
LODIC : Logical Distributed Counting

for Scalable File Access

Jeoungahn Park , Taeho Hwang, Jongmoo Choi, Changwoo Min, Youjip Won

Background

2

• The number of cores is rapidly increasing

• Main memory is getting larger and larger

• Manycore scalability becomes a serious issue in the modern OS design

M. Horowitz et al. at MIT (~2010)
K. Rupp’s Github (2010 ~ 2019)

IHS Markit, 2020

2000 2005 2010 2020

100

101

102

103

#
 o

f
co

re
s

2015 2017 2018 2019 2020

20

30

40

50

M
e
m
or

y
 D

e
m
a
nd

(
B
il
li
on

 G
B
)

Server

PC

Reference counter

3

time

1
Reference
Counter 2 3 2 1 00

Read

Read

Read

• Number of accesses for a given object

Reference counter in the kernel object

4

Directory entry
struct dentry

File descriptor table
struct files_struct

read-write semaphore
struct rw_semaphore

Physical page frame
struct page

File object
struct file

/a/b/c

i++ i++
i++

i++i++

Manycore scalability in kernel object access

5

i

Performance collapse due to
cacheline contention

i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++

i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++ i++

Distributed reference counter

6

Local
counter

Global
counter

• Allocate local counter for each core

• Update operation : update the local counter

• Counter query : scan all local counters

Issues in distributed reference counter

7

• Memory pressure

• Memory overhead increase in proportion to number of CPUs and objects

• Query latency

• For reclaim the object, checking all local counter increase query latency

• Overhead of obtaining the global state of the counter

…

Existing works for per-core reference counter

8

PayGo
[FAST’19]

<per-core cache entry>

object
pointer

local
counter

anchor
counter

task_struct

anchor info

Sloppy Counter
[OSDI’10]

3

per-core
cnt

shared
cnt

per-core
cnt

-1 -1 +1

RefCache
[EuroSys’13]

Core 0 Core 1

SNZI
[PODC’07]

shared
cnt

child
cnt

child
cnt

child
cnt

+1+1 -1

Memory overhead
Memory overhead

Query overhead

Overhead of handling
hash collision

Memory overhead for
counter cache

Memory overhead
for counter cache

Query overhead

Design of Logical Distributed Counter

9

Characteristics of kernel objects

10

Access
Brevity

Population

Popularity

Very short
access duration

Highly
Skewed

Per-core vs. Per-process view

11

i

Per-core Per-process

i

i++ i++i++

i++

i++ i++i++

i++

Cause for counter contention

12

Logical Distributed
Counter

Physical Distributed
Counter

Ref.
counter

Ref.
counter

Ref.
counter

core counter thread

Global
counter

per-core

Contention among
the processors

Contention among
the processes

per-process

LODIC : Logical Distributed Counter

13

• LODIC

 Counter contention is caused by the
contention among the processes

 Distributed counter with local counters are
defined in per-process basis

• Used characteristics

 Popularity : Define the counter with respect to

the degree of sharing

 Access brevity : Not consider the reference split

Physical
Page

File
Block

Very
brief

Shared
File block

Large population

High degree of sharing
compared to
anonymous page

Very short
access duration

Objective

14

The number of counters are proportional to the degree of sharing

Query latencyMemory overheadScalability

Key techniques

15

• File mapping

 Map the file block to the process address space

• Reverse Mapping

 Do not use existing rmap mechanism that is not scalable

 Reverse Mapping based upon the process address space, file’s address space

• Counter Embedding

 Use the un-used bits in the page table entry

Allocate the counter with per-processes basis

16

How to allocate a counter of physical page on process address space ?

i++
mmap

…i++

Key technique 1: File Mapping

17

Virtual
Memory

Physical
Memory

Disk

mmap

…

i++

Find VMA of mapped page

18

How to quickly find the VMA of page mapped shared file block ?

VMA

VMA

VMA

VMA VMA

VMAVMA

VMA

RMAP

Key Technique 2: Reverse Mapping

19

VMA VMA… File

mmap_base

Process Address Space

RMAP

VMA”s of memory mapped file

Process-Space based reverse mappingFile-Space based reverse mapping

P91 P92 P93 P94

P4 P5 P6 P8
P0 P1 P2 P3

Key technique 3: Counter Embedding

20

• Embed the local counter at PTE

• For local counter, use un-used bits in PTE.

PFN Flags

0811525863

Local counter

Un-used bits

21

red-black tree

All in one view

VMAVMA VMA ……

Virtual address

Local counter++

PFN

Global counter

Page
table

Process-Space based
reverse mapping

[start vaddr, size, file, offset]

Evaluation

22

Throughput on shared file block read

23

 120-cores (15 cores/CPU, 8 socket, Intel Xeon E7-8870), 780 GB DRAM, Linux 4. 11. 6

 DRBH Workload on Fxmark

B : Baseline , F : File-based reverse mapping , P : Process-based reverse mapping

Web server throughput

24

• 50 client processes, 50 server processes

• NGINX : Reverse proxy server that handles client request

• wrk benchmark : Make the client process to read request for the same file

2.5x

Counter query latency

25

• fadvise() : System call to reclaim the page

• File size : 1GB

• LODIC(10%) : 10% of file blocks are mapped

• LODIC(20%) : 20% of file blocks are mapped

• LODIC(100%) : 100% of file blocks are mapped

Conclusion

26

• We take process-centric view in designing the distributed counting scheme

“ Counter contention is caused by the contention among the processes,

not by the contention on the processors “

• Number of local counters : With respect to the actual degree of sharing

• Memory pressure : Almost none

• Throughput on the shared block read increases by 65x

• Web server performance increases by 2.5x

• Memory pressure decreases by 13x against per-core distributed reference counters

Q & A

27

Email : arsd098@kaist.ac.kr

