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Background
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• The number of cores is rapidly increasing

• Main memory is getting larger and larger

• Manycore scalability becomes a serious issue in the modern OS design

M. Horowitz et al. at MIT (~2010) 
K. Rupp’s Github (2010 ~ 2019)

IHS Markit, 2020
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Reference counter
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• Number of accesses for a given object



Reference counter in the kernel object
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Directory entry
struct dentry

File descriptor table
struct files_struct

read-write semaphore
struct rw_semaphore

Physical page frame
struct page

File object
struct file

/a/b/c

i++ i++
i++

i++i++



Manycore scalability in kernel object access

5

i

Performance collapse due to 
cacheline contention
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Distributed reference counter
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Local
counter

Global 
counter

• Allocate local counter for each core

• Update operation : update the local counter

• Counter query : scan all local counters



Issues in distributed reference counter
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• Memory pressure

• Memory overhead increase in proportion to number of CPUs and objects

• Query latency

• For reclaim the object, checking all local counter increase query latency 

• Overhead of obtaining the global state of the counter

…



Existing works for per-core reference counter
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PayGo
[FAST’19]

<per-core cache entry>

object
pointer

local
counter

anchor
counter

task_struct

anchor info

Sloppy Counter 
[OSDI’10]
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RefCache
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Design of Logical Distributed Counter
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Characteristics of kernel objects
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Access
Brevity

Population

Popularity

Very short
access duration

Highly 
Skewed



Per-core vs. Per-process view 
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Per-core Per-process
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Cause for counter contention
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Logical Distributed 
Counter

Physical Distributed 
Counter

Ref.
counter

Ref.
counter

Ref.
counter

core counter thread

Global 
counter

per-core

Contention among
the processors

Contention among
the processes

per-process



LODIC : Logical Distributed Counter
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• LODIC

 Counter contention is caused by the 
contention among the processes

 Distributed counter with local counters are 
defined in per-process basis

• Used characteristics

 Popularity : Define the counter with respect to 

the degree of sharing

 Access brevity : Not consider the reference split

Physical
Page

File
Block

Very
brief

Shared 
File block

Large  population

High degree of sharing 
compared to 
anonymous page

Very short 
access duration



Objective
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The number of counters are proportional to the degree of sharing 

Query latencyMemory overheadScalability



Key techniques 
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• File mapping

 Map the file block to the process address space

• Reverse Mapping

 Do not use existing rmap mechanism that is not scalable

 Reverse Mapping based upon the process address space, file’s address space

• Counter Embedding

 Use the un-used bits in the page table entry



Allocate the counter with per-processes basis
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How to allocate a counter of physical page on process address space ?

i++
mmap

…i++



Key technique 1: File Mapping
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Virtual  
Memory

Physical
Memory

Disk

mmap

…
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Find VMA of mapped page
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How to quickly find the VMA of page mapped shared file block ?

VMA

VMA

VMA

VMA VMA

VMAVMA

VMA

RMAP



Key Technique 2: Reverse Mapping
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VMA VMA… File

mmap_base

Process Address Space

RMAP

VMA”s of memory mapped file

Process-Space based reverse mappingFile-Space based reverse mapping

P91 P92 P93 P94

P4 P5 P6 P8
P0 P1 P2 P3



Key technique 3: Counter Embedding
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• Embed the local counter at PTE

• For local counter, use un-used bits in PTE.

PFN Flags

0811525863

Local counter

Un-used bits
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red-black tree

All in one view

VMAVMA VMA ……

Virtual address

Local counter++

PFN

Global counter

Page 
table

Process-Space based 
reverse mapping

[start vaddr, size, file, offset]



Evaluation
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Throughput on shared file block read
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 120-cores ( 15 cores/CPU, 8 socket, Intel Xeon E7-8870), 780 GB DRAM, Linux 4. 11. 6

 DRBH Workload on Fxmark

B : Baseline ,   F : File-based reverse mapping ,   P : Process-based reverse mapping



Web server throughput 
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• 50 client processes, 50 server processes

• NGINX : Reverse proxy server that handles client request 

• wrk benchmark : Make the client process to read request for the same file

2.5x



Counter query latency
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• fadvise() : System call to reclaim the page

• File size : 1GB

• LODIC(10%) : 10% of file blocks are mapped

• LODIC(20%) : 20% of file blocks are mapped

• LODIC(100%) : 100% of file blocks are mapped



Conclusion 
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• We take process-centric view in designing the distributed counting scheme

“ Counter contention is caused by the contention among the processes,

not by the contention on the processors “

• Number of local counters : With respect to the actual degree of sharing 

• Memory pressure : Almost none 

• Throughput on the shared block read increases by 65x

• Web server performance increases by 2.5x

• Memory pressure decreases by 13x against per-core distributed reference counters



Q & A
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Email : arsd098@kaist.ac.kr 


