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Abstract
Build systems are responsible for building software correctly
and quickly. Unfortunately, traditional build tools like make
are correct and fast only when developers precisely enumerate
dependencies for every incremental build step. Forward build
systems improve correctness over traditional build tools by
discovering dependencies automatically, but existing forward
build tools have two fundamental flaws. First, they are incor-
rect; existing forward build tools miss dependencies because
their models of system state are incomplete. Second, they
rely on users to manually specify incremental build steps,
increasing the programmer burden for fast builds.

This paper introduces RIKER, a forward build system that
guarantees fast, correct builds. RIKER builds are easy to spec-
ify; in many cases a single command such as gcc *.c suf-
fices. From these simple specifications, RIKER automatically
discovers fast incremental rebuild opportunities. RIKER mod-
els the entire POSIX filesystem—not just files, but directories,
pipes, and so on. This model guarantees that every depen-
dency is checked on every build so every output is correct.

We use RIKER to build 14 open source packages including
LLVM and memcached. RIKER incurs a median overhead of
8.8% on the initial full build. On average, RIKER’s incremen-
tal builds realize 94% of make’s incremental speedup with no
manual effort and no risk of errors.

1 Introduction
Build systems specify how code and other assets should be

transformed into executable software. They capture compila-
tion procedures left unstated in the source code itself. Build
systems make the process of building software more reliable,
since they free programmers from having to reproduce long
sequences of build commands after making a change.

To be useful, build systems should satisfy two goals. First,
builds must be correct: running a build should always have
the same effect, whether code was built previously or not. Sec-
ond, builds must be fast: they should perform the minimum
amount of work required to update a build in response to a

change. These goals are often in tension. Builds that are sim-
ple to specify expose few opportunities for fast incremental
updates, while complex incremental builds are more likely
to be incorrect. To illustrate this challenge, we begin with an
example build specification for make, one of the earliest and
most widely-used build tools [8].

program 1 : main.c x.c x.h y.c y.h 2

gcc -o program main.c x.c y.c 3

A make build specification, written in a Makefile, lists a
collection of build rules. The example above shows a rule that
produces a single program from three source files and two in-
clude files. Each target is composed of three parts: 1 a target
name, usually the name of an output file; 2 a list of depen-
dencies, which make calls “prerequisites,” required to produce
the target; and 3 a recipe that includes the build commands
needed to produce the target from the dependencies.

At the start of each build, make compares the last modi-
fication time of every target with its dependencies. When a
dependency is newer than the target, make runs the recipe to
update the target. When a dependency does not exist, make
recursively runs the rule that builds the dependency.

The key insight in make’s design is that developers rarely
change an entire codebase between builds. Rebuilds can run
faster by doing work proportional to the number of changed
dependencies, not the total number of files. In the simplest
case, when no dependencies change, make does nothing at all.

It is easy to see that the example Makefile is correct be-
cause all the dependencies are present and only a single build
command is needed. Unfortunately, this build is also ineffi-
cient. Changing x.c will cause gcc to recompile all three .c
files, even though y.c and main.c are unchanged. The cause
of this inefficiency is that the build is monolithic: there is only
one target that depends on all source files, so make must run
a full build when any source file changes.

Monolithic builds are prohibitively expensive for larger
projects. For example, a full build of LLVM takes nearly
20 minutes when run in parallel on a typical developer
workstation—far too long for a developer to wait to test a
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small code change. Not surprisingly, large projects often have
incremental build specifications. To produce an incremental
make build, developers must break a specification into smaller
rules, exposing intermediate targets. The following modifies
the original Makefile so that it can be built incrementally.

program: main.o x.o y.o
gcc -o program main.o x.o y.o

main.o: main.c x.h y.h
gcc -c -o main.o main.c

x.o: x.c
gcc -c -o x.o x.c

y.o: y.c y.h
gcc -c -o y.o y.c

The updated specification states how to build a .o file from
each source file, and how those .o files are combined into the
final target, program. The new Makefile describes the same
work that gcc performs internally; internal steps have simply
been exposed so that make can run them or skip them during
an incremental rebuild. With this Makefile, modifying x.c
no longer rebuilds every output. Instead, the build generates a
new x.o, linking it with the other .o files already on disk.

This Makefile also illustrates the dangers inherent in more
complex build specifications: missing dependencies. Suppose
x.c includes x.h. The original Makefile is correct, but the
refactored one is not because changing x.h does not trigger a
rebuild of x.o as it should. The implication of such a bug is
that a developer with a previously-built working copy could
end up with different output than another developer who starts
with a clean copy of exactly the same source code.

An incremental build must be consistent with the full build;
it should always produce output that could have come from a
full build. Make and build tools like it do not guarantee this
property because they do not check for missing dependen-
cies. These errors occur with alarming frequency. A recent
study showed that more than two-thirds of the open-source
programs analyzed had serious build specification errors [28].

To address build errors, recent work proposes the idea of a
forward build system [29]. Build systems like make are “back-
ward” because evaluation proceeds from the final output rules,
recursively building dependencies as needed. A forward build
specification instead lists a sequence of commands, in order,
that perform a full build. Critically, forward build systems
discover dependencies automatically using program tracing
instead of asking users to enumerate dependencies. On re-
build, a forward build system runs only the commands nec-
essary to update the build, just as make does. When correctly
designed and implemented, forward build systems guarantee
correctness because they never miss dependencies.

Unfortunately, prior forward build systems miss dependen-
cies because they fail to account for the complexity of real
builds. Worse, they require users to manually specify incre-
mental build steps. As a result, prior forward build systems
are neither automatically correct nor automatically fast.

This paper introduces RIKER, a forward build system that

delivers the benefits of an incremental build system with the
simplicity of monolithic specifications. RIKER substantially
advances the state of the art in forward build systems by using
a completely different algorithmic approach. With RIKER,
efficient incremental builds can be specified using a single
build command like gcc *.c.

RIKER captures dependencies on directories, pipes, links,
and sockets—not just files—ensuring that builds are correct.
RIKER infers fine-grained steps from monolithic build spec-
ifications, ensuring that builds are fast. In the above exam-
ple, RIKER captures the execution of the C compiler (cc1),
assembler (as), and linker (ld), can run these commands in-
crementally, and in many cases in parallel, to update the build.
In short, RIKER makes it possible for users to specify builds
that are simple, correct, and efficient.

Contributions
Tracing and TraceIR. We present a high-performance sys-
tem call tracing mechanism that generates dependence-
checking programs in the novel TraceIR language (§4). Tra-
ceIR captures all of a build’s state interactions—including,
but not limited to, paths, files, directories, and pipes. Tra-
ceIR facilitates correct handling of circular and temporal
dependencies, complexities that occur in real builds.

RIKER Build Algorithm. The RIKER algorithm performs
efficient incremental builds by mixing emulation of
previously-recorded TraceIR with re-execution of com-
mands whose dependencies have changed (§5).

Implementation and Evaluation. We present an implemen-
tation of RIKER for Linux, and evaluate this implementation
by using it to build 14 real-world software projects (§6). Our
evaluation shows that RIKER is a significant advance over
the previous state of the art in forward build tools, automat-
ically performing incremental builds that are competitive
with manually-written make builds. RIKER is available under
an open-source license at https://rkr.sh.

2 Related Work
Build systems have evolved significantly since make’s in-

troduction in 1976 [8, 21]. However, all build systems share
the two goals we identify in the introduction: builds must be
correct and they must be fast. Build systems differ substan-
tially in their configuration, the precision of their dependency
tracking, how changes are detected, and the level of manual ef-
fort required to use them. These differences, which we discuss
below, are summarized in Table 1.
Backward Build Systems. The make build system and most
of its successors are backward build systems. With a backward
build system, the user writes a rule for each target produced
by the build, lists the dependencies required to produce the
target, and provides the commands required to create the tar-
get from its dependencies. When a target’s dependency does
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Source & Build Language Dependencies Incremental Builds

Build System Language-Agnostic No DSL Precise General Automatic Dynamic Automatic

B
ac

kw
ar

d Make, Ninja, Shake, Tup ✓
Vesta ✓ ✓ ✓⋆ ✓

CMake, Ant/Maven, SCons ✓λ ✓λ

Pluto ✓⋆ ✓λ ✓ ✓λ

Bazel, Buck ✓ ✓⋆ ✓⋆ ✓λ

Fo
rw

ar
d Memoize, Fabricate ✓ ✓⋆ ✓ ✓

Rattle ✓ ✓ ✓ ✓
RIKER ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A comparison between RIKER and prior build tools. A build system is language agnostic if it can build projects written in any
source language or combination of languages, and has no DSL if builds can be specified in a general-purpose language that is executable
independent of the build system. A build system is precise if it ensures that a specification captures all dependencies. It is general if it allows
cyclic dependencies, anti-dependencies, and dependencies on non-file objects. A build system is automatic if it discovers dependencies or
incremental builds without manual specification. A tool that supports dynamic incremental builds can discover dependencies while a build runs.
A ✓⋆ indicates partial support, and ✓λ indicates that a feature’s support is language-specific.

not exist, a backward build system calls the rule that produces
the dependency. Such build specifications are essentially an
edge-by-edge encoding of a dependence graph.

Make, Tup [27], Shake [22], and Ninja [1] are all examples
of backward build systems that require a dependence graph
encoding. Writing build specifications for these tools can be
burdensome. CMake [4], Ant/Maven [2, 3], SCons [26], and
Pluto [5] reduce this burden by providing standard templates.
Templates encode common build procedures like producing
an executable from a collection of C source files. These tools
automatically discover dependencies and run incremental
builds, but only for supported languages. Users must pro-
vide extensions to these build tools before they can use them
to build projects that use unsupported languages.

The early and innovative Vesta build system specifies builds
in a general-purpose modeling language [12, 13]. Although
users encode dependencies manually, Vesta uses a form of
black-box tracing at the filesystem layer to identify and cache
unspecified build outputs for incremental speedups. As Vesta
is also a source control management tool, it can correctly
reuse cached build objects in a distributed setting. Vesta can
only skip work for explicitly enumerated build steps.

Buck [7] and Bazel [11] focus on ensuring that dependen-
cies are precise by intentionally failing when any dependency
is not explicitly provided. This is in direct contrast to Make,
Tup, and Shake, where missing dependencies can lead to in-
correct builds. Like CMake, Buck and Bazel simplify the
process of specifying incremental builds with templates for
supported languages. Buck, Bazel, and Pluto also offer some
degree of dynamism when building; they can discover some
additional dependencies or prune work as the build proceeds.

RIKER differs from all these tools because it precisely
captures fine-grained dependencies and provides automatic
speedups without manual specification, and it does so for
projects written in any programming language.

Forward Build Systems. Memoize [19], Fabricate [14], and
Rattle [29] use tracing to discover dependencies from a se-
quence of build commands that should run in order. These
systems guarantee precise dependencies while remaining lan-
guage agnostic. However, all of them are limited to modeling
file state. A change to unsupported state, like a directory, does
not trigger a rebuild, producing an incorrect rebuild. As we
discuss in this work, correct builds must model not just files,
but inode metadata, directories, symbolic links, hard links,
pipes, and sockets. Correct build systems must also model
the absence of such state. Existing forward build tools also
have limited ability to produce fast incremental builds. Com-
piler drivers like gcc launch many separate sub-commands
to compile, assemble, and link programs. Prior forward build
systems require users to enumerate incremental build steps,
which makes writing build specifications more difficult.

Like the above tools, RIKER is a forward build system.
RIKER substantially improves the state of the art by automati-
cally inferring fine-grained build steps. RIKER can directly
invoke sub-commands called by wrapper programs like gcc.
Sub-command execution is possible because RIKER’s depen-
dence tracking is both precise and complete.

Separation of Concerns. Many build tools tackle addi-
tional tasks, such as platform detection or compilation in
a distributed setting. For example, Autoconf [9] and Au-
tomake [10] detect characteristics of the local system to gen-
erate build configurations, usually as a precursor to running
make. Buck, Bazel, Vesta, and CloudBuild [6] offer support
for distributing builds on cloud services. We regard these ob-
jectives to be orthogonal to this work. Since a RIKER build
specification is just a program, it can include configuration
steps. And we suspect that RIKER’s precise dependency track-
ing may make it easier to distribute builds across machines,
although we have not explored this topic.

RIKER’s design is strongly influenced by the UNIX philos-
ophy to make each program “do one thing well” [20]. There-
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fore, we focus this work narrowly on one problem: to build
software correctly and quickly. This paper provides evidence
that the key to building software correctly and quickly is the
accurate detection and handling of changed dependencies,
regardless of language. The fact that RIKER can be used to
orchestrate compilation for any language, using a specifica-
tion written in any language, is a useful property that emerges
from the exclusive pursuit of this sole concern.

3 Overview
RIKER builds software using a simple specification called

a Rikerfile. A Rikerfile is typically a short shell script,
although it can be any executable that performs a full build.
RIKER is designed to spare developers the error-prone work
of specifying dependencies. Instead, RIKER discovers them
automatically as a Rikerfile executes. RIKER uses system
call tracing to capture all of a build’s stateful interactions,
which it records in a novel intermediate representation called
TraceIR. A TraceIR transcript is a program that describes a
build’s dependencies, operations, and effects (see §4).

When a user requests a rebuild, RIKER evaluates the stored
transcript instead of running a full build (see §5). Evaluation
updates an in-memory model of system state; the model cap-
tures the effects that would occur if a full build were run again.
Every statement in the TraceIR language is a predicate: when-
ever the modeled result of a TraceIR statement differs from
the observed outcome of the previous build, a dependency has
changed. Any command whose dependencies change must be
re-executed to update the build.

During TraceIR evaluation, RIKER must decide: should a
command be executed, or can it be skipped? If a command
is executed, RIKER actually runs the command using the
execve system call, tracing its execution and replacing its old
TraceIR statements in the transcript. If a command is skipped,
RIKER instead emulates the command, replaying its effects
(if it has any) in the model and only syncing those effects to
the filesystem at the end of the build or when an executed
command needs to observe them. In general, emulation is
orders of magnitude faster than execution. RIKER runs fast
incremental builds by skipping commands whenever it can;
the number of executed commands is roughly proportional to
the number of changes.

RIKER repeatedly re-evaluates the entire trace until no
changes are found. Re-evaluation is necessary because an
executed command can change a dependency for another
command. Instead of conservatively running all commands
that might observe changes, RIKER defers the decision to
execute until it can prove that a command must execute. Once
no commands must execute, the build is “up to date” and
RIKER saves the updated transcript for use in the next rebuild.

3.1 Examples
In this section, we highlight three scenarios from the work-

ing example (from §1) that illustrate RIKER’s operation. The

Rikerfile

gcc

collect2 ld

main.cx.c y.cx.h y.h

tmp.s tmp.s tmp.s

tmp1.o tmp2.o tmp3.o

program

cc1A cc1B cc1C

asD asE asF

tmp.le

tmp.ld

.Rikerfile z.cz.h

tmp.s

tmp4.o

cc1G

asH

c command a stateful artifact

child command input or output

Legend

Figure 1: A dependency graph for the running example. Dashed
edges show commands launching child commands, and solid edges
indicate inputs and outputs. The grey box contains the modification
induced by adding z.h and z.c to the build in Scenario 2.

following Rikerfile specifies the example build:
#!/bin/sh
gcc -o program *.c

Scenario 1: Running the first build. A user runs rkr to
perform a build. When rkr is invoked with no saved state
RIKER starts a full build by executing Rikerfile.

Figure 1 is a dependence graph for the running example.
Oval vertices represent commands, which correspond to pro-
grams run via exec system calls. Rectangular vertices repre-
sent stateful artifacts such as files or directories. Dashed edges
indicate that a parent command launched a child command.
Solid edges indicate a command’s input or output.

In contrast to many other build systems, RIKER’s build
algorithm does not store build information as a dependence
graph. Dependence graphs lack critical temporal information
needed to disambiguate rebuild logic that arises from circular
dependencies. We show Figure 1 to illustrate that even simple
builds have complex dependence structure that RIKER can
exploit. In fact, for clarity, Figure 1 omits a great deal: depen-
dencies on system includes, shared libraries, the executable
files for each command, and intermediate states of artifacts
written multiple times during the build.

When the Rikerfile command launches gcc, it launches
three instances of cc1 in turn. Each cc1 instance compiles
a .c file (and any included .h files) to a .s assembly file.
gcc also launches three instances of as to produce .o object
files from each .s input. Finally, gcc launches the collect2
command, which launches the linker ld. ld redirects stdout
and stderr to temporary files which can cause collect2 to
rerun the linker with different options. Note the cycle between
collect2 and ld; this dependence cycle is present in every
build that uses gcc. Also observe that gcc repeatedly reuses
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the same tmp.s temporary file, truncating it at the start of
each cc1 execution. File reuse and cyclic dependencies occur
frequently in builds.

Instead of a dependence graph, RIKER operates over a
TraceIR transcript. RIKER translates every intercepted system
call into a sequence of TraceIR statements. The following
transcript excerpt is generated during our example build:

1 sh_0 = Launch(rkr , "sh Rikerfile", [...])
2 r16 = PathRef(sh_0 , CWD, ".", r--)
3 ExpectResult(sh_0 , r16, SUCCESS)
4 MatchMetadata(sh_0 , r16,

[uid=100, gid=100, type=dir, perms=rwxrwxr -x])
5 MatchContent(sh_0 , r16, [dir: {"Rikerfile",

"main.c", "x.c", "x.h", "y.c", "y.h"}])

The transcript above records that RIKER launched the
Rikerfile program (line 1). Linux resolved the current work-
ing directory path (line 2) without error (line 3), and the re-
solved directory has the given metadata and directory entries.
During tracing, RIKER interprets all transcribed information
as what should happen during the normal course of a build.
While Rikerfile’s access of the current working directory’s
path resolved without error in this example, path resolution
failing with ENOENT is a normal occurrence whose outcome
must be recorded. For example, when the user types gcc at
the prompt, UNIX may first try to access gcc in ~/bin, which
will fail if ~/bin does not contain gcc. This behavior is the
result of the fact that UNIX searches the user’s $PATH during
resolution [16]. The observed sequence of failures is a build
dependency, and any change in failures implies that a build
must rerun. We call failing resolutions anti-dependencies.

In the next section, we examine how the above transcript
guides a rebuild after a user makes a code change. We defer
discussion of TraceIR semantics to Section 4.3.

Scenario 2: Adding a file. Suppose a user adds files z.c
and z.h and modifies main.c to include z.h. The user then
runs rkr to update the build. The grey box in Figure 1 shows
the effect of the change on the build’s dependence graph. An
efficient build system should not rebuild files unrelated to
a change. Here, tmp1.o and tmp3.o do not need updating
since they do not depend—even transitively—on any of the
changes. At the very least, cc1 and as should be called to
compile main.c and z.c, and collect2 and ld should be
called to link the output to our preexisting object files. In fact,
the very least is exactly what RIKER does here.

RIKER performs an incremental rebuild of the example by
evaluating the TraceIR from the previous build. We assume
the user does not change ownership or permissions for the cur-
rent directory, so lines 1–4 evaluate just as before. However,
line 5, which depends on directory contents, reports a change
because the current directory contains the new files z.c and
z.h. RIKER therefore reruns and traces the Rikerfile. When
the Rikerfile command is rerun, the Rikerfile’s portion
of the transcript is replaced with newly generated TraceIR.

Although rerunning the Rikerfile might seem to imply

that the entire build will run again, this is not the case. When
Rikerfile launches gcc, RIKER lets the execution proceed
(also under tracing) because gcc’s arguments, which now
include z.c, also change. However, RIKER skips execution
of the commands labeled A, C, D, and F in Figure 1, emulating
them from the trace instead.
Command skipping. Let us examine the first command that
RIKER skips, the instance of cc1 labeled A in Figure 1:
1 cc1_1 = Launch(gcc_0 , "cc1 x -o tmp.s", [...])
2 r71 = PathRef(cc1_1 , CWD, "x.c", r--)
3 ExpectResult(cc1_1 , r71, SUCCESS)
4 MatchMetadata(cc1_1 , r71,

[uid=100, gid=100, type=file , perms=rw-rw-r--])
5 MatchContent(cc1_1 , r71,

[mtime=1619457130 , hash=3c6ea , cached=false])
6 r75 = PathRef(cc1_1 , r3, "tmp.s",

-w- truncate create (rw-rw-rw -))
7 ExpectResult(cc1_1 , r75, SUCCESS)
8 UpdateContent(cc1_1 , r75, [hash=054521])

The key observation is that emulation of this command’s
transcript—which RIKER always does before concluding that
a command must run—detects no changes. cc1 reads x.c
(lines 4–5) and writes to a temporary file, tmp.s (lines 6–8).
The file x.c is unchanged. Although tmp.s was created by
gcc and is reused by every cc1 process started by gcc, there
is no dependency on that file’s content because cc1 truncates
the file without reading it (line 6). Because RIKER detects
no changes, it can emulate rather than execute cc1. Similar
reasoning allows RIKER to skip C, D, and F.
Scenario 3: Making an inconsequential change. Suppose
a comment is added to x.c and the build is run again. This
change has no effect on the final compiled program and an
ideal build system should do almost nothing. Referring again
to the previous trace, RIKER detects a change (line 5) for cc1
because x.c changes. However, RIKER correctly halts the
build without ever running as, collect2, or ld.

Here is an excerpt of the as command’s transcript:
1 as_1 = Launch(gcc_0 , [as -o tmp1.o], [...])
2 r26 = PathRef(as_1 , r3, "tmp1.o",

rw- truncate create (rw-rw-rw -))
3 ExpectResult(as_1 , r26, SUCCESS)
4 r27 = PathRef(as_1 , r3, "tmp.s", r--)
5 ExpectResult(as_1 , r27, SUCCESS)
6 MatchMetadata(as_1 , r27, [uid=100,

gid=100, type=file , perms=rw-------])
7 MatchContent(as_1 , r27, [mtime=1619458806 ,

hash=10732f, cached=true])
8 UpdateContent(as_1 , r26, [mtime=1619458806 ,

hash=3814e7, cached=true])

The as command reads tmp.s and writes to tmp1.o.
RIKER concludes that cc1’s output tmp.s is unchanged
(lines 6–7), even though the mtime is different. In RIKER,
mtimes provide a fast path for change detection: a file’s con-
tent is unchanged if its mtime is unchanged, or if its con-
tent produces the expected hash. Finally, we see as writes to
tmp.o (line 8). Because as is unchanged, RIKER can instead
restore the tmp.o file from its cache and skip as.
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3.2 Summary
RIKER runs efficient incremental builds from simple speci-

fications, even those with a single command. Throughout this
section we never once needed to change the Rikerfile, even
though the build’s dependencies changed with the addition
of new files; RIKER always ensures that incremental rebuilds
produce the same effect as full builds. Finally, RIKER is lan-
guage agnostic: it can be used to build programs written in
any language using any executable build specification.

4 Tracing and TraceIR
This section defines terms that we use to describe RIKER’s

operation, describes RIKER’s system call tracing mechanism,
and introduces the novel TraceIR language that RIKER uses
to record dependency information.

4.1 Definitions
An artifact represents system state such as a file, a directory,

or a pipe. A version represents an artifact’s state at a point
in time during the build. Every artifact has both content and
metadata versions. Two content versions are identical if and
only if they contain the same bits. Two metadata versions are
identical if and only if their permission bits and ownership
are the same.

A command is a program that accesses or modifies artifacts,
and may launch additional commands. A dependency is any
version made visible to a command through a system call.
A command is changed if its dependencies are not identical
to the versions observed during the previous run, or if the
outcome of an operation like path resolution differs from what
was observed during the previous build (e.g. a file referenced
during the last build no longer exists).

Versions are equivalent if they are identical, or if they could
be written to the same artifact by two executions of a non-
deterministic command given equivalent inputs. Outputs from
different executions of a command given equivalent inputs
are interchangeable, even if those outputs are not identical.

A build specification is any program that encodes a se-
quence of commands to run. A build system is a program that
evaluates a build specification to perform a build. A full build
executes all of the commands in the specification, while an
incremental build produces the same effect while executing
only a subset of commands.

When executing a command, RIKER records the dependen-
cies and effects of each command in the TraceIR language.
RIKER evaluates recorded TraceIR on subsequent builds to de-
termine whether the command has changed. A command can
be skipped if it is unchanged, otherwise it must be executed.

4.2 Tracing Implementation
RIKER executes commands under system call tracing

to gather a complete set of dependencies. RIKER uses
ptrace [17] to intercept system calls. Only calls related

to filesystem interaction, file descriptor management, and
process creation—75 system calls in total—matter for de-
pendency tracking. RIKER combines ptrace with seccomp-
BPF [25] filters to avoid tracing irrelevant system calls. Nev-
ertheless, tracing has high overhead even with filtering. To
reduce overhead, RIKER injects a shared library into each
build command to intercept calls to frequently-used libc
system call wrappers like open and stat without incurring
ptrace overhead. This approach is inspired by RR [24],
with additional support for passing system call arguments
through shared memory. For a build of memcached—a typical
C project built with gcc—RIKER’s injected library handles
95% of system calls (ptrace handles the remaining 5%). For
memcached, shared library tracing reduces RIKER’s full-build
overhead from 1.81s (16.9%) to just 0.84s (7.8%) with no
loss of tracing precision.

The next section describes the TraceIR language. Sec-
tion 4.4 shows how system calls are translated to TraceIR.

4.3 The TraceIR Language
TraceIR is an executable, linear representation of a build’s

behavior. RIKER generates TraceIR from system call traces,
and detects changes by evaluating TraceIR against a model
of the filesystem. The TraceIR language describes the depen-
dencies that are visible to each command during the build, as
well as the side effects of each command’s execution.
Design considerations. The design of TraceIR is guided by
three important requirements. First, tracing must be complete,
capturing dependencies on all artifacts. A missed dependency
could lead to an incorrect build. Second, TraceIR records
events serially, even if those events come from processes that
run in parallel during the build. Recording events serially im-
poses a temporal ordering [15] on filesystem interactions. A
temporal ordering makes the relationship between an access
of an artifact and its corresponding version unambiguous at
any given point in a build, even when that artifact is read and
written concurrently. Finally, a TraceIR program represents a
single observed path of execution for a command. If a com-
mand’s dependency changes, RIKER will execute and trace
the command to discover its new behavior.
Language elements. Table 2 shows the datatypes of the Tra-
ceIR language, and Table 3 shows nearly all of the statements
in the TraceIR language. We omit three low-level operations
for clarity. Return types are BOOL where omitted. A TraceIR
program is a sequence of statements, each associated with a
command c. Statements fall into four logical groups:

Artifact accesses establish a reference to an artifact. A ref-
erence can resolve successfully or result in an error. Some
accesses are side effecting (e.g. to capture the behavior of
open with the O_CREAT flag).

State checks record the state observed by a command c the
last time it executed. If a state check fails, c observes a
change and must re-execute.
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TraceIR Data Types

BOOL, INT, STRING Normal primitive types
[T] A list of elements of type T

OUTCOME Success or a POSIX error code
REF Reference to an artifact or OUTCOME

CMD A build command
FLAGS Flags associated with a file access

METADATAVERSION An artifact’s metadata
CONTENTVERSION An artifact’s content

SPECIALREFID A special artifact ID: ROOT, CWD, . . .

Table 2: TraceIR data types.

State updates record the effect a command had on global
state, such as writes to file content or metadata, or the cre-
ation and removal of directory entries.

Command updates record command creation, termination,
and when a command waits for another to exit. These state-
ments capture the semantics of execve, exit, wait, and
related system calls.

4.4 Generating TraceIR Transcripts
RIKER translates each traced system call to a sequence

of TraceIR statements called a transcript. The transcript
below is generated when command c issues a successful
stat("input", &statbuf) call.

1 r1 = SpecialRef(c, CWD)
2 r2 = PathRef(c, r1, "input", ---)
3 ExpectResult(c, r2, SUCCESS)
4 MatchMetadata(c, r2, [uid=100, gid=100,

type=file , perms=rw-r--r--])

Line 1 is a reference to the command’s current working
directory. Line 2 uses the reference to resolve the path to the
file input. This stat call did not include any special flags so
the fourth parameter is ---. If the file were opened rather than
stated, this field would request read and/or write permission.
For lstat, a nofollow flag would signal that path resolution
should not follow symbolic links.

Because stat succeeds, line 3 records a successful out-
come. If input is removed before a future rebuild, the ob-
served result will be ENOENT and RIKER will detect a change.
Finally, because c observes input’s metadata, line 4 records
the observed metadata. If the file’s metadata is modified, a
rebuild will detect a change.

Importantly, TraceIR also records anti-dependencies. Sup-
posing the stat call originally failed with ENOENT, the gen-
erated TraceIR would have had the same first two lines, but
line 3 would expect ENOENT and line 4 would be omitted. If
input is present on rebuild, RIKER would observe that the
result is not ENOENT and would detect a change.

5 Build Algorithm
The RIKER algorithm, shown in Figure 2, performs two

tasks: it detects changes and updates the build by running com-
mands affected by those changes. RIKER’s build algorithm

TraceIR Statements

A
rt

ifa
ct

A
cc

es
s

PATHREF (c : CMD, b : REF, p : STRING, f : FLAGS) : REF
Command c resolves path p relative to b with flags f

SPECIALREF (c : CMD, id : SPECIALREFID) : REF
Command c references a special artifact (e.g. /, cwd)

FILEREF (c : CMD) : REF
DIRREF (c : CMD) : REF
PIPEREF (c : CMD) : REF, REF
SYMLINKREF (c : CMD) : REF
Command c references new anonymous file, directory, etc.

St
at

e
C

he
ck

s

EXPECTRESULT (c : CMD, r : REF, e : OUTCOME)
Command c expects r to resolve with outcome e

MATCHMETADATA (c : CMD, r : REF, e : METADATAVERSION)
MATCHCONTENT (c : CMD, r : REF, e : CONTENTVERSION)
Command c expects r to have metadata or content e

EXITRESULT (c : CMD, child : CMD, n : INT)
Command c expects child to have exit code n

St
at

e
U

pd
at

es

UPDATEMETADATA (c : CMD, r : REF, v : METADATAVERSION)
UPDATECONTENT (c : CMD, r : REF, v : CONTENTVERSION)
Command c updates r with metadata or content v

ADDDIRENTRY (c : CMD, d : REF, e : STRING, a : REF)
Command c links artifact a as entry e in directory d

REMOVEDIRENTRY (c : CMD, d : REF, e : STRING)
Command c removes entry e from directory d

C
om

m
an

d
U

pd
at

es LAUNCH (c : CMD, cmd : [STRING], rs : [REF]) : CMD
Command c launches child cmd with inherited references rs

JOIN (c : CMD, child : CMD)
Command c waits for child child to exit

EXIT (c : CMD, n : INT)
Command c exits with status n

Table 3: TraceIR Statements.

is always guided by a saved transcript. RIKER’s fixed-point
build algorithm repeatedly evaluates the build transcript, run-
ning changed commands while checking for changes made
visible to other commands. The build terminates when no new
changes are found.

Changes. TraceIR statements are predicates that express ex-
pectations about state at specific points during the build. An
expectation can be in regard to the outcome of path resolution,
the exit code of a child command, or the content or metadata
of artifacts. Predicates are checked against the the filesystem
model M. This model, a set of artifacts, records the effects of
any prior TraceIR statements. The model is lazily populated
with actual filesystem state; predicates that refer to artifacts
that have not been modified during the build are checked
against actual filesystem state. When a command’s TraceIR
predicate fails—that is, the expected state does not match
the model M—the command is changed and must execute to
update the build.

Phases. RIKER’s build algorithm runs in phases. Each phase
is an evaluation of an entire TraceIR build transcript T in
the context of the model M. Trace evaluation, carried out by
EVALTRACE (line 6 of DOBUILD), is repeated until the set
of commands that must run, R, is empty.
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DOBUILD(trpath)

1 i = 1, M = { }, R = { }
2 T = LOADTRACE(trpath)
3 if |T | = = 0 then T = { LAUNCH (rkr, Rikerfile, ...) }
4 repeat
5 M = { }
6 (M,T,D,R) = EVALTRACE(M, T , R, false)
7 R = PLAN(D, R)
8 i = i+1
9 until |R|== 0

10 SYNCALL (M)
11 if i > 1
12 (_,T,_,_) = EVALTRACE(M, T , R, true)
13 WRITETRACE(T )

EVALTRACE(M,T,R, post)

1 T ′ = nil, D = { }
2 Rbuild = { },Rpost = { }
3 for t in T
4 c = CMDOF(t)
5 if c /∈ R
6 (ts,M,D,δbuild ,δpost) = EVALSTMT(t,M,R,D, post)
7 if δbuild then Rbuild = Rbuild ∪{c}
8 if δpost then Rpost = Rpost ∪{c}
9 T ′ = T ′@ ts

10 return (M, T ′, D, Rbuild ∩Rpost )

Figure 2: RIKER’s build algorithm. DOBUILD repeatedly evaluates
a TraceIR build transcript T in the model M until it observes no new
changes. EVALTRACE evaluates a single pass through T , returning
an updated model and trace, command dependence graph D, and set
of commands that must run, R. @ concatenates two lists. At the end
of the repeat-until loop, the build is up-to-date.

Emulation vs. Execution. RIKER performs incremental
builds by mixing execution and emulation of build commands.
RIKER emulates a command by evaluating its TraceIR to up-
date the in-memory model M, but does not run the command.
RIKER executes a command by running it with exec(3).
RIKER traces the system calls of the executing command
to generate new TraceIR, and evaluates this new TraceIR to
keep the in-memory model M in sync with filesystem state.
Whether a command is emulated or executed depends on
whether it was added to R during a previous phase (see §5.1).
Invariant. RIKER enforces the invariant that any command
whose dependencies have changed will be executed; failing to
do so results in an incorrect build. RIKER emulates all other
commands instead of executing them.

Executing an unchanged command preserves correctness,
but doing so is costly. We avoid unnecessary command exe-
cutions whenever possible because they take orders of magni-
tude longer than emulating a command to recreate its effects.
For example, when a command’s output is missing the file can
be restored from a cached copy (see §5.2) instead of executing
the command to recreate the file. We discuss the correctness
of this approach in Section 5.5.

To avoid over-approximating R (the set of commands that
will run) RIKER evaluates the build transcript T repeatedly
(line 4). Repeated evaluation is necessary because change
detection is a dynamic problem [5]. For example, suppose T
contains two commands, A and B, and that B reads one of A’s
outputs. Suppose A must run; does B need to run? The answer
is “maybe.” If A produces the same output that it produced
previously, then B does not need to run. We saw this exact
situation in the overview’s example when adding a comment
to a source file. It is safe to conservatively run B any time A
runs, but RIKER can potentially save work by deferring the
decision to run B until after A’s effects are observed.

Statement evaluation. At the heart of the build algorithm is
the evaluation of TraceIR statements. The purpose of eval-
uating a statement is twofold: to update state and to detect
changes. When a command is emulated, the only state updated
is M. When a command is executed, both M and the actual
filesystem are updated. The semantics of change detection
depend on the specific TraceIR statement (see §4.3).

EVALSTMT (line 6) evaluates a TraceIR statement. Eval-
uation returns one or more TraceIR statements, an updated
model M, a command dependence map D (see §5.3), and
two flags denoting whether the statement observed a change,
either a build or post-build change (see Post-build checks
below). The returned trace statements are used in the next
build phase. When a command is emulated, its trace steps are
simply echoed back. We describe command execution in §5.1.
After a transcript is evaluated, RIKER calls PLAN (line 7),
which may mark extra commands to run (see §5.3).

Filesystem and model. RIKER begins each phase by initializ-
ing the model M (line 5 in DOBUILD). Emulated updates are
discarded after each phase because those updates are replayed
in subsequent phases, whereas changes resulting from execu-
tion are written directly to the filesystem. SYNCALL (line 10
of DOBUILD) writes all changes in the model M to the filesys-
tem at the end of the build. This operation ensures the outputs
from commands that did not need to run are written to disk.

Post-build checks. Desirable state left behind from a pre-
vious build can look like a change to a command run in an
early part of a build. RIKER finishes every build with a se-
ries of post-build checks to avoid doing unnecessary work in
this scenario. To illustrate, recall our working example from
section 3 which runs the command gcc -o program *.c.
Before performing any compilation steps, gcc will stat the
program file, which does not yet exist. The stat system call
produces the following TraceIR:

1 r8 = PathRef(gcc_0 , CWD, "program", ---)
2 ExpectResult(gcc_0 , r8, ENOENT)

Later in the build, program is created by the linker. As a
result, immediately running the build again after completing
the first full build would detect a change on line 2, and gcc
would run. However, running gcc is unnecessary because the
observed change is a byproduct of the build itself. Post-build
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checks enable RIKER to skip over these changes by encoding
multiple justifications to skip: a command is unchanged if all
of its predicates match what was observed during the build,
or if the predicates match state found immediately after the
conclusion of the build.

The post-build phase (line 12 of DOBUILD) emulates all
commands in T , but adds additional predicates to check post-
build state. After running the post-build phase in the example
build, the above TraceIR excerpt is extended to capture either
outcome of the stat call:
1 r8 = PathRef(gcc_0 , CWD, "program", ---)
2 ExpectResult(gcc_0 , r8, ENOENT) [build]
3 ExpectResult(gcc_0 , r8, SUCCESS) [post -build]

The predicate on line 2 is the same as before, but has been
marked as a build predicate. The new predicate on line 3
describes an alternative. With post-build checks, a command
is only changed if its predicates fail in both the build and post-
build scenarios (line 10 of EVALTRACE). In other words, a
command is changed only when its dependencies are distinct
from both the dependencies observed during the last build
and immediately after the last build.

5.1 Command Emulation and Execution
RIKER begins every build by emulating a root command.

The root command sets up initial references (e.g. the root
directory, working directory, standard streams, etc.) and then
launches Rikerfile. When an emulated command contains
a LAUNCH statement, RIKER will either emulate or execute
the child command depending on whether or not the child is
in R. If the child is in R RIKER will launch the command in
a new process with system call tracing. All statements from
the child command are discarded from the transcript, and
will be replaced with new TraceIR collected from the child’s
execution. If c is not in R, RIKER simply emulates the child
from the build transcript.

Parent commands typically wait for their children to exit
using the wait system call; this system call generates a JOIN
statement in the build transcript. RIKER emulates a JOIN state-
ment by handling traced system calls from build processes
until the child command’s main process exits.

When a command c is executed it may depend on artifacts
modified by emulated commands. The latest state of these
artifacts is in M, not on the actual filesystem. RIKER will write
these changes out to the filesystem as they are needed, either
when c begins execution (when file descriptors are inherited
by the child) or when c first accesses the artifact during its
execution. This mechanism is critical for RIKER’s ability to
incrementalize builds, and relies heavily on caching.

5.2 Caching
Without caching, RIKER’s ability to execute sub-commands

in isolation would be limited because many of the needed
inputs would not be available. gcc and other language tools
routinely create “ephemeral” state—like temporary files—as

communication channels for tools in the toolchain. RIKER’s
caching and TraceIR make it possible to automatically restore
this ephemeral state to run a command whose inputs are
produced by other commands (e.g. the assembler or linker).

The motivating example in Figure 1 illustrates this func-
tionality. Suppose a user edits main.c; RIKER will execute
the compiler and assembler to produce tmp2.o, but does not
need to execute any commands to produce the other .o files.
Instead, these files are simply restored from cache when they
are first accessed by the linker. The fact that gcc reuses tmp.s
is not a problem, as each use of the file is ordered in the build
transcript so RIKER always knows which version of the file
is required for every command.

RIKER caches files, symlinks, and directories. Cached arti-
facts are stored in a .rkr directory, and are garbage collected
when RIKER detects that they are no longer referenced by
the build transcript. RIKER currently does not cache pipes,
sockets, or special files. If a command that reads from a pipe
must run, RIKER will also run commands that write to that
pipe to provide uncached inputs.

5.3 Build Planning
The purpose of build planning (line 7 in DOBUILD of

Figure 2) is twofold: to ensure the build terminates, and to
improve efficiency. PLAN works much like the mark-sweep
garbage collection algorithm [18] and uses the command de-
pendence graph, D, returned by EVALTRACE. D is a digraph
of producer-consumer relationships between commands.

Commands are marked under a few conditions: a) a com-
mand is in R, having directly observed a change in EVAL-
TRACE; b) a command consumes uncached input produced
by a command already marked to run; c) a command pro-
duces uncached output consumed by another command al-
ready marked to run; or d) a command produces uncached
output that should persist after the build.

The above criteria identify commands that subsequent build
phases in a cycle-free build would eventually identify, so for
those builds it reduces the number of phases. However, in
builds with dependence cycles, RIKER may not terminate
without special handling. In D, a cycle appears as a strongly-
connected component (SCC) [31]. Planning ensures that com-
mands in a cycle run atomically. Caching also breaks cy-
cles; RIKER only needs to atomically run SCCs that interact
through uncached artifacts like pipes.

5.4 Exit Code Handling
Unlike prior forward build systems, RIKER can execute a

sub-command without executing its parent. Parent commands
can observe the exit codes of their children, so if a child
finishes with a different exit code the parent must run. Because
exit code changes are rare, RIKER optimistically assumes that
the child’s exit code will not change. In the common case
the child command runs, finishes with the expected exit code,
and the build is complete. If the child finishes with a different
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exit code, the parent observes a change and will re-execute
in the next phase of the build. Executing the parent may re-
execute the child if the child’s dependencies change again. In
the worst case, RIKER could backtrack on every command,
taking O(n2) time, where n is the number of commands. Even
for builds that contain compilation errors—and thus changed
exit codes—we observed that total work done is close to O(n).

5.5 Correctness
Here we provide a proof sketch for the correctness of

RIKER’s incremental build algorithm. We make the following
assumptions.
A1. The user-provided full build specification does what the

user intends.
A2. The user accepts that equivalent outputs (defined in §4.1)

are interchangeable, an assumption shared by most build
systems.

A3. Intercepting system calls is sufficient to determine all
dependencies.

A4. Our translation from system calls to TraceIR faithfully
captures dependencies and side-effects. Our empirical
evaluation in Section 6 provides evidence that this trans-
lation is accurate.

An incremental build tool that produces outputs that could
not have come from a full build is clearly incorrect. A consis-
tent build produces output that could have come from a full
build, and is therefore correct (A1, A2) [12, 13].

Running an empty build specification produces no output,
so all rebuilds of this specification are by definition consistent.
Given a consistent build with k commands, add command
k+ 1 to the specification. Command k+ 1 may depend on
outputs from any of the preceding k commands. The build
remains consistent when k+1 is executed (A1). On rebuild,
if k + 1 is unchanged, skipping command k + 1 preserves
consistency because RIKER restores cached artifacts (A2).
By induction, a build is consistent as long as all changed
commands are executed.

RIKER executes changed commands in phases. If an exe-
cuted command produces a different output read by another
command, the latter command is changed and will execute
in the next phase. The build terminates when a phase fin-
ishes with no changed commands. Since RIKER’s algorithm
executes all changed commands, it produces consistent builds.

The proof sketch above assumes commands k and j do
not participate in a dependence cycle, but these cycles arise
in real builds. Without loss of generality, assume k writes
output that j accesses, and later j writes output that k accesses;
RIKER’s build transcript captures the temporal order of these
interactions. We allow for such cycles by logically partitioning
k into k′, the portion of k that runs before its dependence
on j, and k′′, the remainder of k. Now j depends on k′ and
k′′ depends on j, so there is no longer a cycle. We add the
constraint that if either k′ or k′′ must run, both will run, as
these are actually two parts of the same command.

6 Evaluation
Our evaluation of RIKER addresses four key questions:
Q1: Are RIKER builds easy to specify?
Q2: Are RIKER builds fast?
Q3: Are RIKER builds correct?
Q4: How does RIKER compare to RATTLE?

We use RIKER to build 14 software packages, including
large projects like LLVM, memcached, redis, and protobuf.
Evaluation was conducted on a typical developer worksta-
tion with an Intel Core i5-7600 processor, 8GB of RAM, and
an SSD running Ubuntu 20.04 with kernel version 5.4.0-80.
Builds use either gcc version 9.3.0 or clang 10.0.0.

6.1 Are RIKER builds easy to specify?
To answer this question, we wrote Rikerfiles for seven

applications: lua, memcached, redis, rkr, sqlite, vim, and xz.
The new builds produce the same targets as the projects’ ex-
isting make or cmake builds. Unlike the default build systems,
the RIKER-based builds do not list any dependencies or in-
cremental build steps. Three of these builds were written by
undergraduate students over the course of a few days; the
students were new to RIKER and unfamiliar with the project
sources they were building. The biggest challenge the students
faced was understanding the existing build specifications, a
task that is likely easier for the project’s own developers.

A key feature of a Rikerfile is its brevity, illustrated by
memcached’s complete Rikerfile:

1 CFLAGS="..."
2 DEBUG_CFLAGS="..."
3 MEMCACHED_SRC="memcached.c hash.c ..."
4 TESTAPP_SRC="testapp.c util.c ..."
5 gcc $CFLAGS -o memcached $MEMCACHED_SRC -levent
6 gcc $DEBUG_CFLAGS -o memcached -debug \
7 $MEMCACHED_SRC -levent
8 gcc $CFLAGS -o sizes sizes.c -levent
9 gcc $CFLAGS -o testapp $TESTAPP_SRC -levent

10 gcc $CFLAGS -o timedrun timedrun.c -levent

This level of simplification is typical; Our largest
Rikerfile—used to build sqlite—is just over 5KB, and con-
sists mostly of a list of source files. Forward builds are eas-
ier to specify because of automatic dependency discovery.
RIKER’s incremental builds are also significantly shorter than
specifications for prior forward build tools (see §6.4).

6.2 Are RIKER builds fast?
The first full build of any software project is usually the

longest build. Full builds are where RIKER incurs the largest
absolute overhead. Importantly, full builds are not the com-
mon case; developers run incremental builds far more often
than full builds. This section shows that even with the extra
delay, full builds are reasonably fast with RIKER.

To measure RIKER’s overhead, we built 14 software
projects with RIKER. Seven of these projects use a
Rikerfile that replaces the default build (see §6.1), while
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Figure 3: RIKER runtime overhead for full builds compared to each
project’s default build system. RIKER’s median overhead on full
builds is 8.8%, with a median absolute slowdown of 1.2s.

the other half use a Rikerfile that wraps the default build.
The only requirement for a Rikerfile is that it run a full
build, so a make-based project can be built with a one-line
Rikerfile: make --always-make. Unfortunately, tracing
make itself can lead to spurious dependencies so this approach
is only suitable for evaluating full-build performance.

Figure 3 shows the results of running full builds with
RIKER. These builds are run in serial; we examine the perfor-
mance of parallel builds later in this section. Each project is
built five times with RIKER and its default build system, with
the exception of LLVM which we build three times due to
its long build time. Median full-build overhead for all bench-
marks is just 8.8%; most builds have between 4% and 20%
overhead. TraceIR transcript sizes are roughly proportional
to build time, ranging from 2MB for autoconf (1.2s build)
to 264MB for LLVM (77-minute build). In absolute terms,
RIKER spends a median of just 1.2 seconds longer to per-
form a full build than each project’s default build system.
The longest additional waiting time for a RIKER build is for
LLVM, which takes about three minutes longer than the de-
fault 77 minute build (4% overhead). The worst overheads
appear in projects like autoconf and coreutils that build many
small programs rather than a single large executable. RIKER’s
full-build overhead is less than 25% for all other projects.

Incremental Builds. The most important measure of effi-
ciency for a build system is its ability to perform fast incre-
mental rebuilds. We perform two experiments to measure the
efficiency of RIKER’s incremental builds.

First, we measure the time it takes RIKER to perform a no-
op build—one where no commands need to run—by running
an incremental build immediately after finishing a full build.
The median RIKER no-op build time over the 14 benchmarks
is just 220ms, compared to 5ms for the default build system.
The longest additional wait is for the LLVM build, which takes
11.3s with RIKER compared to 4.8s with make. More than
half of the no-op builds with RIKER take just 162ms longer
than the default build system, an imperceptible difference.

Second, we use real developer commits to measure the effi-
ciency of performing incremental builds with RIKER versus a
project’s default build system. We run this experiment on six
projects—memcached, redis, rkr, sqlite, vim, and xz—all of
which have custom Rikerfiles and public version control

memcached
redis
riker

sqlite
vim

xz

0% 25% 50% 75% 100%
Incremental Build Time Over Full Build Time (lower is better)

Build Tool

Riker

Default

Incremental Build Performance

Figure 4: Time to run 100 incremental builds as a percentage of the
time to run a full build at every commit using the project’s default
build system. Excluding sqlite, RIKER’s incremental builds save 235
minutes compared to 250 minutes saved by the default build system.

histories. We perform a full build of each project, and then
measure the time required to update the build at each of the
next 100 commits in the project’s git repository. This exper-
iment simulates a developer performing incremental builds
after editing a subset of the project’s source files.

Figure 4 shows the results of this second experiment. The
graph shows the total time required for all 100 incremental
builds as a percentage of the time it would take to run a full
build at each commit. Note that we compare RIKER’s incre-
mental build times to the time it would take to run a full build
with the project’s default build system. This ensures RIKER’s
overhead on the full build does not give it an advantage com-
pared to the slightly faster default build system.

95% of RIKER’s incremental builds complete within 3.8s
of the default build system. In every benchmark except one
(sqlite), RIKER is able to reduce build time by at least 63%
relative to a full build. Over 5000 incremental builds of these
five benchmarks, the default build system reduces build time
by 74.7%, saving 250 minutes compared to full builds at each
commit. RIKER saves 70.1% of total build time—a total of
235 minutes. Building with RIKER yields 94% of the benefit
of a manually-specified incremental build, but with no manual
effort and no risk of errors.

RIKER is able to save more time than the default build
system for memcached because the case study includes sev-
eral commits that edit the build specification itself. These
edits generally require a full build for make-based projects,
but RIKER is still able to perform a safe incremental build
when the specification changes.

Neither RIKER nor make saves any work when building
sqlite. This is because sqlite’s build concatenates all of its
source files together before compiling them so the project can
be distributed as a single source file. RIKER’s overhead adds
less than three seconds (4.2%) to each “incremental” build.
Parallel Builds. Our evaluation has so far focused on serial
builds, but parallel builds are also a useful mechanism for
reducing build times. There are two concerns when it comes
to RIKER’s support for parallel builds. First is scalability:
how does RIKER’s tracing impact the performance of parallel
builds? The second concern is expressiveness: how do users
write a Rikerfile that describes a parallel build?
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To assess RIKER’s scalability we focus on LLVM, our
largest benchmark. On our evaluation machine, which has
four cores, we see good scalability when adding up to four
parallel jobs to LLVM’s make build. Build time is reduced by
54.3%, 64.4%, and 71.9% when building with two, three, and
four workers respectively. With RIKER, we see reductions in
build time of 47.7%, 63.0%, and 67.0% for the same numbers
of workers. RIKER’s overhead increases from 4.0% for the
serial build to 22.2% with four workers. A likely cause for
this reduction in scalability is that RIKER utilizes a busy-wait
loop that monopolizes a core. Even with this limitation—
which we plan to address—parallel builds with RIKER are
still significantly faster than serial builds.

While the prior experiment examines RIKER’s tracing per-
formance on a parallel make build, it is also possible to write
parallel build specifications directly in a Rikerfile. To make
this as easy as possible, RIKER includes a wrapper around
common C/C++ compilers that launches sub-commands for
compilation in parallel, which is always safe (two .c files can
always be compiled simultaneously). With RIKER’s compiler
wrapper, simple lines like gcc *.c start parallel compilation
tasks for each source file, which RIKER can also run in paral-
lel for later rebuilds. Enabling this wrapper reduces build time
for memcached by about 50%, compared to 60% with mem-
cached’s own parallel make build. RIKER’s compiler wrapper
provides an easy, automatic way to run parallel builds, and
RIKER’s tracing does not significantly limit scalability.

6.3 Are RIKER builds correct?
We run each project’s full test suite for both the default and

RIKER builds. For the six projects in the previous section, the
tested outputs are the product of one full build and 100 incre-
mental builds, one for each commit. The remaining projects
run only full builds. Every RIKER project passes exactly the
same tests as the original build system. This experiment pro-
vides evidence that RIKER correctly updates builds to produce
equivalent final targets.

We have additional confidence that RIKER’s translation
from system calls to TraceIR and its POSIX filesystem model
are correct because RIKER checks the outcomes of operations
in the model against actual system call results. RIKER raises
a warning if the model deviates from actual system behavior;
our experiments and test suite raise no such warnings.

6.4 How does RIKER compare to RATTLE?
To compare against the prior state of the art forward build

system, we ported the memcached build to RATTLE [23]. Our
efforts to port other benchmarks to RATTLE were not success-
ful. RATTLE limits state modeling to files, meaning RATTLE
misses some kinds of changes [29, 30]. We demonstrate with
the following RATTLE build:

main :: IO ()
main = rattleRun rattleOptions $ do

cmd "gcc prog.c"

cmd "mkdir dir"
cmd "mv a.out dir"

The full build runs correctly. However, because RATTLE
does not model directories, changing prog.c leads to an in-
consistent rebuild. A new a.out is placed in the current direc-
tory, leaving the original in dir untouched. RATTLE cannot
build sqlite for precisely this reason. RATTLE also does not
handle circular dependencies. The lua build calls ranlib,
which is used to create library archives. Since ranlib modi-
fies its input, RATTLE fails during the full build.

We were able to build memcached with RATTLE, which
imposes a median overhead of less than 1% for the full build.
This is because RATTLE uses library interposition for tracing,
which is faster than ptrace but will miss system calls not
issued by libc. A straightforward translation of the build speci-
fication from RIKER to RATTLE does not result in good incre-
mental build performance; RATTLE cannot run fine-grained
incremental builds from simple specifications, so it only re-
duces build time by 25% compared to full builds over the 100
commits from our earlier experiment. This is significantly less
than the 78% build time reduction RIKER is able to achieve
from the simple build specification. A RATTLE specification
with comparable incremental build performance requires 63
separate commands, compared to just five for RIKER.

7 Conclusion
RIKER significantly lowers the burden of correctly spec-

ifying fast incremental builds. A RIKER build specification
can be any executable program, like a simple shell script that
performs a full build. In many cases, even a single build com-
mand such as gcc *.c is sufficient. Users do not need to
list dependencies in their build specifications, nor are they
required to break builds into incremental steps. Nevertheless,
RIKER always builds correctly and quickly.

RIKER uses low-overhead system call tracing to automati-
cally discover dependencies as build commands execute, and
on rebuild, runs only the subset of commands required to
bring the build up-to-date. RIKER has a median overhead
of 8.8% across 14 real software packages, and it realizes
94% of make’s incremental build speedup with no manual
effort and no risk of errors. We think these substantial engi-
neering improvements are well worth RIKER’s modest over-
heads. RIKER is available under an open-source license at
https://rkr.sh.
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A Artifact Appendix
Abstract

The RIKER artifact includes a virtual machine image with
a pre-installed copy of RIKER. RIKER is a build system that
automatically discovers and runs incremental builds from sim-
ple specifications. This artifact makes it easy to reproduce the
experiments described in the paper, which evaluate RIKER’s
performance and effectiveness as a build tool.

Scope
This artifact should be used for two purposes: a) to re-

produce the experiments from the paper, and b) to generate
plots from the new results. The provided scripts reproduce
the full-build overhead plot (Figure 3), the incremental sav-
ings plot (Figure 4), and the summary statistics reported in
the abstract and in Section 6. We expect runtime overhead
numbers will vary across platforms. Running the evaluation
within a virtual machine will also likely have some effect on
overhead. However, the artifact’s overhead should be close to
the paper’s reported 8.8% median overhead on full builds, and
incremental savings should be close to make’s incremental
build performance.

Contents
README: A detailed guide to setting up the artifact and
running experiments from the paper.

Virtual Machine Image: A VM image in OVA format that
contains RIKER’s source code, build dependencies, and
scripts that automatically run the paper’s benchmarks.

Hosting
The artifact is available at https://doi.org/10.5281/

zenodo.6544966. Updated versions of RIKER will be avail-
able at https://rkr.sh. We recommend using the updated ver-
sion for uses other than reproducing experimental results from
the paper. Newer versions are likely to be more stable, support
more kernel versions and architectures, and include bug fixes
and additional features.

Requirements
Hardware Requirements. The virtual machine included with
this artifact requires an x86_64 machine.
Software Requirements. The virtual machine image includes
all build and evaluation dependencies. The OVA file can be
imported into any hypervisor that supports OVA, but it was
developed and tested using VirtualBox. The experimental
evaluation requires network access; other hypervisors may
require changes to network configuration after import.
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