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Problem: Transaction Replay
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 Transaction (TX) replay

 Important for auditing, testing, profiling, and debugging of smart contracts

 Challenge: retrieval of the historical state that the transaction was originally executed on
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Transaction Replay on Geth Archive Node
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 Geth archive node

 Entire history of world states stored in archive database

 Delegation of transaction replay via JSON RPC

 Limitations of Geth archive node

 Substantial time and disk space required to maintain archive database

◼ 6 TB at block 11.5M

 Very low transaction replay throughput

◼ 19.4 tx/s at block 9M
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Transaction Replay on Geth Full Node
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 Geth full node in fast-sync mode

 Starting from the intermediate state at block M instead of the genesis block

 Less time and disk space required compared to a Geth archive node

 Limitations of Geth full node in fast-sync mode

 Time required to process intermediate blocks from block M to block N-1

 Space required to store a complete world state with all accounts from previous blocks

 Only available for recent blocks
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Efficient Transaction Replay is an Unsolved Problem

[50] Weiqin Zou, et al. ``Smart Contract Development: Challenges and Opportunities.'' 

IEEE Transactions on Software Engineering, 2019.

``EVM is a single-threaded machine that cannot run transactions in parallel. 

… This maybe a big problem for people who have a higher requirement 

on the timely reaction and verification of their transactions.''

[5] Amiangshu Bosu, et al. ``Understanding the motivations, challenges and needs of Blockchain software 

developers: a survey.'' Empirical Software Engineering, 24(4):2636–2673, 2019.

``Reliability of and the lack of good development tools. 

Like testing frameworks, and the difficulty of debugging.''

``Easy way of forking mainnets for testing purposes, …''

Developers suffering from

Developers need



Contributions

1) Transaction record/replay mechanism to enable off-the-chain execution of transactions

 in isolation and at scale

2) Re-organization of the Ethereum world state into transaction-relevant substates

 Space-efficient representation of the information required to faithfully replay a transaction

3) Evaluation of the proposed approach through three use cases:

▪ a regression tester for hard forks

▪ a dead-code analysis

▪ a program fuzzer for smart contracts
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A testing environment for smart contracts on the Ethereum blockchain

 Purpose: fast re-execution of historical transactions



Solution (Overview)

 Transactions recorded by importing all blocks from the genesis block up to the tip of the chain.

 Includes full cryptographic verification of blocks as mandated by the Ethereum protocol (on-chain)

 Historical state captured from before and after each transaction on the chain.

 Restricted to the subset of the world state required to faithfully replay the transaction

 No dependency on earlier transactions on the chain

 Substates stored in the substate database

 Transaction replay from substate database conducted off-the-chain

 Mocking the Ethereum protocol to execute transactions without the overhead of the distributed system

 Absence of dependencies allows instant replay of historical transactions, in isolation and at scale
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Off-The-Chain Testing – Recorder
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 Recorder captures substates during on-chain transaction execution

(1) Environment parameters (block, message)

(2) Accessed indices (addresses, storage keys)

(3) Accessed key-value pairs (input/output tuples) from account storage

(4)  Transaction result (status code, logs, gas usage)

(5) Collection of input/output substates

 Example: token transfer of 10 units at key2 of account 1 (<address1,key2>) to key2 of 
account 2 (<address2,key2>)
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Off-The-Chain Testing – Replayer
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 Replayer loads substates and replays transactions off-the-chain

(1) Copies input substate to in-memory EVM context

(2) Executes the transaction in isolation and captures its output substate as the recorder did

(3) Checks correctness of transaction replay

◼ Raises an exception if accessed indices or the replay output differ from the recorded output

 The elimination of dependencies on earlier transactions enables transaction replay at scale
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Evaluation – System Configuration
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 Evaluated for the initial 9M blocks of the Ethereum blockchain

 Containing 590M transactions

 Replayer finished without raising an exception, signifying a 100% replay accuracy



Evaluation – Replay Performance (Space)
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 Substate database saves 59.24% of disk space compared to a Geth full node



Evaluation – Replay Performance (Time)
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 4.54 times faster than a Geth full node with a single thread

 When scaled to 44 cores, replay of 590M transactions finishes within six hours 



Use Cases
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 Demonstration of effectiveness of our record/replay infrastructure for dynamic analyses

1) Metric use case

2) Fuzzer use case

3) Hard fork assessment



Use Case 1: Metric
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 Wasteful instructions have no lasting side effect on the blockchain state

 Propagation of necessity of instructions in the value graph in a backward fashion

 6:SSTORE and 23:RETURN

 All instructions that they depend upon (by transitivity)



Use Case 1: Metric (cont.)
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 The analysis of 9M blocks took 75 hours

 Revealed increasing wasteful instruction ratios and wasted gas per transaction with later blocks

 50% instructions and 25k gas are wasteful per transaction in block range 8-9M



Use Case 2: Fuzzer
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 Fuzzers test programs with randomized inputs

 Low-performing fuzzers limit the effectiveness and may result in false negatives

 Demonstration of the effectiveness of parallel replay for fuzzing

 Integration of our off-the-chain replayer with ContractFuzzer



Use Case 2: Fuzzer (cont.)
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 Evaluated with substates recorded from the Ethereum mainnet

 Increased throughput of contracts with a single thread

 Established scalability on multicore architectures



Use Case 3: Hard Fork Assessment

 Ethereum specification has been updated over the years via hard forks

 Hard forks that update EVM specification may cause problems with already-deployed contracts

 680 contracts of the Aragon framework reportedly failed due to EIP-1884

 Important to assess effects of hard forks on existing contracts, as reported by the developer community:

``Security and backward compatibility are held with utmost importance here ...''

``... we have to consider backward compatibility all the time.''

[5] Amiangshu Bosu, et al. “Understanding the motivations, challenges and needs of Blockchain 

software developers: a survey.” Empirical Software Engineering, 24(4):2636–2673, 2019.
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Use Case 3: Hard Fork Assessment (cont.)
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 Analysis took 15.15 hours for a total of 529M transactions

 Effects on execution path: ``EVM runtime exception'' + ``Output changed''

 Effects on gas consumption: ``Gas usage changed‘’

 Hard forks with highest ratios of effects on both execution path and gas consumption

 Spurious Dragon, Tangerine Whistle, Istanbul

 Mainly increased gas costs of EVM instructions



Conclusion

 Our work proposes a new infrastructure for the lightweight execution of smart contracts in isolation 

and at scale.

 Single threaded execution of all available smart contracts, 4.54 times faster than a Geth full node

 Scaled effectively on a multicore architecture, 50.03 times faster on 44 cores

 Our infrastructure is highly suitable for scenarios that require the fast and repeated execution of 

smart contracts.

 As demonstrated through three use cases:

1) our metric use case for dead code analysis

2) a program fuzzer for smart contracts 

3) the assessment of hard forks.

 Our infrastructure scales for the whole blockchain, which is not attainable with prior approaches.
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Q&A
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Thank you!

Contact information for follow-up questions: Mr. Yeonsoo Kim

Department of Computer Science

Yonsei University

Email: yeonsoo.kim@yonsei.ac.kr
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