Refurbish Your Training Data: Reusing Partially Augmented Samples for Faster Deep Neural Network Training

Gyewon Lee^{1,3}, Irene Lee², Hyeonmin Ha¹, Kyunggeun Lee¹, Hwarim Hyun¹, Ahnjae Shin^{1,3}, and Byung-Gon Chun^{1,3} Seoul National University¹, Georgia Institute of Technology², FriendliAl³

SEOUL

NATIONAL

UNIVERSITY

DNN Training = Data Preparation + Gradient Computation

DNN Training =

Data Preparation + Gradi

- Data read and preprocessing
- On CPU

Gradient Computation

DNN Training =

Data Preparation

 Data read and preprocessing

• On CPU

Gradient Computation

+

 Forward and backward operations

• On DL accelerators (e.g., GPU, TPU)

DNN Training =

Data Preparation

 Data read and preprocessing

On CPU

Bottleneck!

Gradient Computation

+

- Forward and backward operations
- On DL accelerators (e.g., GPU, TPU)

Getting faster: NVIDIA A100, Google TPU v3, ...

8

9

Overhead of Data Augmentation

- Investigate the impact of data augmentation overhead
- Workload: Training ResNet50 on ImageNet with RandAugment
 - Configuration: # of RandAugment Layers
- Environment: One NVIDIA V100 GPU with four physical CPU Cores
 - Same CPU-GPU ratio as cloud GPU VMs such as AWS P3 and GCP N1 instances

Overhead of Data Augmentation

Existing Approach: Data Echoing

- Data echoing (arXiv '20, NeurIPS '20): Cache & reuse previously materialized samples
- Useful for training tasks with slow I/O
 - e.g., Training data on remote storage

Standard Training

Data Echoing

Problem: Sample diversity decreases to a great degree. -> Low generalization of trained models

Contents

- Background & Motivation
- Data Refurbishing
- Revamper
- Evaluation

Our Approach: Data Refurbishing

Solution: Cache & reuse *partially augmented samples* by splitting augmentation pipelines

Analysis on Sample Diversity

- Notations
 - O Given a sample,
 - U (Sample Diversity): # of unique augmented samples during training
 - |A| (Augmentation Diversity): # of possible unique augmented samples by an augmentation pipeline A
 - |A_F|: The augmentation diversity of the final augmentation
 - r (Reuse Factor): # of reuses for each cached sample
 - k: The total number of training epochs

$$\mathbb{E}(U) = |A| \left(1 - \left(1 - \frac{|A_F|}{|A|} + \frac{|A_F|}{|A|} \left(1 - \frac{1}{|A_F|} \right)^r \right)^{\frac{k}{r}} \right)$$

Analysis on Sample Diversity

Case #2: Data Echoing

 $|A_{F}| = 1$ and r > 1

Case #3: Data Refurbishing

$1 < |A_F| < |A|$ and r > 1

Case #3: Data Refurbishing

$1 < |A_F| < |A|$ and r > 1

Contents

- Background & Motivation
- Data Refurbishing
- Revamper
- Evaluation

Challenge: Inconsistent Batch Time

- Within a mini-batch,
 - CPU processing time fluctuates according to the # of cache misses
 - Gradient computation time on DL accelerator remains the same

=> Poor computation overlap

Challenge: Inconsistent Batch Time

- Within a mini-batch,
 - CPU processing time fluctuates according to the # of cache misses
 - Gradient computation time on DL accelerator remains the same

PyTorch Dataloader

Revamper

Revamper

Revamper

Balanced Eviction

Contents

- Background & Motivation
- Data Refurbishing
- Revamper
- Evaluation

Implementation

- Implemented in 2000+ lines of Python code based on PyTorch 1.6
- Identical interface to the PyTorch dataloader except for some additional parameters
 - o e.g., reuse factor and split strategy

Evaluation: Environments

- Training server specification
 - CPU: Intel Xeon E5-2695v4 (18 cores, 2.10GHz, 45MB Cache)
 - o RAM: 256GB DRAM
 - o GPU: NVIDIA V100
 - O Disk: Samsung 970 Pro 1TB NVMe SSDs
- We adjust CPU-GPU ratios using a Docker container (Default = 4:1)
- Workload: Image Classification

Evaluation: Baselines

- Standard: DNN training without adopting data reusing mechanism
- Data Echoing: Cache & reuse fully augmented samples
- Simplified: Simply removing one or more transformation layers
- Same hyperparameters for all the training settings
 - Revamper does not require additional hyperparameter tuning

Evaluation: Accuracy & Throughput

Evaluation: Accuracy & Throughput

Evaluation: CPU-GPU Ratio

of CPU cores per one GPU

Conclusion

- **Data refurbishing** is a new intermediate data caching technique for DNN training that accelerates data augmentation while preserving diversity of augmented samples.
- **Revamper** realizes data refurbishing by maximizing computation overlap between CPU and DL accelerators with carefully-designed cache eviction and shuffle strategies.
- Revamper improves training throughput of DNN models by **1.03x-2.04x** while maintaining comparable accuracy.