
ASAP: Fast Mobile Application Switch via
Adaptive Prepaging

Sam Son1 Seung Yul Lee1 Yunho Jin1 Jonghyun Bae1 Jinkyu Jeong2

2021 USENIX Annual Technical Conference (USENIX ATC ’21)

1 Seoul National University 2 Sungkyunkwan University 3Google

Tae Jun Ham1 Jae W. Lee1 Hongil Yoon3

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Memory Pressure in Today’s Smartphone Usage

2

 Memory capacity is becoming a scarce resource on mobile devices
• The application size and memory footprint have been growing

• Users run more than 5 applications concurrently[1]

 However, the cost/power/area budget often limits its size

Image from https://sensortower.com/blog/ios-app-size-growth
[1] Yu Liang et al., “Acclaim: Adaptive Memory Reclaim to Improve User Experience in Android Systems” in ATC’20

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Memory Pressure Degrades UX

3

 Causes latency when users switch applications

 Maintaining low latency is crucial
 Users switch applications more than 100 times a day[2]

[2] Tao Deng et al., “Measuring smartphone usage and taskswitching with log tracking and self-reports” in Mobile Media & Communications 2018

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

4

RAM App List

BG

FG

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

5

Launch Calendar

Application Launch creates an application process from scratch takes long time

Calendar’s PagesRAM App List

Anon Page

File-backed
Page

Calendar

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

6

Launch other apps

Launching more apps uses up all the memory

Calendar’s PagesRAM App List

Anon Page

File-backed
Page

Calendar

Camera

Message
Anon Page

File-backed
Page

Memory Pressure ↑

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

7

Launch other apps

(1) Page Eviction

To secure free memory, OS compresses anonymous pages (compression-based swap)

Calendar’s PagesRAM App List

File-backed
Page

Calendar

Camera

Message
Anon Page

File-backed
Page

Compressed
Compression

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

8

Launch other apps

(1) Page Eviction

To secure free memory, OS discards file-backed pages

Calendar’s PagesRAM App List

Calendar

Camera

Message
Anon Page

File-backed
Page

Compressed

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

9

Switch to Calendar

Switching to Calendar is delayed due to on-demand page fetching

Calendar’s PagesRAM App List

Calendar

Camera

Message
Anon Page

File-backed
Page

Compressed

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

10

Switch to Calendar

Switching to Calendar is delayed due to decompressing anonymous pages

Calendar’s PagesRAM App List

Calendar

Camera

Message
Anon Page

File-backed
Page

Decompression
Anon Page

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

11

Switch to Calendar

Switching to Calendar is delayed due to reading file-backed pages from disk

Calendar’s PagesRAM App List

Calendar

Camera

Message
Anon Page

File-backed
Page

Anon Page

File-backed
Page

Disk I/O

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

12

Kill Calendar

(2) Low Memory Killer (LMK)

Killing background application frees up pages

RAM App List

Camera

Message
Anon Page

File-backed
Page

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Android Memory Management

13

Relaunch

This time, switching to Calendar causes slow re-launching of Calendar

RAM App List

Camera

Message
Anon Page

File-backed
Page

Switch to Calendar Anon Page

File-backed
Page

Calendar

Calendar’s Pages

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Application Switching Latency under Memory Pressure

14

Observation 1: Launch time is longer than switch time even when most pages not in memory
Implication: It is better to avoid relaunching by disabling LMK

0

400

800

1200

La
te

nc
y

(m
s)

Switch Time (all pages in memory)
Switch Time (most pages not in memory)
Launch Time

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Application Switching Latency under Memory Pressure

15

Observation 2: Switch time can increase by 4x on average under memory pressure
Implication: Retrieving relevant pages on-demand increases switch time a lot

0

400

800

1200

La
te

nc
y

(m
s)

Switch Time (all pages in memory)
Switch Time (most pages not in memory)
Launch Time

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Limitation of Demand-Paging

16

 Both CPU and disk BW are under-utilized during switch time
• Page decompression is delayed until anonymous page fault occurs low CPU utilization

• Disk I/O is delayed until file-backed page fault occurs low disk BW utilization

 On average, only 34% of CPU and 15% of disk BW are utilized during the switch time

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Opportunity of Prepaging

 Switch time can be improved by leveraging prepaging at the beginning of switch

 By doing so, available system resources (i.e., CPU cycles and disk bandwidth) can be fully

utilized

17

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Opportunity of Prepaging

 Switch time can be improved by leveraging prepaging at the beginning of switch

 By doing so, available system resources (i.e., CPU cycles and disk bandwidth) can be fully

exploited

18

Our Goal
Reducing switching latency by leveraging prepaging

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Challenges of Prepaging

19

• Applications’ contexts keep changing

• Achieving both high coverage and low misprediction ratio
What to Prepage?

• Maximizing the efficiency by achieving high system resource utilization

• Minimizing contention with application threads
How to Prepage?

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

 ASAP maintains low switching latency without LMK

 ASAP is application-agnostic, and requires no changes to applications codes

Application Switch via Adaptive Prepaging (ASAP)

20

• Logging both page faults and I/O syscalls High coverage

• Adaptively update based on feedback Low misprediction
What to Prepage?

• Multiple prepaging threads High utilization

• Opportunistically prepaging to minimize contention Low contention
How to Prepage?

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

ASAP: Design Overview

21

Page fault
handler

Swap
cache

Prepaging
Manager

Page
fault

Linux kernel

Page
cache

Data load
operation

I/O
operation

Android
framework App sw

itching start / end

Read/write
system call

Switch
Footprint
Estimator

(SFE)

In-memory
comp. swap

Flash
storage

Android
apps

ASAP
What to prepage?

How to prepage?

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Switch Footprint Estimator (SFE)

22

Page fault
handler

Swap
cache

Prepaging
Manager

Page
fault

Linux kernel

Page
cache

Data load
operation

I/O
operation

Android
framework App sw

itching start / end

Read/write
system call

Switch
Footprint
Estimator

(SFE)

In-memory
comp. swap

Flash
storage

Android
apps

ASAP
What to prepage?

Logging
page access information

Maintaining
Candidate Table

Maintaining
Prepaging Target Table

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

(inode, index)
(32, 2)
(32, 3)
(32, 5)

Switch Footprint Estimator: Mechanism

23

(/A.vdex, 2)
(/A.vdex, 3)
(/A.vdex, 5)

Switching to App X

Fault Buffer

Lookup

inode index
32 (2, 3)

Prepaging Target Table for X

Promotion

Candidate Table for X

Logging
inode(/A.vdex) = 32

Eviction

inode index
32 (1,2,3,4)

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Optimized SFE for Each Type of Pages

24

 Anonymous pages and file-backed pages have different access patterns

 About 75% of all accessed file-backed pages are invariant across switches, while only 44%

of anonymous pages are invariant

0%
20%
40%
60%
80%

100%

AB CC NY YT FB TW CH QR Avg.

1 - 2 3 - 4 5 - 6 7 - 8 9 - 10

AB CC NY YT FB TW CH QR Avg.

1 - 2 3 - 4 5 - 6 7 - 8 9 - 10

Access Frequency of File-backed Pages (over 10 switches) Access Frequency of Anonymous Pages (over 10 switches)

Po
rti

on
 in

 E
nt

ire
 P

ag
es

75%
44%

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Optimized SFE for Each Type of Pages

25

Page fault
handler

Swap
cache

Prepaging
Manager

Page
fault

Linux kernel

Page
cache

Data load
operation

I/O
operation

Android
framework App sw

itching start / end

Read/write
system call

SFE for
anonymous

pages

SFE for
file-backed

pages

In-memory
comp. swap

Flash
storage

Android
apps

ASAP
Static Candidate Table

Dynamic Candidate Table

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Prepaging Manager

26

Page fault
handler

Swap
cache

Prepaging
Manager

Page
fault

Linux kernel

Page
cache

Data load
operation

I/O
operation

Android
framework App sw

itching start / end

Read/write
system call

SFE for
anonymous

pages

SFE for
file-backed

pages

In-memory
comp. swap

Flash
storage

Android
apps

ASAP Fetching
prepaging target

Optimzing
prepaging threads

How to prepage?

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Optimzing Prepaging Threads

27

 Batch processing minimizes lock contention between prepaging threads
• 16 pages for anonymous pages

• All target pages of one file for file-backed pages

 Giving low schedule priority to avoid CPU contention with app threads
• SCHED_IDLE(lowest) for prepaging threads

• Opportunistically prepaging

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Evaluation Methodology

28

 Integrated ASAP into Android OS

 Evaluated ASAP on high-end and mid-end devices (Google Pixel 4 and Pixel 3a)

 8 popular mobile applications with diverse automated usage patterns

Application Usage Pattern

Angry Bird (AB) Play a stage

Candy Crush (CC) Play a stage

New York Times
(NY)

Browse and read articles

Youtube (YT) Watch Videos

Facebook (FB) Browse and read posts

Twitter (TW) Browse and read posts

Chrome (CH) Browse keywords

Quora (QR) Browse questions and answers

Device Google Pixel 4 Google Pixel 3a

CPU Snapdragon 855 Snapdragon 670

DRAM 6GB (effective 4GB) 4GB

Storage UFS 2.1 eMMC 5.1

OS
Android 10.0.0(r41)

with Linux kernel
4.14

Android 10.0.0(r41)
with Linux kernel

4.9

Device Specification Benchmark Applications and Usage Pattern

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Switching Latency Reduction

29

 Baseline: switching latency when 8 applications run concurrently (high memory pressure)

 Up to 33.3% (22.2% on average) latency reduction on Google Pixel 4

 Up to 35.7% (28.3% on average) latency reduction on Google Pixel 3a

-10
0

10
20
30
40

Anon-only File-only ASAP Anon-only File-only ASAP

N
or

m
al

iz
ed

sp
ee

du
p

(%
)

(a) Pixel 4 (b) Pixel 3a

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Improved CPU Utilization

30

 Noticeable increase in the CPU cycles at the early phase of switching

 Higher CPU utilization (Up to 35%, average 18%)

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Improved Disk Bandwidth Utilization

31

 Noticeable increase in the I/O bandwidth at the early phase of switching

 Higher disk BW utilization (Up to 35%, average 25%)

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Switch Footprint Estimator Efficiency

32

 Higher Precision Lower misprediction

 Higher Recall Higher coverage

 SFE for file-backed pages shows better precision due to static access pattern

 SFE for anonymous pages shows better recall due to dynamic candidate table

0
20
40
60
80

100
Precision Recall

(a) SFE for anonymous pages

H
it

ra
te

 (%
)

Precision Recall

(b) SFE for file-backed pages

Better
Precision

Better
Recall

USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Contributions:

• Identified performance bottlenecks of application switching time

• Identified the root cause of low resource utilization during application switch

• Designed an application-agnostic prepaging technique

• Achieved up to 35.7% latency reduction on Google Pixel devices

Conclusion

33

ASAP provides better UX to mobile users by

reducing latency of application switch

Thank You!
ASAP’s Android kernel code is available at

https://github.com/SNU-ARC/atc21-asap-kernel

2021 USENIX Annual Technical Conference (USENIX ATC ’21)

Sam Son, sosson97@snu.ac.kr

	ASAP: Fast Mobile Application Switch via Adaptive Prepaging
	Memory Pressure in Today’s Smartphone Usage
	Memory Pressure Degrades UX
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Android Memory Management
	Application Switching Latency under Memory Pressure
	Application Switching Latency under Memory Pressure
	Limitation of Demand-Paging
	Opportunity of Prepaging
	Opportunity of Prepaging
	Challenges of Prepaging
	Application Switch via Adaptive Prepaging (ASAP)
	ASAP: Design Overview
	Switch Footprint Estimator (SFE)
	Switch Footprint Estimator: Mechanism
	Optimized SFE for Each Type of Pages
	Optimized SFE for Each Type of Pages
	Prepaging Manager
	Optimzing Prepaging Threads
	Evaluation Methodology
	Switching Latency Reduction
	Improved CPU Utilization
	Improved Disk Bandwidth Utilization
	Switch Footprint Estimator Efficiency
	Conclusion
	Thank You!

