RIFF: Reduced Instruction Footprint for
Coverage-Guided Fuzzing

Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang™, Rui Wang?, Chengnian Sun?, and Jiaguang Sun

Tsinghua University

2 Capital Normal University

3 Waterloo University

Coverage is Important for Guided Fuzzing

Corpus New Inputs

\xffPNG

\Xx89PNG Select X89PNG \Xx89PNG\X0d

: C
Save Interestlng7/ S?;'tfsrﬁg: /LRun & Collect

Coverage Pipeline in Fuzzers

Corpus New Inputs

\fPNG
\Xx89PNG Select X89PNG \Xx89PNG\X0d

Coverage Pipeline
| / n \
Save Interestlng7/ S?;'tfsrﬁg: /LRun & Collect———

Example: Coverage Collection in AFL

Target Program @ Instrument

afl_maybe_log (0x52a7) ;.2 Ypasaf

SECHE P '
afl maybe log(0x236e) ;.
£00 () ; ‘

} else { |-
afl maybe log(0x£084) ;"
Bar() ;

}
atl maybe log(Ux7981) r

-
e)
-
-

0x0000

b 0x3658

L VA
-

0x52a0

~
~
/‘\

0x8620 ™M

0x9888

e

-
-
-
-
-
-
-
-
-
-
-

Coverage

Example: Coverage Analysis in AFL

Coverage ;
A
Fuzzer 1. Read 2. Write|Back 3. Read
Y Y
Counter |01 [0A[00|00|00|11BC|00| | Bitmap [01{10{00|00|00|20{40(00
v \ 4 3
. Unknown
Classify Scan Program
A States
Y

Bitmap |01|10({00|00|00{20|40|00 Virgin [FE|FF|FF|FF[FEDB|7F|FF

3. Read

Overhead in Coverage Collection

afl-clang

lea -0x98 (%rsp), %rsp Save/Restore Context 2@
mov %rdx, (%rsp)

mov %$rcx, 0x8 ($rsp)

e srax, 0x10 ($rsp) Load Counter Base X
mov $0xcab, $rcx

callg _ afl maybe log Compute Counter Index 5%
lahf

seto %al

mov afl_area ptr(%rip), 3rdx mov afl _prev_loc, $rax
test Zrdx, srdx movslqg %fs: (%rax), $rcx

je near _ afl setup lea afl_area_ptr(%rip), 3rdx
xor __afl prev_loc(%rip),%rcx o) (%rdx) , $rdx

xor $rcx, afl prev_loc(%rip) xor $0x6956, srex

shrq _ afl prev_loc(%rip) addb $0x1, (%rdx, %rcx,1)

incb (%$rdx, $rcx, 1) mov1l $0x34ab, %fs: (%rax)

add $0x7f,%al

sahf

retq

mov 0x10(3rsp),%rax Update the Counter </~
mov 0x8 (%$rsp), $rcx

mov ($rsp) , $rdx

lea 0x98 ($rsp), $rsp

afl-clang-fast

Method Duration Instructions L1-I LI-D puops
afl-clang 3.50x 4.26x 102.36x 5.16x 4.72x
afl-fuzzbench 2.45x 2.83x 19.88x 2.53x 2.14x
afl-clang-fast 1.69x 1.79x 33.58x 2.88x 2.11x

Overhead in Coverage Analysis

Other 9.1% Coverage Pipeline 84.48%
L

Classify 37.81% Scan 39.00%

Mutate 9.31% Reset 7.67%

Table 4: Number of Processed Counters and Executions
Total Useless Proportion

Counter 65,536 64,664.37 98.67%
Execution 67,696 67,694 99.997%

@ RIFF: Overview and Insights

Single-Instruction Instrumentation

Target Program
Move run-time computation to

Control-Flow Analysis _| Pre-Computed Instrument

Source
Interprocedural Analysis™| Counter Index } Codegen

Fixed % kg . ; ; ;
Gounter Base compile-time if possible
Target Program

8D R e e | F Y ‘
T o)

(¥0XA000L) 4 jommmmmresmmmmfesponmnennnnedany

foo(); Y Y

0x0000 |1 101

st w0000 B T T T 1

(*0x40002) ++4;-=-=mmmmmmmmtmmrmmmmm e !
}
(F0x40003) oo a6 (Eied at 0x40000)

Hot-Path Vectorization
Fuzzer

Vi ized Masked Inf . .
100% iy GorpaTs "Update Add hot-path processing logic

specially tuned for simple cases

Single-Instruction Instrumentation: Problem of Block Coverage

Block coverage is intuitive but incomplete: multiple edge counts map to one block count.

Single-Instruction Instrumentation: Problem of Block Coverage

Block coverage is intuitive but complex: requires extra computation at fuzzer’s side.

10

Single-Instruction Instrumentation: Simplified Algorithm

for each potential control transfer £ in program P:
if Eis direct control transfer:
if basic block of E.source must transfer to basic block of E.farget:
InstrumentBlock(basic block of E.source)
else if basic block of E.target must transfer from
InstrumentBlock(basic block of E.target)

sic block of E.source:

else:
InstrumentBlock(CreateDummyBlock(E))
else:
(Handle indirect control transfer, see the next slide)

Single—-instruction instrumentation

incb SINDEX ($rip) # fe 05 ?2? ?2?

re 2T

11

Single-Instruction Instrumentation: Simplified Algorithm

for each potential control transfer £ in program P:

if E is direct control transfer: . .
) _e # Rare case: indirect transfer (source)
(See the previous slide) mov $PREV(Srip),%rcx # 48 8b 0d 2?2 2?7 2?2 27
else: movl SBBTD,%fs: ($rex) # 64 €7 01 22 22 22 22

InstrumentBefore(E.source, SetSourcelD)
InstrumentAfter(E.target, LogEdgeTransfer)

Rare case: indirect transfer (destination)
mov SPREV (3rip) ,%vex # 48 8b Od 2?7 22 27 22
movslg %fs: (%rcx), srax # 64 48 63 01

ROt SBBID, %$rax # 48 35 22 2F 22 277
inch SBASE (%rax) # fe 80 2?2 2?2 2?2 2?2?

12

Hot-Path Vectorized Analysis

Newly-Introduced
Hot Path (99.997%)

Coverage

Fuzzer 1. Read 2. Write|Back [3. Read

Unk
Classify Scan 4. Update p?og?av:nn
Bitmap |01(10{00(00|00(20{40{|00+ Virgin |FE[FF|FF|FF(FEDB[7F|FF e

K

Original Algorithm
Cold Path (0.003%)

Stage 0: Vectorized Scan

#0101 |0A 11[3C|
#1 Read | Scan for Zero All Zero: Discard
#o & in Parallel
#3
#4 Contains Updated Counter
#5 Y
Compute Nonzero
it Positions
#7
Chunk
Stage 1: Masked Compare Mask: #0
\ 4 "
|01 |0A|00 |00 00|11 |3CIOO| No New Feature: Discard
Counter
Y Has New Feature
Classify Virgin
Bitmap [FE[FFIFF|FF|FEDBZF]FF|
[01]10]oo]oo]oo]20]40]00 :

Unknown :
Program [~"7""""°°
States

Stage 2: Infrequent Update \T/

Classify and

Write Back]

Update Virgin Bits »{ Path or Coverage?

13

Hot-Path Vectorized Analysis

Stage 0: optimized for useless counters

Stage 0: Vectorized Scan

#0
#1
#2
#3
#4
#5
#6
#7

01

0A

il

3C

Read

Scan for Zero

Chunk

All Zero: Discard

in Parallel

Contains Updated Counter

Compute Nonzero
Positions

Mask: #0

14

Hot-Path Vectorized Analysis

Stage 1: optimized for useless executions

Stage 1: Masked Compare lMask: 40
No New Feature: Discard
01]0AJ00j00j00[11[8C|00] »| Compare s
C
Y S A L Has New Feature
Classify Virgin)
J,Bitmap FE[FF|FF|FFIFEDBZF|FF
01[10/00{00{00({20{40{00— !
Unknown
Program [~7777°°°°
States Coverage v
Counter [01[0A[00{00{00{11[8C|00| | Bitmap [01]10{00|00|00|20|40|00

Classify
simap [OT[T0]00[00 00 BO[RO[00)

Evaluation: Overall Speedup in Fuzzing

AFL MOpt
== 3h == 3h
3 == 6h 3 == 6h
mm 12h == 12h
== 24h = 24h
2 2 -
1 1
0 0
P P S« S > D> NV @ o VY S O S O O S O» NV @ &
" V.0 & Qe; QQ & & P (,o\ @ XS " YO & P S DD @ L
3 & & O ¢ & L L & & e Y8 L L
@ééQ @{{9 YN \.'@\ ¥ \-:o”" er; Q&) > O Q& zQ‘SSQ é@ NN \.I@X N &S‘? er; <,§$ N) & O
K7 QQ’ K7 Qe,
o N

Figure 7: Normalized execution time required by RIFF to reach the same coverage as AFL and MOpt. The X axis is programs,
the Y axis is the ratio between the execution times required for reaching the same coverage. A bar below the red line indicates a
speed-up.

16

Improved Performance Brought by Speedup

19 Coverage (Edge) Total Paths Total Executions (Million)
’ 1.5 | = AFL = AFL
2 s MOpt 67 = MOpt

Figure 8: Normalized performance metrics for RIFF-based fuzzers after 24 hours of fuzzing. X axis is programs, Y axis is
the normalized performance metric (ratio between RIFF and standard fuzzer). Bars higher than 1 (red line) indicate better
performance.

Speedup in Coverage Collection and Analysis

= AFL/MOpt 1.0
mem RIFF
0.8 1
067 - AVX2
. AVX512
0.4

0.0-

Figure 10: Normalized execution duration of f‘_JZZCd programy: Figure 11: Coverage processing time (normalized against the
time to execute 1000 on fixed inputs normalized to the time baseline algorithm). Lower bars indicate better performance.
of uninstrumented programs. Lower bars indicate better per-

formance.

18

Summary

Observation

Implementation

1. Coverage collection and
analysis significantly affect
the speed of fuzzing.

2. We break down the cost of
instrumentation and
analysis code.

1. Accelerate coverage 1. Adapt RIFF to popular
collection with single fuzzers, including AFL and
instruction instrumentation. MOpt.

2. Accelerate coverage 2. Integrated into AFL++.

analysis with hot-path
vectorization.

19

Thank You

Q&A

