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Introduction 

Data volume is growing explosively 

• Failures arise unexpectedly yet prevalently  

• Fault tolerance is critical 

 

Redundancy techniques 

• Replication: directly keep multiple copies across different nodes 

• Triple replication requires 3x of storage redundancy  

• Erasure coding: introduce slightly computational operations  

• Lower storage overhead with the same reliability guarantee 

• Deployed in Google, Facebook, etc. 
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Erasure Coding 

Divide a data file to k data chunks 

Encode k chunks to another redundant m parity chunks  

Distribute k+m chunks (forming a stripe) across k+m nodes 

Tolerate any m nodes failures 
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Erasure Coding 

Drawback: substantial repair traffic 

• Retrieve k chunks to repair a single failed chunk 

 

Relieve the I/O amplification problem in repair  

• Repair-efficient codes with reduced repair traffic (What to retrieve?)  

• Locally Repairable Codes [ATC’12, PVLDB’13]  

• Regenerating Codes [TIT’10, TIT’11] 

 

• Efficient repair algorithms to parallelize the repair process (How to retrieve?) 

• Partial-Parallel-Repair (PPR) [Eurosys’16] 

• Repair pipelining (ECPipe) [ATC’17] 
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Repair-Efficient Codes 

 Locally Repairable Codes (LRCs) 

• Generate local parity chunks to facilitate repair at the expense of 

additional storage cost  
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Repair Algorithms 

Single-chunk repair algorithm 

• Accelerate the repair without reducing the repair traffic 

• Introduce transmission dependency  
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Conventional Repair (CR) Partial-Parallel-Repair (PPR) 

Repair time : 4 timeslots Repair time : 𝑙𝑜𝑔2 4 + 1 = 3 timeslots 

T1: N3 → N2, N5 → N4 

T2: N4 → N2 

T3: N2 → N1 
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Motivation 

Limitation 1: Failing to utilize the full duplex transmission  
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(a) Unbalanced repair solutions  (b) Balanced repair solutions  

The repair time is determined by the most loaded node 

N5 N4 N3 N2 N1 

Upload 1 1 2 2 

Downloa

d 
0 4 0 2 

Upload 1 1 2 2 

Downloa

d 
2 2 0 2 

N5 N4 N3 N2 N1 

Two chunks’ repair under the conventional repair (CR) 



Motivation 

Limitation 2: Failing to fully utilize the bandwidth at each timeslot  
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(a) Repair using four timeslots  (b) Repair using three timeslots  

Transmission scheduling affects bandwidth utilization  
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Our Contributions 
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RepairBoost: a framework to speed up the full-node repair  

• Tech#1: Repair abstraction (for generality and flexibility) 

• Tech#2: Repair traffic balancing (for load balancing) 

• Tech#3: Transmission scheduling (for saturating bandwidth utilization) 

A prototype RepairBoost integrated with HDFS  

Tackle multiple node failures and facilitate the repair in 

heterogeneous environments  

Experiments on Amazon EC2  

• Increase the repair throughput by 35.0-97.1%  

 

 

 



Repair Abstraction  

Formalize a single-chunk repair through a repair directed acyclic 

graph (RDAG)  

• Characterize the data routing over the network and the dependencies 

among the requested chunks 

• e.g., for RS(k, m),  k+1 vertices 

• v1, v2, ⋯ , vk : k nodes that retrieve chunks 

• vk+1 : destination node for repairing the lost chunk  

• Directed edges represent the data routing directions specified in repair 

algorithms 
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Repair Abstraction  

Repair process guided by RDAG 

• The repair starts from the leaf vertices (without predecessor dependency)  

• As the repair proceeds, iteratively remove edges and vertices from an RDAG 
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Repair Traffic Balancing  

Decompose RDAGs into vertices(with different upload and 

download traffics) and map the vertices to storage nodes  

• Ob#1: Retaining fault tolerance degree  

• Ob#2: Balance the upload and download repair traffic 

 

The vertices of RDAGs are classified and given different priorities 

according to degree 

• Intermediate vertices (𝑢 = 1 and 𝑑 > 0) 

• Root vertex (𝑢 = 0 and 𝑑 > 0) 

• Leaf vertices (𝑢 > 0 and 𝑑 = 0) 
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Repair Traffic Balancing  
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Example of mapping vertices of an RDAG to nodes  
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Transmission Scheduling  
 The bandwidth may not be utilized at each timeslot during the  

repair (Limitation 2) 

 Formulate as a maxflow problem 

• 2n+2 vertices 

• n senders: potentially send data for repair  

• n receivers: potentially receive data at the same time 

• Establish the connection between senders and receivers according to the RDAGs 
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Transmission Scheduling  

Example of repairing two chunks among five surviving nodes  
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Implementation 

RepairBoost serves as an independent middleware running atop 

existing storage 

 

 

 

 

 

 

 

• The coordinator manages the metadata of stripes  

• The agents are standby to wait for the repair commands and perform the 

repair operations cooperatively  
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Evaluation Setup 

Amazon EC2  

• 17 m5.large machines (1 coordinator and 16 agents) 

Default configurations 

• Chunk size: 64MB, Packet size: 1MB 

• RS(6, 3) 

Single-chunk repair algorithms 

• Conventional repair (CR) 

• Partial-Parallel-Repair (PPR)  

• Repair pipelining (ECPipe) 

Baseline: random selection 

  Metric: repair throughput (size of data repaired per time unit) 17 



Performance Results 
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 Ob#1: Butterfly(4,2) reaches the highest repair throughput  

• as it needs to fetch only half of the data 

 Ob#2: RepairBoost can improve the repair throughput by an average of 60.4% for 

different erasure codes 



Breakdown Analysis 
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 Ob#1: The effectiveness of RTB and TS varies across different repair algorithms.  

 Ob#2: RepairBoost achieves 45.7% and 19.8% higher repair throughput than RTB 

and TS, respectively. 



Multi-Node Repair 
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 Ob#1: RepairBoost improves the repair throughput by 39.5% (a single node 

failure) and by 35.7% (triple node failures) 

 Ob#2: The repair throughput of RepairBoost drops slightly when more nodes fail 

• Fewer selected nodes can participate in the repair 



Conclusion 
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RepairBoost, a scheduling framework that boosts the full-node 

repair for various erasure codes and repair algorithms  

• Employ graph abstraction for single-chunk repair  

• Balance the upload and download repair traffic  

• Schedule the transmission of chunks to saturate unoccupied bandwidths  

 

Source code: 

https://github.com/shenzr/repairboost-code  

https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code


Thank You! 

Q & A 
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