE Mean: -11017.77
CATE Std: 5242.31

Stream Bytes Sent < 1011941.04
CATE Mean: 475.266
CATE Std: 5223.51

CATE Mean: -3610.27
CATE Std: 3284.8

CATE Mean: -5801.81
CATE Std: 1109.92

Figure 15: Clustering data samples using the trained CF tree.

Table 4: FCC+ Simulated Networks (Broadband and Cellular)

Clients Features Mahimahi
Interface Speed* Time BW* Loss RTT*
DSL 10 Offpeak 10 0.14% 38
DSL 10 Peak 10 0.25% 40
DSL 25 Peak 25 0.21% 31
DSL 25 Offpeak 25 0.1% 30
Cable 50 Peak 50 0.1% 21.5
Cable 50 Offpeak 50 0.11% 20
Cable 100 Peak 100 0.09% 23.5
Cable 100 Offpeak 100 0.07% 23
Fiber 100 Peak 100 0.04% 12.5
Fiber 100 Offpeak 100 0.04% 12.5
Fiber 500 Peak 500 0.01% 8
Fiber 500 Offpeak 500 0.02% 8
4G 10 Offpeak 10 0.1% 70
4G 10 Peak 10 0.15% 100
3G 3.54 Offpeak 3.54 0.1% 90
3G 3.54 Peak 3.54 0.15% 120
* Speed and bandwidth (BW) are in Mbps, RTT in milliseconds.

Profi
le1

Profi
le2

Profi
le3

0

−1

−2

−3

−4

−5

−6

−7

·10−2

CF Estimates GT Reward

Figure 16: Evaluation of the CF results with the GT reward.

B CI Solution Choices Evaluation

Fig. 16 demonstrates the evaluation of the CATE generated
by the CF algorithm, compared to the GT, for each profile.
We consider three profiles 1−3 with BW values of 25, 50 and
100 Mbps consecutively. The overall estimation accuracy for
the CF algorithm for this scenario is 96.5%. We also provide
the results of the clustered data samples using the CF tree ap-
proach (see Fig. 15), in which different samples are clustered
based on their improvement ratios. The tree, demonstrated
in Fig. 15, is generated using the selected features using the
CovSel algorithm.

USENIX Association 2024 USENIX Annual Technical Conference 765

	Introduction
	Background and Motivations
	Problem Analysis
	Challenges
	Config-Snob

	Config-Snob Design
	Profiling
	Profile Tree
	Unseen Profiles
	Sufficiency
	Clustering
	Time Category

	Learning Model
	Bayesian Optimization
	Multi-Armed Bandit
	Reward

	Causal Inference
	Methodology
	Causal Forest Algorithm
	Limited Search Space
	Reward Estimator

	Implementation
	APP Server
	AI Training Server
	QUIC and Configuraion Knobs

	Evaluation
	Oracle Testbed
	Real-world Deployment
	System Benchmark
	Solution Choices

	Related Work
	Discussion
	Conclusion
	Oracle Description
	CI Solution Choices Evaluation

