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Case Study: 360° Video Streaming on YouTube

Methodology:
« Streamed 6 Youtube videos with different resolutions and frame rates on Pixel 2 over 802.11ac
« Measured power using Monsoon power monitor
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Energy-aware App Adaption

* Definition: App dynamically adjusts data fidelity to meet a user-
specified goal for battery duration [SOSP’99]

« Example scenarios

* Video streaming apps: adapt video quality to support a 4-hour plane ride
with 60% battery level drop

« Navigation apps: adapt filtering level of a map to support a 2-hour drive
with 40% battery level drop

References:
[1] Energy-aware adaptation for mobile applications [SOSP’99]



Outline

 Limitations of classic energy-aware adaptation
« Key observation

 Proactive energy-aware adaptation

* Case study: 360° video streaming



Classic Energy-aware App Adaptation:
System-level

App App 1 App 2 App 3 App 4
Ener Halting or throttling app threads, Triggering app fidelity
C tgy 1 processes or resource containers adaptation
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References: [4] Ecosystem: Managing energy as a first class operating system resource [ASPLOS’02]
[1] Energy-aware adaptation for mobile applications [SOSP’99] [5] Quanto: Tracking energy in networked embedded systems [OSDI'08]

[2] Powerscope: A tool for profiling the energy usage of mobile applications [WMCSA’99] [6] Energy management in mobile devices with the cinder operating system [Eurosys’11]
[3] Energy is just another resource: Energy accounting and energy pricing in the nemesis os [HotOS’01] 5



Characteristics of Classic Energy-aware
App Adaptation

 Reactive

 OS treats app as black-box and informs it to adapt after energy
deviation from the pre-specified budget happens

» Disintegrated
« OS monitors the app energy drain, while app performs adaptation

« Implication
» The app does not know how much app fidelity it should adapt in the
next time interval



Reactive Adaptation Causes Oscillation

Power Budget




Key Observation: Modern Apps Have
Proactive Built-in Adaptation

 Built-in adaptation: Apps proactively adapt data fidelity to network
dynamics or other system constraints to optimize QoE

« Examples
 Adaptive bitrate (ABR) in video streaming systems: DASH

 Adaptive offloading computation to edge servers for deep learning
enhanced tasks, such as video analytics: Sysmac [1]

References
(1]


https://industrial.omron.eu/en/products/sysmac-platform

Key Idea: Proactive Energy-aware Adaptation

» The energy-drain budget can be seamlessly integrated into the
built-in proactive QoE adaptation of the app

« Advantage

« App energy drain adaptation is no longer an “after-effect” and hence likely
to reduce the oscillation in app adaptation and improve the app QoE



Outline

* Case study: 360° video streaming



Background of ABR Video Streaming
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ABR Problem Formulation [Sigcomm’15]

maximize Z QoE;
k
subject to buffer and network dynamics

Q 0F1 Video Quality

= Qualityk o SWitChing(k_l, K) - RebUfferlngk

References:
[1] A control theoretic approach for dynamic adaptive video streaming over http [Sigcomm’15]



Model Predictive Control (MPC) Algorithm

|Sigcomm’15]

* Goal: decide the video chunk Video Chunks
quality to be fetched next F;, by J b
predicting QoE of next N chunks ~ I

Playback X-put
Buffer Predictor
WA
k+N-1 S ABR Controller )
maka,...,Fk+N_1 z QOEi @

How to integrate energy budget into
the built-in app adaptation logic?

References:
[1] A control theoretic approach for dynamic adaptive video streaming over http [Sigcomm’ 15]
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Energy-aware QoE Maximization Problem for ABR

User-specified energy budget: total energy budget E;, over a fixed
amount of time T; = power budget P, = E,/ Ty

E.g. E}, : 50% battery level drop; T, : 4-hour plane ride

maxz QoE;

subject to buffer and network dynamics

and total energy constraint



Proactive Energy-aware ABR
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Challenges of Proactive Energy-aware ABR

» How to predict power consumption for each adaptation candidate?

« How to incorporate energy budget into its QoE optimization logic?



Proactive Energy-aware ABR

maxz QoE;

subject to buffer and network dynamics
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Exploiting Energy Surplus in Proactive
Energy-aware ABR

« App energy drain is cumulative and elastic over time and thus energy
deficit/surplus (E;) is accumulated

max Z QOE; subject to buffer and network dynamics
and Ek + -+ Ek+N—1 <N- Pb - Ot + ES

E, predicted energy for chunk k
N number of chunks to predict
P, power budget

ot per-chunk interval duration

E; energy surplus so far




Energy-aware QoE Maximization

LA(1):
look ahead 1

maxz: QoE;

subject to buffer and
network dynamics and
E,<1-P,- 6t

LA(1)+LB:
look ahead 1 and look
back

maxz QoE;

subject to buffer and
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E, <1-P,-68t+Eg
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back
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Trace-driven Evaluation

 Network-trace datasets: Ytrace and FCC

* Devices: Pixel 2 and Moto Z3
» Two types of power budgets:

« Low power budget: 20t"-percentile per-interval power draw
« High power budget: average power draw over the streaming session
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Impact of Different Proactive Design Options
under Low Power Budget on Pixel 2
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LA(N)+LB saves 29.10% power than Default and
achieves the highest QoE among the three proactive designs.
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Performance Comparison between Reactive
and Proactive Approaches

Low Power Budget on Pixel 2
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QoE Breakdown Comparison between
Reactive and Proactive Approaches

Low Power Budget on Pixel 2
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LA(N)+LB+S shows significant benefits over RA+S because of
reduced quality switching
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Generalization

 Supporting multiple apps competing for the energy budget
 User provides input on how the total energy budget should be split

 Or a global energy-aware controller jointly optimizes QoE of
concurrently running apps



Summary

» Classic reactive energy-aware app adaptation can lead to app fidelity oscillation
which can negatively affect user-perceived QoE.

* We observe the built-in QoE optimization frameworks of modern mobile apps
naturally lend themselves to proactive energy-aware app adaptation.

« We showcase how to integrate user-specified energy budget with the built-in
app adaptation logic of MPC-based ABR system, which has been open-sourced.

 Proactive energy-aware video streaming improves QoE by 44.8% (Pixel 2) and
19.2% (Moto Z3) over the reactive approach under low power budget.



Thanks!

Please feel free to contact us (meng72@purdue.edu), if you have further
questions. ©
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Challenges of Proactive Energy-aware ABR

» How to predict power consumption for each adaptation candidate?



Asynchronous Component Behavior
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Function-wise Power Prediction

» Key idea: cluster hardware components processing the common
video chunk at each time interval

—> each cluster corresponds to one high-level app function

* Functions for 360° video streaming;:
» Video decoding and displaying function
» Network transmission function



Challenges of Proactive Energy-aware ABR

« How to incorporate energy budget into its QoE optimization logic?



Accuracy of Function-wise Power Modeling
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Function-wise power predictor achieves low mean per-interval
energy prediction error of 4.87% (Pixel 2) and 5.86% (Moto Z3).



Performance of Proactive Approaches
under Low Power Budget on Pixel 2

Percent of Power Diff (%)
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LA(N)+LB saves 29.10% power than Default and
achieves the highest QoE among the three proactive designs.
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QoE Breakdown of Proactive Approaches
under Low Power Budget on Pixel 2
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Performance of Proactive Approaches
under High Power Budget on Pixel 2
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The penalty of proactive energy-aware adaptation is really small,
compared to the energy-oblivious default ABR.
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