XFUSE: An Infrastructure for Running
Filesystem Services in User Space

Qianbo Huai*, Windsor Hsu*, Jiwei Lu*, Hao Liang®, Haobo Xu* and Wei Chen*
*Alibaba Group "Alibaba Group
Sunnyvale, California Shenzhen, Guangdong
USA China

User Space Filesystem

Benefits
* Higher development efficiency and velocity

* Decreased dependency on OS

Concerns

* Performance

* RAS (Reliability, Availability and Serviceability)
 Application and build changes may be required

Related Work

e FUSE: an interface for user-space programs to export a filesystem to the Linux kernel.
* FUSE-based filesystems are accessible through standard kernel interface

 Large body of work on improving FUSE performance
* E.g. ExtFUSE allows applications to register “thin” specialized request handlers in
the kernel to improve performance

e AVFS uses LD_PRELOAD to intercept libc POSIX APl entry and invoke filesystem ops
without context switch

* ZUFS leverages persistent memory to have its kernel module directly copy data
between source and destination, eliminating the extra copy to/from buffer cache.

* NVFUSE is an embeddable file system as a library running in the user-space
incorporated with SPDK library, and supports directly submitting 1/0 requests to
NVMe SSDs.

* Re-FUSE is a framework that provides support for restartable user space filesystems.

Our Contribution: XFUSE

XFUSE

* Backward compatible with FUSE

* Improves performance and RAS for XFUSE-optimized filesystems
* Facilitates large-scale and gradual rollout in production

Designed for user space filesystems that

* Use high speed storage devices
 PMEM, fast SSDs, distributed storage systems based on high perf network

* Are deployed in production environments
* With strict RAS requirements

Agenda

* Request Flow in FUSE

* XFUSE Improvements
* Adaptive waiting to reduce latency
* Increased parallelism to improve throughput
* Online upgrade for better RAS

* Performance Evaluation
* Parametric analysis
e System-level performance

* Conclusion

FUSE Request Flow

Request flow

* Application makes a syscall (e.g. via POSIX API)
to a FUSE-mounted filesystem

* FUSE request travels from the app thread (via
fuse.ko) to a filesystem daemon thread

* FUSE reply travels, in reverse direction, from
the daemon thread back to the app thread

A synchronous FUSE request may involve two
event waits in kernel

* Daemon thread: wait for pending requests if
none is available at the time.

* App thread: wait for request completion

Notes:

Daemon Process

i Filesystem |
| |
U ! FUSEAPI i |
ser : ; :
Application i : |
i i Libfuse i
A : |
: i A :]
Syscall R e T :+ _______
i FUSE Request | Reply

i :

v | :

»| pending v

Filesystem we““‘ Device

\
Handler l " - / Handler
""" procesne
fuse.ko

- Certain details (such as background queue, async io) are omitted and the omission does not impact our discussion

XFUSE improvements

Adaptive Waiting
Problem

* Kernel event-wait and notification take a few us to deliver
* High perf storages: data may become available sooner

Add an initial busy-wait period

* End-to-end latency can be as low as 3~4 us
(vs. 8~9 us under event-wait)

Effectiveness of busy-wait
* Performance characteristics of filesystem and storage

* Thread placement (same vs. different CPUs)
* Workload

Adaptive busy-event wait (or adaptive waiting)
e Dynamically predict if busy-wait is beneficial, and
 Turn on/off busy-wait accordingly

Invoke wait
for condition

Is
Condition

Yes

Yield
CPU

Y

true?

Compute
Busy-wait period

v

Is wait
< busy-wait
Period?

lNo

Yes

Wait on event

v

Record
Latency

Return <

Increased Parallelism

FUSE
* New request — pending queue (one per mount)
* Request fetched — processing queue (one per FD)

XFUSE
* Introduces multiple request pending queues

* Groups each pair of pending and processing queues
as a channel

* New request — channel (per selection policy)

Benefits

* Daemon threads work on their own pending and
processing queues

* Reduced kernel lock contention between daemon
threads

Daemon Process

1 1
1 1
1 1
1 1
1 1
: :
| Filesystem i
1 1
| e
! XFUSE AP i !
User i v i
Application i . i
PP] Libxfuse |
A i i
| : 4 i I
Syscall e I
i FUSE Request i Reply
L -
i e | i
\ A i - i
1 . M I
» pending i v
1 il
! [
. e 1
Filesystem P\da?)::\ o> ' i Device
Handler l\Na\ v E g Handler
i K -
1| processing ‘H—i‘
A i
fuse.ko i iervim—— 0 -1y 1<

Online Upgrade

Business needs
* Fast paced rollout of new features and bug fixes for user space filesystems
* Minimal disruption to tens or hundreds of mounts and apps on each host during upgrade

Online upgrade solution

* Extend libfuse to support online upgrade workflow and state transition

* Monitor Service
* Coordinates the interactions between two filesystem daemons
* Assists the transfer of filesystem internal states, including FDs (to special fuse device)

Previous instance

Upgraded instance

! cLI > 1. Install new package
6. Finish fetched requests, i 2. Start
Save states L 9. Load states
Filesystem Filesystem
A Monitor |*+-3 [
libxfuse 7 L S€NVIC€ | s | jibxfuse
\ Holds fds to
5. Stop fetching reque§t§ ' xfuse device /~10. Start to fetch requests
\ 4
Kernel
xfuse.ko

Throughput (MB/s)

80

(2]
o
o

0

T T T

0 10

Upgrade
Initiated:

20

30

Package

Preparation

40 50
Time (s)

Upgrade
1Completed

60

70

80

90

Performance Evaluation

Parametric Analysis

Objectives
* Understand the effects of policy choices and tuning params

* Project potentially achievable performance

v el
2| 2
Reader S E
Method User = =
* Explore aspects of XFUSE individually Kernel m——— e
xfuse.ko
Aspects L
* Waiting strategy in adaptive waiting
* Placement of app and daemon threads TimingFS
* Channel selection for new FUSE request * User space filesystem, via FUSE lowlevel API
* Optimized to probe aspects of XFUSE individually
Test setup Can emulate timing characteristics storage
* Dedicated Linux 4.19.91 servers on Alibaba Cloud systems
. . * E.g. READ copies 4KB randomly from a large file
T Channelé n .XFPSE * PMEM-like: reply to XFUSE.ko immediately
* 24 threads in TimingFS * SSD-like: delays 100 us before replying

* Threads can configured to affine to CPUs

Parametric Analysis: Waiting Strategy

How I/O performance is impacted by

Varying busy-wait period (note: “Ous” disables busy-wait, is essentially event-wait only)

Wait-decision algorithm; threshold for turning on/off busy-wait

Findings

Latency (us)

PMEM-like: 10us busy-wait, good balance between performance and CPU usage.

SSD-like: last latency value is sufficient to predict the latency for the current request
SSD-like: adaptive waiting outperforms busy-wait-only when system is under load
Performance with Busy-Event Wait
20 ¢ 300
[Busy Wait (us) [Busy Wait (us)
18 *? 20 <0
16 + | 3 e
14 T 200 -
12 B
10 £ 150 -
g 8
8 + K
6 & 100 T
2 :
F 50 T
2 f -
; PMEM-like I SSD-like
0 0
(] 2000 4000 6000 8000 10000 (] 1000 2000 3000 4000 5000
Throughput (MB/s) Throughput (MB/s)

Wait-decision:
threshold = busy wait_period + event_wait_overhead
= 10us + 5Sus = 15us
if observed_latency < threshold

do busy-event wait

else
do event wait
Performance with Adaptive Busy-Event Wait
300
[Busy Wait (us)
[<0
250 + | x5
[<10
200 + | *15
m [=20
B S
= [
g1s0
1] [
E [
100 +
50 +
[SSD-like
0 e
0 1000 2000 3000 4000 5000
Throughput (MB/s)

Parametric Analysis: Thread Placement

In production environments where thread placement can be controlled

Placement of app thread and corresponding daemon thread:

* PMEM-like storage, different CPUs
* Two threads affined on the same CPU cannot busy-wait for each other.

e SSD-like storage: same CPU

e Event notification on local CPU is faster than that across CPUs.

|| = Event/Same

| - Event/Cross
[| ~<Adaptive/Same

300

250

ssD-like o
 Cross CPU

-e

L | ——Adaptive/Cross 200 (,'D
m m |
2 2 !
> > [
g 107 o / § 150 1 / . Same
g o-p0--0-GQ-===% o 3 .
5 <] same CPU__|° 5 b CPU
—————— 100 +
5 | e Event-Wait/Same CPU
50 | -G Event-Wait/Cross CPU
| |-« Adaptive-Wait/Same CPU
Cross CPU - | <+—Adaptive-Wait/Cross CPU
0 A m— ‘ ‘ 0 H—f—
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000

Throughput (MB/s)

Throughput (MB/s)

Same CPU
g
! |
: App thread |—| channel [~ Daemon thread 1 CPU;
1
1
b e e e e e e e e e e Mmoo 1
Cross CPU
g
! |
: App thread [—{ channel Daemon thread || CPU;
1
1
. N . D _1
e VAR T
1 1
1 | Appthread [channel Daemon thread |, CPU;
1 1

Parametric Analysis: Channel Selection

Findings

* Best strategy: evenly distribute requests across all channels

* Avoid policies that keep on switching to an idle channel, which renders busy-wait ineffective

(see the RR line in PMEM-like figure).

* PID and HASH policies perform well in repeated tests

* PID-policy is computationally cheaper. HASH-policy consistently avoids skewed request distribution

20
18
16

[
N b

Latency (us)
=
1)

A O ©®

Channel
Selection
Policy

<-PID
~<CPUID
--RR

-+STIME
S-HASH

PMEM-like
T T TR S TR [N S
T T

T
2000

T
4000 6000 8000
Throughput (MB/s)

10000

300 T
250 |

200

Latency (us)
)
v
<)

Channel
Selection
Policy

<-PID
*CPUID
“-RR
-+ST
HHASH

SSD-like
- T T S I S N

T
0 1000

T
2000 3000
Throughput (MB/s)

T
4000

5000

Channel selection

channel_index = val % channel_num

Where val is

PID: thread id

CPUID: id of CPU

RR: round-robin, i.e. val = ++channel_index
ST: thread start time

HASH: hash of thread id
Compute 3 different hashes
Select the channel with the shortest queue

Parametric Analysis: XFUSE vs FUSE

* Project the best-case performance that XFUSE can achieve

* XFUSE configuration:
* Adaptive busy-event wait: busy-wait period 10us. event-wait overhead 5us
e 24 channels. 24 threads in TimingFS, one for each physical core.

20 | . 300 .
x PMEM-like I SSD-like
18 +
16 |
14 + *XFUSE/Same CPU
712 I ~+XFUSE/Cross CPU 0]
= i <FUSE =
S10 | g
3 b 2
5 8¢ 5
6 + i
4+ [| +XFUSE/Same CPU
g 50 T| +-XFUSE/Cross CPU
21 - | ©-FUSE
o [t t Il } Il Il Il Il t O Il Il Il Il } Il Il Il Il } Il Il Il Il } Il Il Il Il
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000

Throughput (MB/s) Throughput (MB/s)

System-Level Performance

Setup a common basis for comparing XFUSE, FUSE and Storage types
lar k I-mode EXT4
regular kernei-mode - RAMDisk: PMEM-like

* Erron the side of being conservative for XFUSE
I né vatlv * FastDisk: SSD-like cloud disk. Avg 4KB read latency:

115us. Max 80K IOPS

Evaluate the performance potential of XFUSE * SlowDisk: Cloud disk. Avg 4KB read latency: 250us. Max

* In cases where FUSE has a significate gap with EXT4 SK'10PS

Filebench simulates workloads

* Web-Server, Random-Read, File-Create
o Q o L
= 2| 3
Filebench Filebench 2 P Filebench = &
User
o S SPECTTES CEEEerTsl Bererers L S SPECITES CEEEerTeS Srreeees e
EXT4 fuse.ko EXT4 xfuse.ko EXT4
RAMDisk/ I [I [I
FastDisk/ Storage Storage Storage
SlowDisk

Setup 1 Setup 2 Setup 3

System-Level Performance: Results

RAMDisk (PMEM:-like)

SlowDisk

* XFUSE closes the perf gap with kernel-mode EXT4. .

* For random-read, XFUSE achieves 3x throughput over FUSE

FastDisk (SSD-like)

* XFUSE offers significant benefit over FUSE.

* For random read, XFUSE delivers full throughput of the

FastDisk, maxed at 80K IOPS.

250

RAMDisk

Web-

-+ EXT4

200

Latency (us)
iy
w
=)

=
(=]
o

50

Server

m---m-------------m

Random-
Read

-* FUSE
-& XFUSE
—+—EXT4
~-FUSE
-#-XFUSE

250

500

750

Throughput (1000 ops/s)

1000

800

Latency (us)

Performance is bottlenecked by the storage than by conduit to user space

File-Create

XFUSE outperforms FUSE for RAMDisk and FastDisk but by a smaller margin

Benefit of XFUSE over FUSE is limited by the scalability of StackFS and EXT4

Throughput (1000 ops/s)

s : | FastDisk
1 ! |’
| ']
| ! 1
i x4 4
' [
1
F [| Web.
! 1
I ! 1 Server
I TR
X ,I /i . A
I s
Poex--x| _La .7
g = --2 ot —+ EXT4
I X .m
-t -% FUSE
-& XFUSE
Random- L EXTA
Read
*-FUSE
#-XFUSE
L ; ; T
0 60 120 180 240

2.0

15 1

Latency (ms)
=Y
o

05 T

0.0

W SlowDisk|

Random- "
Read "

—+ EXT4
-* FUSE
-& XFUSE
—+EXT4
~+-FUSE
-#-XFUSE

5

10

15

Throughput (1000 ops/s)

20

1000

800

Latency (us)
(=2}
=]
o

B
(=3
o

200

- —
E] File-Create Ekra
x RAMDisk | -* FUSE
|
) X = XFUSE
h EXT4
i FUSE
i
) o XFUSE
'
'
! \
o !
i L i
X E
[)
v 4
! \
! :
T Y 4 threads
] ll ﬁ
¥ \
L L A +
0 50 100 150 200 250 300 350

Throughput (1000 ops/s)

XFUSE

A FUSE-compatible framework for filesystem in user space

Enables significantly higher performing user space filesystems

* Delivers round-trip latency in the 4 us range, offers throughput exceeding 8 GB/s

Supports filesystems with strict RAS requirements in production

€2 Alibaba Group

Thank You

1"’"5" CAREERS S
WE ARE HIRING IN SUNNYVALE

Questions: gianbo.huai@alibaba-inc.com

