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DNN Training Pipeline

DNN Training = Data Preparation

Gradient Computation

e Dataread and

preprocessing
e OnCPU

Bottleneck!

e Forward and
backward
operations

® On DL accelerators
(e.g., GPU, TPU)

Getting faster: NVIDIA
A100, Google TPU v3, ...
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DNN Training Pipeline

Data Preparation : on CPU - : on DL accelerator
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Overhead of Data Augmentation

® |nvestigate the impact of data augmentation overhead

e Workload: Training ResNet50 on ImageNet with RandAugment
o Configuration: # of RandAugment Layers

® Environment: One NVIDIA V100 GPU with four physical CPU Cores
o0 Same CPU-GPU ratio as cloud GPU VMs such as AWS P3 and GCP N1 instances
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Overhead of Data Augmentation

400
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Overhead of Data Augment

0
Q. How can we reduce Augment

CPU overhead from data eNet
augmentation?

/

Only Random Crop
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Existing Approach: Data Echoing

e Data echoing (arXiv ‘20, NeurlPS 20): Cache & reuse previously
materialized samples

e Useful for training tasks with slow I/O
O e.g., Training data on remote storage
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Standard Training
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Data Echoing

-> Low generalization of trained models

Problem: Sample diversity decreases to a great degree.

Reuse Factor =3
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Our Approach: Data Refurbishing

Solution: Cache & reuse partially augmented samples
by splitting augmentation pipelines

Cached Reuse Factor =3

[ Image X ]—> Partial Aug —{ Image X’ }

Final Aug —{ Image X1 ] Epoch 1

- Final Aug Image X2 Epoch 2

- Final Aug —{ ] Epoch 3

A4
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Analysis on Sample Diversity

® Notations

O Given a sample,
m U (Sample Diversity): # of unique augmented samples during training
m |A| (Augmentation Diversity): # of possible uniqgue augmented samples by an

augmentation pipeline A

m |A;|: The augmentation diversity of the final augmentation

O r (Reuse Factor): # of reuses for each cached sample

O k: The total number of training epochs

k
ARl AR 1YY
Al |A] |AF |

E(U)=A|[1- (1

18



Analysis on Sample Diversity
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Case #1: Standard Training
High sample diversity

e / but low throughput
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Case #2: Data Echoing

|Afl=1andr>1
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Case #3: Data Refurbishing
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Case #3: Data Refurbishing
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Challenge: Inconsistent Batch Time

e \Within a mini-batch,
O CPU processing time fluctuates according to the # of cache misses
O Gradient computation time on DL accelerator remains the same

=> Poor computation overlap

Wait
cPU Dooo ‘==|<i» ulanln
—... . Cached Sample
........ ol ...'."-.,........ T
DL Wait " Non-Cached Sample
Accelerator
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Challenge: Inconsistent Batch Time

e \Within a mini-batch,
O CPU processing time fluctuates according to the # of cache misses
O Gradient computation time on DL accelerator remains the same

=> Poor computat| Solution: Revamper

1. Balanced Eviction: Balance # of

CPU OC cache misses across epochs lCached sample
--------- 2. Cache-Aware Shuffle: Balance # of
DL cache misses within an epoch Non-Cached Sample
Accelerator )
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PyTorch Dataloader
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Revamper
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Revamper
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Revamper
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Balanced Eviction

Reuse Factor =3

. Cached Sample Non-Cached Sample

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Naive (Reference Count)

Fast: Possibly bottlenecked
by DL accelerators

Slow: Possibly bottlenecked
by CPU
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Balanced Eviction

. Cached Sample
Reuse Factor =3

Epoch 1 ololo]lo]o]o
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Cache-Aware Shuffle
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Cache-Aware Shuffle
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Reuse Factor =2
CPU
Random Shuffle
DL

Accelerator

CPU

Cache-Aware Shuffle
DL
Accelerator

. Cached Sample

Non-Cached Sample

o0oaa

ooaa

ooaa

Time

34



Contents

Background & Motivation
Data Refurbishing
Revamper

Evaluation

35



Implementation

e Implemented in 2000+ lines of Python code based on PyTorch 1.6
e |dentical interface to the PyTorch dataloader except for some additional

parameters
O e.g., reuse factor and split strategy
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Evaluation: Environments

® Training server specification
O CPU: Intel Xeon E5-2695v4 (18 cores, 2.10GHz, 45MB Cache)
o RAM: 256GB DRAM
o GPU: NVIDIA V100
o Disk: Samsung 970 Pro 1TB NVMe SSDs

® We adjust CPU-GPU ratios using a Docker container (Default = 4:1)
e Workload: Image Classification
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Evaluation: Baselines

Standard: DNN training without adopting data reusing mechanism
Data Echoing: Cache & reuse fully augmented samples
Simplified: Simply removing one or more transformation layers

Same hyperparameters for all the training settings
O Revamper does not require additional hyperparameter tuning
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Evaluation: Accuracy & Throughput
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Evaluation: CPU-GPU Ratio

Fewer CPUs -> Bigger Thp Gain
350-

Maximum Gradient Computation

Throughput on GPU

Model: ResNet50

Aug: RandAugment
Dataset: ImageNet
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4
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IS V|
6
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Conclusion

e Data refurbishing is a new intermediate data caching technique for DNN
training that accelerates data augmentation while preserving diversity
of augmented samples.

e Revamper realizes data refurbishing by maximizing computation overlap
between CPU and DL accelerators with carefully-designed cache eviction
and shuffle strategies.

® Revamper improves training throughput of DNN models by 1.03x-2.04x
while maintaining comparable accuracy.
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