<SSSSSRNIYy,
=4 2y .
5B S 3R b
AR D)
g & g% ""1‘5 l _r.éz | a.}
A 2 i Y e 5 —~ T 4&
z 2 =
bs a8 S > S
,’6 U eTs H
B
".. 79117 5
Trrpeyess

& Tsinghua University & #& ¥ XL X ¥

I'he Chinese University of Hong Kong

Boosting Full-Node Repair
In Erasure-Coded Storage

Shiyao Lin", Guowen Gong’, Zhirong Shen’,
Patrick P. C. Lee#, and Jiwu Shu """

* Xiamen University #The Chinese University of Hong Kong “Tsinghua University

Presented at USENIX ATC’21

Introduction

» Data volume Is growing explosively
 Failures arise unexpectedly yet prevalently
 Fault tolerance is critical

» Redundancy techniques

» Replication: directly keep multiple copies across different nodes
 Triple replication requires 3x of storage redundancy

* Erasure coding: introduce slightly computational operations
» Lower storage overhead with the same reliability guarantee
» Deployed in Google, Facebook, etc.

Erasure Coding

» Divide a data file to k data chunks
» Encode k chunks to another redundant m parity chunks
» Distribute k+m chunks (forming a stripe) across k+m nodes

» Tolerate any m nodes failures

B
C decode
. D
divide encode A+C C

file :> > e B+b |~| D

™ >

OO
o
+
O

(k, m) — (2’ 2) B+C+D

™ >

Erasure Coding

» Drawback: substantial repair traffic
» Retrieve k chunks to repair a single failed chunk

» Relieve the I/O amplification problem in repair

« Repair-efficient codes with reduced repair traffic (WWhat to retrieve?)
» Locally Repairable Codes [ATC’12, PVLDB’13]
« Regenerating Codes [TIT'10, TIT'11]

« Efficient repair algorithms to parallelize the repair process (How to retrieve?)
« Partial-Parallel-Repair (PPR) [Eurosys'16]
* Repair pipelining (ECPIipe) [ATC'17]

Repair-Efficient Codes

» Locally Repairable Codes (LRCs)

« Generate local parity chunks to facilitate repair at the expense of
additional storage cost

—————————————

—————————————

0] (o)1) (o]} (Ps] (]
paiivagihe v eg
Groupl Group2

(k, I, m) = (4, 2, 2)

L

Retrieve two chunks
for repair

Repair Algorithms

» Single-chunk repair algorithm T1:N;— N,, Ng— N,
« Accelerate the repair without reducing the repair traffic T2:N,— N,
« Introduce transmission dependency 13N = Ny

Switch

Congestion Switch

)

D, i |
R D2 D3 I:)4 I:)5
N, N, N, N, Ng
Conventional Repair (CR) Partial-Parallel-Repair (PPR)

Repair time : 4 timeslots Repair time : log,(4 + 1) = 3 timeslots

Introduce transmission dependency:
D, should wait for P for aggregation

Q) ©

Motivation

» Limitation 1: Falling to utilize the full duplex transmission

@) [[é

@) ==\
|
8
Nl
Upload Upload
Downloa Downloa
d d
(a) Unbalanced repair solutions (b) Balanced repair solutions

Two chunks’ repair under the conventional repair (CR)

The repair time is determined by the most loaded node

Motivation

» Limitation 2: Failing to fully utilize the bandwidth at each timeslot

1) 1
C, @IL J,@ C4 Cs
@ @)
O &) & (&) |65
" J \ J \ J@L J \ J
N, N, N, N, Ng
(a) Repair using four timeslots (b) Repair using three timeslots

Two chunks’ repair under the partial-parallel-repair (PPR)

Transmission scheduling affects bandwidth utilization

Our Contributions

» RepairBoost: a framework to speed up the full-node repair
« Tech#1:. Repair abstraction (for generality and flexibility)
« Tech#2: Repair traffic balancing (for load balancing)
« Tech#3: Transmission scheduling (for saturating bandwidth utilization)

» A prototype RepairBoost integrated with HDFS

» Tackle multiple node failures and facilitate the repair in
heterogeneous environments

» Experiments on Amazon EC2
 Increase the repair throughput by 35.0-97.1%

Repair Abstraction

» Formalize a single-chunk repair through a repair directed acyclic
graph (RDAG)

« Characterize the data routing over the network and the dependencies
among the requested chunks

* e.g., for RS(k, m), k+1 vertices
e {vi,Vy, -,V }: knodes that retrieve chunks
* V,,, . destination node for repairing the lost chunk

* Directed edges represent the data routing directions specified in repair

algorithms

@ V,is a child of V,
An RDAG of PPR @ V, should collect all its children before
when k=4 sending its data to its parent (i.e., V)

10

Repair Abstraction

» Repair process guided by RDAG
* The repair starts from the leaf vertices (without predecessor dependency)
* As the repair proceeds, iteratively remove edges and vertices from an RDAG

Leaf vertices

’ Update @ @ Update @ Update
— =29-10
OO

Finish
@ 3
9

Vs

11

Repair Traffic Balancing

» Decompose RDAGs into vertices(with different upload and
download traffics) and map the vertices to storage nodes
« Ob#1l: Retaining fault tolerance degree
« Ob#2: Balance the upload and download repair traffic

» The vertices of RDAGs are classified and given different priorities
according to degree
 Intermediate vertices (u =1andd > 0)
* Root vertex (u=0and d > 0)
« Leaf vertices (u > 0andd = 0)

12

Repair Traffic Balancing

> Example of mapping vertices of an RDAG to nodes

S .. O Vertex of an RDAG

|V, (12) V. (L1) Nodes with

Decompose | Ve (0,1) V, (1,0) ! surviving chunks
_ Vs (1,0) ;
Map vertices

to nodes R il N
([N N;| i
-—— Data routing 12 Y
4) | |
c et Jugoy
i 3
N N N N, l N,|

-~

(uy, dy) (10,15) (9, 23) (19,14) (17,20) (17,13) (17,20) Before mapping

Transmission Scheduling

» The bandwidth may not be utilized at each timeslot during the
repair (Limitation 2)
» Formulate as a maxflow problem

« 2n+2 vertices
* n senders: potentially send data for repair
* n receivers: potentially receive data at the same time
« Establish the connection between senders and receivers according to the RDAGS

Sender

Receiver

14

Transmission Scheduling

» Example of repairing two chunks among five surviving nodes

U I U NN N N

A\
J

N\
J

i N 3
: NZ Nl : : N4 N2 i
A = 2 2 Sender
N Ns|] i 1N N, | i
1 =3) 1=l J
€ Construct a network ! £ 3
. . N
@) Establish a maximum flow RN) VU & N Receiver
RDAG of RDAG of
@ Update the RDAG Chunk 1 e Chunk 2
@ cConstruct a new network ﬂ
r—_ S T T R S
1 i | <:::>
I o e D
I ’i‘ 1 1 e T | TSI Tl
| I |
LN Ns i FLN; N, | ! @ M NoJ (Ng) [Na rNs Sender
| N I N |
\\- 4',1 \\ 5 /' _
"""""""" N, |IN2J [NzJ [Na [Ns]Receiver

RDAG of RDAGof = == — =

-

Chunk 1 Chunk 2 BRSO PP
< j > 15

Implementation

» RepairBoost serves as an independent middleware running atop

existing storage
{——— — (" Coordinator)

Calculate (Solu.)

(Coordinator] Interact (Agents)
L Metadata Server J -

[Agent)
“ 1] Read (Local)
Recv (Sour.)
Decode

“ Send (Dest.)
“\ | Write (Local)

\<
* The coordinator manages the metadata of stripes

« The agents are standby to wait for the repair commands and perform the
repair operations cooperatively

y
D

Evaluation Setup

» Amazon EC2
« 17 m5.large machines (1 coordinator and 16 agents)

» Default configurations
* Chunk size: 64MB, Packet size: 1MB
« RS(6, 3)

» Single-chunk repair algorithms

« Conventional repair (CR)
 Partial-Parallel-Repair (PPR)
« Repair pipelining (ECPipe)

> Baseline: random selection

» Metric: repair throughput (size of data repaired per time unit)

Performance Results

[Baseline [RepairBoost

200 300 400]
1] v 300
— 100 = = 200
£ = 100 S
0 : 0 : 0
CR PPR ECPipe CR PPR ECPipe CR
Repair Algorithm Repair Algorithm Repair Algorithm
(a) RS(6,3) (b) LRC(6,2,2) (c) Butterfly(4,2)

» Ob#1: Butterfly(4,2) reaches the highest repair throughput
 as it needs to fetch only half of the data

» Ob#2: RepairBoost can improve the repair throughput by an average of 60.4% for
different erasure codes

18

Breakdown Analysis

N
o
Q

[1Baseline MRTB] TS I RepairBoost

=
U1
o

=
-
=

Thpt (MB/s)

U
o

CR PPR ECPipe

Repair Algorithm
» ODb#1: The effectiveness of RTB and TS varies across different repair algorithms.

» ODb#2: RepairBoost achieves 45.7% and 19.8% higher repair throughput than RTB
and TS, respectively.

19

Multi-Node Repair

200
Baseline+CR Baseline+PPR Baseline+ECPipe
RepairBoost+CR [f] RepairBoost+PPR [l RepairBoost+ECPipe
;;1 50
2
—100
Q
L
|_
50
0

2 3
of Failed Nodes

» Ob#1: RepairBoost improves the repair throughput by 39.5% (a single node
failure) and by 35.7% (triple node failures)

» Ob#2: The repair throughput of RepairBoost drops slightly when more nodes fail
* Fewer selected nodes can participate in the repair

20

Conclusion

» RepairBoost, a scheduling framework that boosts the full-node
repair for various erasure codes and repair algorithms

« Employ graph abstraction for single-chunk repair
« Balance the upload and download repair traffic
« Schedule the transmission of chunks to saturate unoccupied bandwidths

» Source code:
https://github.com/shenzr/repairboost-code

21

https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code

Thank You!
Q&A

