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Memory Pressure in Today’s Smartphone Usage

2

 Memory capacity is becoming a scarce resource on mobile devices
• The application size and memory footprint have been growing

• Users run more than 5 applications concurrently[1]

 However, the cost/power/area budget often limits its size

Image from https://sensortower.com/blog/ios-app-size-growth
[1] Yu Liang et al., “Acclaim: Adaptive Memory Reclaim to Improve User Experience in Android Systems” in ATC’20
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Memory Pressure Degrades UX

3

 Causes latency when users switch applications

 Maintaining low latency is crucial
 Users switch applications more than 100 times a day[2]

[2] Tao Deng et al., “Measuring smartphone usage and taskswitching with log tracking and self-reports” in Mobile Media & Communications 2018
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Android Memory Management
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Android Memory Management
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Launch Calendar

Application Launch creates an application process from scratch  takes long time
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Android Memory Management
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Launch other apps

Launching more apps uses up all the memory
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Android Memory Management
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Launch other apps

(1) Page Eviction

To secure free memory, OS compresses anonymous pages (compression-based swap)
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Android Memory Management
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Launch other apps

(1) Page Eviction

To secure free memory, OS discards file-backed pages
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Android Memory Management
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Switch to Calendar

Switching to Calendar is delayed due to on-demand page fetching
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Android Memory Management
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Switch to Calendar

Switching to Calendar is delayed due to decompressing anonymous pages
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Android Memory Management
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Switch to Calendar

Switching to Calendar is delayed due to reading file-backed pages from disk
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Android Memory Management
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Kill Calendar

(2) Low Memory Killer (LMK)

Killing background application frees up pages
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Android Memory Management
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Relaunch 

This time, switching to Calendar causes slow re-launching of Calendar 
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Application Switching Latency under Memory Pressure
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Observation 1: Launch time is longer than switch time even when most pages not in memory
Implication: It is better to avoid relaunching by disabling LMK
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Application Switching Latency under Memory Pressure
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Observation 2: Switch time can increase by 4x on average under memory pressure
Implication: Retrieving relevant pages on-demand increases switch time a lot
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Limitation of Demand-Paging
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 Both CPU and disk BW are under-utilized during switch time
• Page decompression is delayed until anonymous page fault occurs  low CPU utilization

• Disk I/O is delayed until file-backed page fault occurs  low disk BW utilization

 On average, only 34% of CPU and 15% of disk BW are utilized during the switch time
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Opportunity of Prepaging

 Switch time can be improved by leveraging prepaging at the beginning of switch

 By doing so, available system resources (i.e., CPU cycles and disk bandwidth) can be fully 

utilized

17
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Opportunity of Prepaging

 Switch time can be improved by leveraging prepaging at the beginning of switch

 By doing so, available system resources (i.e., CPU cycles and disk bandwidth) can be fully 

exploited
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Our Goal
Reducing switching latency by leveraging prepaging
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Challenges of Prepaging
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• Applications’ contexts keep changing

• Achieving both high coverage and low misprediction ratio
What to Prepage?

• Maximizing the efficiency by achieving high system resource utilization

• Minimizing contention with application threads
How to Prepage?
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 ASAP maintains low switching latency without LMK

 ASAP is application-agnostic, and requires no changes to applications codes

Application Switch via Adaptive Prepaging (ASAP)

20

• Logging both page faults and I/O syscalls High coverage

• Adaptively update based on feedback  Low misprediction
What to Prepage?

• Multiple prepaging threads  High utilization

• Opportunistically prepaging to minimize contention  Low contention
How to Prepage?
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ASAP: Design Overview 
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Switch Footprint Estimator (SFE)
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(inode, index)
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(32, 3)
(32, 5)

Switch Footprint Estimator: Mechanism
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Optimized SFE for Each Type of Pages
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 Anonymous pages and file-backed pages have different access patterns

 About 75% of all accessed file-backed pages are invariant across switches, while only 44% 

of anonymous pages are invariant
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Optimized SFE for Each Type of Pages
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Prepaging Manager
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Optimzing Prepaging Threads

27

 Batch processing minimizes lock contention between prepaging threads
• 16 pages for anonymous pages 

• All target pages of one file for file-backed pages

 Giving low schedule priority to avoid CPU contention with app threads
• SCHED_IDLE(lowest) for prepaging threads 

• Opportunistically prepaging
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Evaluation Methodology
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 Integrated ASAP into Android OS

 Evaluated ASAP on high-end and mid-end devices (Google Pixel 4 and Pixel 3a)

 8 popular mobile applications with diverse automated usage patterns

Application Usage Pattern
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DRAM 6GB (effective 4GB) 4GB

Storage UFS 2.1 eMMC 5.1

OS
Android 10.0.0(r41) 

with Linux kernel 
4.14

Android 10.0.0(r41) 
with Linux kernel 

4.9

Device Specification Benchmark Applications and Usage Pattern



USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Switching Latency Reduction
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 Baseline: switching latency when 8 applications run concurrently (high memory pressure)

 Up to 33.3% (22.2% on average) latency reduction on Google Pixel 4

 Up to 35.7% (28.3% on average) latency reduction on Google Pixel 3a

-10
0

10
20
30
40

Anon-only File-only ASAP Anon-only File-only ASAP

N
or

m
al

iz
ed

sp
ee

du
p 

(%
)

(a) Pixel 4 (b) Pixel 3a



USENIX ATC ’21, ASAP: Fast Mobile Application Switch via Adaptive Prepaging ARC Lab, Seoul National University

Improved CPU Utilization
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 Noticeable increase in the CPU cycles at the early phase of switching

 Higher CPU utilization (Up to 35%, average 18%)
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Improved Disk Bandwidth Utilization
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 Noticeable increase in the I/O bandwidth at the early phase of switching

 Higher disk BW utilization (Up to 35%, average 25%)
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Switch Footprint Estimator Efficiency
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 Higher Precision  Lower misprediction

 Higher Recall  Higher coverage

 SFE for file-backed pages shows better precision due to static access pattern

 SFE for anonymous pages shows better recall due to dynamic candidate table
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Contributions:

• Identified performance bottlenecks of application switching time

• Identified the root cause of low resource utilization during application switch

• Designed an application-agnostic prepaging technique

• Achieved up to 35.7% latency reduction on Google Pixel devices

Conclusion

33

ASAP provides better UX to mobile users by 

reducing latency of application switch



Thank You!
ASAP’s Android kernel code is available at

https://github.com/SNU-ARC/atc21-asap-kernel

2021 USENIX Annual Technical Conference (USENIX ATC ’21)

Sam Son, sosson97@snu.ac.kr
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