
AN OFF-THE-CHAIN EXECUTION

ENVIRONMENT FOR SCALABLE

TESTING AND PROFILING OF

SMART CONTRACTS

Yeonsoo Kim1, Seongho Jeong1, Kamil Jezek2,

Bernd Burgstaller1, and Bernhard Scholz2

1Yonsei University, Korea
2The University of Sydney, Australia

Header

BodyBodyTX

Block N

Problem: Transaction Replay

2

 Transaction (TX) replay

 Important for auditing, testing, profiling, and debugging of smart contracts

 Challenge: retrieval of the historical state that the transaction was originally executed on

EVM EVM EVM EVM

…

… …

…

Initial

State

State

N-1

State

N
State

0

State

N+1

Current

State

EVM

BodyBodyTX

Block N-1

HeaderHeader

BodyBodyTX

Genesis

Block

Header

BodyBodyTX

Block N+1

Header

BodyBodyTX

Tip of the

Chain

……

Transaction Replay on Geth Archive Node

3

 Geth archive node

 Entire history of world states stored in archive database

 Delegation of transaction replay via JSON RPC

 Limitations of Geth archive node

 Substantial time and disk space required to maintain archive database

◼ 6 TB at block 11.5M

 Very low transaction replay throughput

◼ 19.4 tx/s at block 9M

JSON

RPC

Client

Mainnet Archive Database

State

N-1

EVM

State

N

JSON RPC Server

JSON RPC

messages

Execution

Results

Transaction Replay on Geth Full Node

4

 Geth full node in fast-sync mode

 Starting from the intermediate state at block M instead of the genesis block

 Less time and disk space required compared to a Geth archive node

 Limitations of Geth full node in fast-sync mode

 Time required to process intermediate blocks from block M to block N-1

 Space required to store a complete world state with all accounts from previous blocks

 Only available for recent blocks

Mainnet

Download

Blockchain

Block

M
⋯

Block

N-1

Block

N
⋯

Download

State

⋯ EVM EVM ⋯

⋯ State

N-1

State

N

⋯State

M

Ethereum Client

5

Efficient Transaction Replay is an Unsolved Problem

[50] Weiqin Zou, et al. ``Smart Contract Development: Challenges and Opportunities.''

IEEE Transactions on Software Engineering, 2019.

``EVM is a single-threaded machine that cannot run transactions in parallel.

… This maybe a big problem for people who have a higher requirement

on the timely reaction and verification of their transactions.''

[5] Amiangshu Bosu, et al. ``Understanding the motivations, challenges and needs of Blockchain software

developers: a survey.'' Empirical Software Engineering, 24(4):2636–2673, 2019.

``Reliability of and the lack of good development tools.

Like testing frameworks, and the difficulty of debugging.''

``Easy way of forking mainnets for testing purposes, …''

Developers suffering from

Developers need

Contributions

1) Transaction record/replay mechanism to enable off-the-chain execution of transactions

 in isolation and at scale

2) Re-organization of the Ethereum world state into transaction-relevant substates

 Space-efficient representation of the information required to faithfully replay a transaction

3) Evaluation of the proposed approach through three use cases:

▪ a regression tester for hard forks

▪ a dead-code analysis

▪ a program fuzzer for smart contracts

6

A testing environment for smart contracts on the Ethereum blockchain

 Purpose: fast re-execution of historical transactions

Solution (Overview)

 Transactions recorded by importing all blocks from the genesis block up to the tip of the chain.

 Includes full cryptographic verification of blocks as mandated by the Ethereum protocol (on-chain)

 Historical state captured from before and after each transaction on the chain.

 Restricted to the subset of the world state required to faithfully replay the transaction

 No dependency on earlier transactions on the chain

 Substates stored in the substate database

 Transaction replay from substate database conducted off-the-chain

 Mocking the Ethereum protocol to execute transactions without the overhead of the distributed system

 Absence of dependencies allows instant replay of historical transactions, in isolation and at scale

7

Off-The-Chain Testing – Recorder

8

 Recorder captures substates during on-chain transaction execution

(1) Environment parameters (block, message)

(2) Accessed indices (addresses, storage keys)

(3) Accessed key-value pairs (input/output tuples) from account storage

(4) Transaction result (status code, logs, gas usage)

(5) Collection of input/output substates

 Example: token transfer of 10 units at key2 of account 1 (<address1,key2>) to key2 of
account 2 (<address2,key2>)

TX

EVM

Input

State

Output

State

Block Header

Transaction Result

Addresses &

Storage Keys

Accounts &

Storage Values

Block

Message

Substate

Database

Substate record:

<input substate,

output substate>
Recorder

(1)

(2)

(3)

(4)

(5)
Input tuples:

<<address1,key2>, 25>
<<address2,key2>, 80>

Output tuples:

<<address1,key2>, 15>
<<address2,key2>, 90>

Off-The-Chain Testing – Replayer

9

 Replayer loads substates and replays transactions off-the-chain

(1) Copies input substate to in-memory EVM context

(2) Executes the transaction in isolation and captures its output substate as the recorder did

(3) Checks correctness of transaction replay

◼ Raises an exception if accessed indices or the replay output differ from the recorded output

 The elimination of dependencies on earlier transactions enables transaction replay at scale

Substate

Database

Substate record

Replay

Thread 2

⋯

Replay

Thread T

Substate record

Replay

Thread 1

EVM

Input

substate

EVM

Output

Assert

Equal

Output

substate

(recorded)

Output

substate

(from replay)

(1)

(2)

(3)

Record input:

<<address1,key2>, 25>
<<address2,key2>, 80>

Record output:

<<address1,key2>, 15>
<<address2,key2>, 90>

Replay input:

<<address1,key2>, 25>
<<address2,key2>, 80>

Replay output:

<<address1,key2>, 0>
<<address2,key2>, 90>

``Assert Equal'' will fail

unequal

Evaluation – System Configuration

10

 Evaluated for the initial 9M blocks of the Ethereum blockchain

 Containing 590M transactions

 Replayer finished without raising an exception, signifying a 100% replay accuracy

Evaluation – Replay Performance (Space)

11

 Substate database saves 59.24% of disk space compared to a Geth full node

Evaluation – Replay Performance (Time)

12

 4.54 times faster than a Geth full node with a single thread

 When scaled to 44 cores, replay of 590M transactions finishes within six hours

Use Cases

13

 Demonstration of effectiveness of our record/replay infrastructure for dynamic analyses

1) Metric use case

2) Fuzzer use case

3) Hard fork assessment

Use Case 1: Metric

14

 Wasteful instructions have no lasting side effect on the blockchain state

 Propagation of necessity of instructions in the value graph in a backward fashion

 6:SSTORE and 23:RETURN

 All instructions that they depend upon (by transitivity)

Use Case 1: Metric (cont.)

15

 The analysis of 9M blocks took 75 hours

 Revealed increasing wasteful instruction ratios and wasted gas per transaction with later blocks

 50% instructions and 25k gas are wasteful per transaction in block range 8-9M

Use Case 2: Fuzzer

16

 Fuzzers test programs with randomized inputs

 Low-performing fuzzers limit the effectiveness and may result in false negatives

 Demonstration of the effectiveness of parallel replay for fuzzing

 Integration of our off-the-chain replayer with ContractFuzzer

Use Case 2: Fuzzer (cont.)

17

 Evaluated with substates recorded from the Ethereum mainnet

 Increased throughput of contracts with a single thread

 Established scalability on multicore architectures

Use Case 3: Hard Fork Assessment

 Ethereum specification has been updated over the years via hard forks

 Hard forks that update EVM specification may cause problems with already-deployed contracts

 680 contracts of the Aragon framework reportedly failed due to EIP-1884

 Important to assess effects of hard forks on existing contracts, as reported by the developer community:

``Security and backward compatibility are held with utmost importance here ...''

``... we have to consider backward compatibility all the time.''

[5] Amiangshu Bosu, et al. “Understanding the motivations, challenges and needs of Blockchain

software developers: a survey.” Empirical Software Engineering, 24(4):2636–2673, 2019.

18

Use Case 3: Hard Fork Assessment (cont.)

19

 Analysis took 15.15 hours for a total of 529M transactions

 Effects on execution path: ``EVM runtime exception'' + ``Output changed''

 Effects on gas consumption: ``Gas usage changed‘’

 Hard forks with highest ratios of effects on both execution path and gas consumption

 Spurious Dragon, Tangerine Whistle, Istanbul

 Mainly increased gas costs of EVM instructions

Conclusion

 Our work proposes a new infrastructure for the lightweight execution of smart contracts in isolation

and at scale.

 Single threaded execution of all available smart contracts, 4.54 times faster than a Geth full node

 Scaled effectively on a multicore architecture, 50.03 times faster on 44 cores

 Our infrastructure is highly suitable for scenarios that require the fast and repeated execution of

smart contracts.

 As demonstrated through three use cases:

1) our metric use case for dead code analysis

2) a program fuzzer for smart contracts

3) the assessment of hard forks.

 Our infrastructure scales for the whole blockchain, which is not attainable with prior approaches.

20

Q&A

21

Thank you!

Contact information for follow-up questions: Mr. Yeonsoo Kim

Department of Computer Science

Yonsei University

Email: yeonsoo.kim@yonsei.ac.kr

mailto:yeonsoo.kim@yonsei.ac.kr

