Refurbish Your Training Data:
Reusing Partially Augmented Samples for
Faster Deep Neural Network Training

Gyewon Leel3, Irene Lee?, Hyeonmin Hal,
Kyunggeun Lee!, Hwarim Hyun?!, Ahnjae Shin'3, and Byung-Gon Chun?'?3
Seoul National University!, Georgia Institute of Technology?, FriendliAl?

UEDD i
1Ky, SEOUL Georgia : i
d@@y NATIONAL Tegch ‘ f"e nd I IAI

P ST UNIVERSITY

DNN Training Pipeline

DNN Training = Data Preparation + Gradient Computation

DNN Training Pipeline

DNN Training = Data Preparation + Gradient Computation

e Dataread and

preprocessing
e OnCPU

DNN Training Pipeline

DNN Training = Data Preparation + Gradient Computation
e Datareadand e Forward and
preprocessing backward
e OnCPU operations

® On DL accelerators
(e.g., GPU, TPU)

DNN Training Pipeline

DNN Training = Data Preparation

Gradient Computation

e Dataread and

preprocessing
e OnCPU

Bottleneck!

e Forward and
backward
operations

® On DL accelerators
(e.g., GPU, TPU)

Getting faster: NVIDIA
A100, Google TPU v3, ...

DNN Training Pipeline

Data Preparation : on CPU - : on DL accelerator

N
4 A

Gradient

Collate

A 4

\ 4

\ 4

Decode Format

A 4

Read Augment

Computation

DNN Training Pipeline

Data Preparation : on CPU - : on DL accelerator

N
4 A

Gradient
Computation

Collate

A 4

\ 4

\ 4

Decode Format

P
)
Q
o
\ 4

Augment

. "

. »
. "
- "o
- .
"
"o
»

»

Random Random
Padded Horizontal
Crop Flip

RandAugment RandAugment
Layer Layer

A 4
\ 4
\ 4

DNN Training Pipeline

Data Preparation : on CPU - : on DL accelerator

N
4 A

Gradient
Computation

A 4

Decode Format [~ Augment || Collate

A 4

Read

. s .,
. O
.. .
.
- .
. .
. .
. .
- .
.
PRI " .
. .
" .
.

Image Image -
Random :

Randlgug:nent Randéug;nent Padded Horizontal
y Y Crop Flip

A 4
\ 4
\ 4

DNN Training Pipeline

Data Preparation : on CPU - : on DL accelerator

AN
4 Heavy CPU Overhead! A

Gradient

Collate :
Computation

A 4

\ 4

\ 4

Decode Format

A 4

Read Augment

Image | Image -
Random .

\ 4
\ 4
\ 4

RandA t RandA t
an La“i;nen an Laug:nen Padded Horizontal
y Y Crop Flip

Overhead of Data Augmentation

® |nvestigate the impact of data augmentation overhead

e Workload: Training ResNet50 on ImageNet with RandAugment
o Configuration: # of RandAugment Layers

® Environment: One NVIDIA V100 GPU with four physical CPU Cores
o0 Same CPU-GPU ratio as cloud GPU VMs such as AWS P3 and GCP N1 instances

10

Overhead of Data Augmentation

400
Maximum Gradient Computation Speed on NVIDIA V100

Model: ResNet50
Aug: RandAugment

300

Training Throughput (images/sec)

200
Dataset: ImageNet
100
0
0 2 4 6
/ # of Randaugment Layers

Only Random Crop + Random Flip

11

Overhead of Data Augment

0
Q. How can we reduce Augment

CPU overhead from data eNet
augmentation?

/

Only Random Crop

12

Existing Approach: Data Echoing

e Data echoing (arXiv ‘20, NeurlPS 20): Cache & reuse previously
materialized samples

e Useful for training tasks with slow I/O
O e.g., Training data on remote storage

13

Standard Training

Image X

Image X

\ 4

Augmentation

4{ Image X1]

Image X

\ 4

Augmentation

Image X2

\ 4

Augmentation

Image X3

Epoch 1

Epoch 2

Epoch 3

14

Data Echoing

-> Low generalization of trained models

Problem: Sample diversity decreases to a great degree.

Reuse Factor =3

Cached

Augmentation

(Cmagex |

\ 4

Image X1

\ 4

Image X1

\ 4

.

Image X1

J

Epoch 1

Epoch 2

Epoch 3

15

Contents

Background & Motivation
Data Refurbishing
Revamper

Evaluation

16

Our Approach: Data Refurbishing

Solution: Cache & reuse partially augmented samples
by splitting augmentation pipelines

Cached Reuse Factor =3

[Image X]—> Partial Aug —{ Image X’ }

Final Aug —{ Image X1] Epoch 1

- Final Aug Image X2 Epoch 2

- Final Aug —{] Epoch 3

A4

17

Analysis on Sample Diversity

® Notations

O Given a sample,
m U (Sample Diversity): # of unique augmented samples during training
m |A| (Augmentation Diversity): # of possible uniqgue augmented samples by an

augmentation pipeline A

m |A;|: The augmentation diversity of the final augmentation

O r (Reuse Factor): # of reuses for each cached sample

O k: The total number of training epochs

k
ARl AR 1YY
Al |A] |AF |

E(U)=A|[1- (1

18

Analysis on Sample Diversity

1

Aug: RandAugment EW) = A (1_ (1_ Iﬁrll N |ﬁ4FI| (1

k (# of epochs) = 300

[1.0
" 0.9
" 0.8
F 0.7
" 0.6 . .
oS Sample Diversity
" 0.4

' 03 |Low Accuracy

High Accuracy

1.0
06 O Slow
0.4 Final Augmentation
Fact 5 00 Fast Dlvca:r5|ty
(Split Strategy)

1
Slow >

Reuse Factor 0.2

 |AF|

)))

19

Case #1: Standard Training
High sample diversity

e / but low throughput
Aug: RandAugment . (Ar| |AF] 1\’ ’:)
@) =Al[1-(1-ZE 4 1—
k (# of epochs) =300 /®\ (Al Al (IAFI))
[1.0

L 0.9 High Accuracy

" 0.8

0.7

. o2 Sample Diversity
" 0.4

' 03 |Low Accuracy

1

1.0
Slow 2 08 Slow

Final Augmentation
5 0.0 Diversity
Fast Fast .
(Split Strategy) 20

0.2

Reuse Factor

Case #2: Data Echoing

|Afl=1andr>1

1

|Ar| | |AF| (1

Aug: RandAugment E(U) = |A| (1—(1— a4l

k (# of epochs) =300

f 1.0
" 0.9
" 0.8
" 0.7
gg Sample Diversity
" 0.4

' 03 |ow Accuracy

High Accuracy

High throughput but

«

low sample diversity

1.0
0.8 Slow
Final Augmentation
5 00 Diversity
Fast Fast]
(Split Strategy)

1
Slow >

0.2

Reuse Factor

 |AF|

)))

21

Case #3: Data Refurbishing

1<|A;]<|A]landr>1

om0

T ;_'3 High Accuracy

Aug: RandAugment
k (# of epochs) =300

Exploit “sweet spot” 08
. 0.7

=> High throughput & | 22 Sample Diversity
[0.4

high sample diversity

' 03 |Low Accuracy

1.0
08 Slow
Final Augmentation
5 0.0 Diversity
Fast Fast .
(Split Strategy) 22

1
Slow >

Reuse Factor

Case #3: Data Refurbishing

1<|A;]<|A]landr>1

Aug: RandAugment (Ar| |AF] 1\’ ’:)
s lE(U) - |A| 1— 1— + 1_
k (# of epochs) = 300 =N (Al Al (IAFI))
Accuracy

Exploit “sweet sy
=> High throughy
high sample dive

1. Final augmentation has “enough”
diversity

2. Final augmentation has low ficcuracy
computation overhead

>, \:'//02 o4 Final Augmentation
' Diversity

(Split Strategy) 23

mple Diversity

Reuse Factor 5 0.0
Fast Fast

Contents

Background & Motivation
Data Refurbishing
Revamper

Evaluation

24

Challenge: Inconsistent Batch Time

e \Within a mini-batch,
O CPU processing time fluctuates according to the # of cache misses
O Gradient computation time on DL accelerator remains the same

=> Poor computation overlap

Wait
cPU Dooo ‘==|<i» ulanln
—... . Cached Sample
........ ol ...'."-.,........ T
DL Wait " Non-Cached Sample
Accelerator

25

Challenge: Inconsistent Batch Time

e \Within a mini-batch,
O CPU processing time fluctuates according to the # of cache misses
O Gradient computation time on DL accelerator remains the same

=> Poor computat| Solution: Revamper

1. Balanced Eviction: Balance # of

CPU OC cache misses across epochs lCached sample
--------- 2. Cache-Aware Shuffle: Balance # of
DL cache misses within an epoch Non-Cached Sample
Accelerator)

26

PyTorch Dataloader

Mini-batch
Indices

Not Augmented . Fully Augmented
-
Data Store
0 1 N-1
\ Sample Sample Sample

Worker Process

| Request
Queue

‘AN

Main Process

Batch Shuffler

Gradient Calculator
(On DL Accelerator)

27

Revamper

Not Augmented Partially Augmented . Fully Augmented
~ N
Data Store
0 1 N-1
\ Sample Sample Sample)
Worker Process N
Mini-batch
-
Indices -
Queue
e N
Cache Store
0 1 N-1
L Part Aug | E__/_i_g_ted _______ Part Aug)
|
Main Process
i . Gradient Calculator
Batch Evict
Shuffler Shuffler i

28

Revamper

Not Augmented Partially Augmented . Fully Augmented
r N
Data Store
0 1 N-1
L Sample Sample o Sample)
Worker Process N
Mini-batch
. Request
Indices Q _
ueue Hit
r || ™
Cache Store
0 1 N-1
¥ Part Aug | E_Vigted______é o Part Aug)
Main Process I et Gl
Batch Evict radien alculator
Shuffler Shuffler KO 1Dl e

Revamper

Not Augmented Partially Augmented . Fully Augmented
e ™
Data Store
0 1 N-1
\ Sample Sample Sample)
Worker Proces A4
Indices - =

e N
Cache Store] N
0 1 N-1
L Part Aug | E_\/_igt_e_d _______ Part Aug y
MAIMIROCESS _ Gradient Calculator
Batch Evict
Shuffler Shuffler (Ol 1ol FeesiieEiel

Balanced Eviction

Reuse Factor =3

. Cached Sample Non-Cached Sample

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Naive (Reference Count)

Fast: Possibly bottlenecked
by DL accelerators

Slow: Possibly bottlenecked
by CPU

31

Balanced Eviction

. Cached Sample
Reuse Factor =3

Epoch 1 ololo]lo]o]o

Non-Cached Sample
evicted samples: 6/3 =2

Epoch 2 1 1 1 1 |

Epoch 3 1 1 1 | 1

Epoch 4 ololo]lo]ol]o

Naive (Reference Count)

Balanced Eviction

32

Cache-Aware Shuffle

. . Cached Sample Non-Cached Sample
Batch Size =4
Reuse Factor =2
CPU
Random Shuffle Time
DL

Accelerator

33

Cache-Aware Shuffle

Batch Size =4
Reuse Factor =2
CPU
Random Shuffle
DL

Accelerator

CPU

Cache-Aware Shuffle
DL
Accelerator

. Cached Sample

Non-Cached Sample

o0oaa

ooaa

ooaa

Time

34

Contents

Background & Motivation
Data Refurbishing
Revamper

Evaluation

35

Implementation

e Implemented in 2000+ lines of Python code based on PyTorch 1.6
e |dentical interface to the PyTorch dataloader except for some additional

parameters
O e.g., reuse factor and split strategy

36

Evaluation: Environments

® Training server specification
O CPU: Intel Xeon E5-2695v4 (18 cores, 2.10GHz, 45MB Cache)
o RAM: 256GB DRAM
o GPU: NVIDIA V100
o Disk: Samsung 970 Pro 1TB NVMe SSDs

® We adjust CPU-GPU ratios using a Docker container (Default = 4:1)
e Workload: Image Classification

37

Evaluation: Baselines

Standard: DNN training without adopting data reusing mechanism
Data Echoing: Cache & reuse fully augmented samples
Simplified: Simply removing one or more transformation layers

Same hyperparameters for all the training settings
O Revamper does not require additional hyperparameter tuning

38

Evaluation: Accuracy & Throughput

2.04x

P T I - >

= =" " " " " % omowowowom >
. 1.59x
X 77.81 x
~ Model: ResNet50
> 77.61
< Aug: RandAugment
é 77.41 Dataset: ImageNet | Revamper improves X |r=2
< 77.21 % Standard training throughput up to
_5 770 Revamper 2.04x with comparable o|iea
© 6| @ Simplified aCCUracy -
S /0. : Crop + Hlip
= X Echoing
S 76.6- | | L

0 100 200 300

Training Throughput (images/sec) 39

Evaluation: Accuracy & Throughput

2.04x

@€ = = = " = s = = s 8z s = Q@ H oW oH o momomomomeom P>

" " =" = = s = = % om o om >
. 1.59x
X 77.8- x
~ Model: ResNet50
> 77.6-
< Aug: RandAugment
é 77.41 Dataset: ImageNet | Echoing & Simplified X||r=2
< 77.21 % Standard improve training
_5 77.0- Revamper throughput but with o
& 6gl @ Simplified degraded accuracy r=
2 10 i Crop + Hlip
= X Echoing
> 76.61 | | O

0 100 200 300

Training Throughput (images/sec) 40

Evaluation: CPU-GPU Ratio

Fewer CPUs -> Bigger Thp Gain
350-

Maximum Gradient Computation

Throughput on GPU

Model: ResNet50

Aug: RandAugment
Dataset: ImageNet

A

1.95x

A

2.04x

B Standard
s Revamper (r=2.0]
B Revamper (r=3.0]

4
of CPU cores per one GPU

IS V|
6

.61x

41

Conclusion

e Data refurbishing is a new intermediate data caching technique for DNN
training that accelerates data augmentation while preserving diversity
of augmented samples.

e Revamper realizes data refurbishing by maximizing computation overlap
between CPU and DL accelerators with carefully-designed cache eviction
and shuffle strategies.

® Revamper improves training throughput of DNN models by 1.03x-2.04x
while maintaining comparable accuracy.

42

