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User Space Filesystem

Benefits
* Higher development efficiency and velocity

* Decreased dependency on OS

Concerns

* Performance

* RAS (Reliability, Availability and Serviceability)
 Application and build changes may be required



Related Work

e FUSE: an interface for user-space programs to export a filesystem to the Linux kernel.
* FUSE-based filesystems are accessible through standard kernel interface

 Large body of work on improving FUSE performance
* E.g. ExtFUSE allows applications to register “thin” specialized request handlers in
the kernel to improve performance

e AVFS uses LD_PRELOAD to intercept libc POSIX APl entry and invoke filesystem ops
without context switch

* ZUFS leverages persistent memory to have its kernel module directly copy data
between source and destination, eliminating the extra copy to/from buffer cache.

* NVFUSE is an embeddable file system as a library running in the user-space
incorporated with SPDK library, and supports directly submitting 1/0 requests to
NVMe SSDs.

* Re-FUSE is a framework that provides support for restartable user space filesystems.



Our Contribution: XFUSE

XFUSE

* Backward compatible with FUSE

* Improves performance and RAS for XFUSE-optimized filesystems
* Facilitates large-scale and gradual rollout in production

Designed for user space filesystems that

* Use high speed storage devices
 PMEM, fast SSDs, distributed storage systems based on high perf network

* Are deployed in production environments
* With strict RAS requirements



Agenda

* Request Flow in FUSE

* XFUSE Improvements
* Adaptive waiting to reduce latency
* Increased parallelism to improve throughput
* Online upgrade for better RAS

* Performance Evaluation
* Parametric analysis
e System-level performance

* Conclusion



FUSE Request Flow

Request flow

* Application makes a syscall (e.g. via POSIX API)
to a FUSE-mounted filesystem

* FUSE request travels from the app thread (via
fuse.ko) to a filesystem daemon thread

* FUSE reply travels, in reverse direction, from
the daemon thread back to the app thread

A synchronous FUSE request may involve two
event waits in kernel

* Daemon thread: wait for pending requests if
none is available at the time.

* App thread: wait for request completion
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XFUSE improvements



Adaptive Waiting
Problem

* Kernel event-wait and notification take a few us to deliver
* High perf storages: data may become available sooner

Add an initial busy-wait period

* End-to-end latency can be as low as 3~4 us
(vs. 8~9 us under event-wait)

Effectiveness of busy-wait
* Performance characteristics of filesystem and storage

* Thread placement (same vs. different CPUs)
* Workload

Adaptive busy-event wait (or adaptive waiting)
e Dynamically predict if busy-wait is beneficial, and
 Turn on/off busy-wait accordingly
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Increased Parallelism

FUSE
* New request — pending queue (one per mount)
* Request fetched — processing queue (one per FD)

XFUSE
* Introduces multiple request pending queues

* Groups each pair of pending and processing queues
as a channel

* New request — channel (per selection policy)

Benefits

* Daemon threads work on their own pending and
processing queues

* Reduced kernel lock contention between daemon
threads

Daemon Process

__________________

1 1
1 1
1 1
1 1
1 1
: :
| Filesystem i
1 1
| e
! XFUSE AP i !
User i v i
Application i . i
PP ] Libxfuse |
A i i
| : 4 i I
Syscall e I
i FUSE Request i Reply
L -
i e | i
\ A i - i
1 . M I
» pending i v
1 il
! [
. e 1
Filesystem P\da?)::\ o> ' i Device
Handler l\Na\ v E g Handler
i K -
1| processing ‘H—i‘
A i
fuse.ko i iervim—— 0 -1y 1<




Online Upgrade

Business needs
* Fast paced rollout of new features and bug fixes for user space filesystems
* Minimal disruption to tens or hundreds of mounts and apps on each host during upgrade

Online upgrade solution

* Extend libfuse to support online upgrade workflow and state transition

* Monitor Service
* Coordinates the interactions between two filesystem daemons
* Assists the transfer of filesystem internal states, including FDs (to special fuse device)
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Performance Evaluation



Parametric Analysis

Objectives
* Understand the effects of policy choices and tuning params

* Project potentially achievable performance
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* Explore aspects of XFUSE individually Kernel m——— e
xfuse.ko
Aspects L
* Waiting strategy in adaptive waiting
* Placement of app and daemon threads TimingFS
* Channel selection for new FUSE request * User space filesystem, via FUSE lowlevel API
* Optimized to probe aspects of XFUSE individually
Test setup  Can emulate timing characteristics storage
* Dedicated Linux 4.19.91 servers on Alibaba Cloud systems
. . * E.g. READ copies 4KB randomly from a large file
T Channelé n .XFPSE * PMEM-like: reply to XFUSE.ko immediately
* 24 threads in TimingFS * SSD-like: delays 100 us before replying

* Threads can configured to affine to CPUs



Parametric Analysis: Waiting Strategy

How I/O performance is impacted by

Varying busy-wait period (note: “Ous” disables busy-wait, is essentially event-wait only)

Wait-decision algorithm; threshold for turning on/off busy-wait

Findings

Latency (us)

PMEM-like: 10us busy-wait, good balance between performance and CPU usage.

SSD-like: last latency value is sufficient to predict the latency for the current request
SSD-like: adaptive waiting outperforms busy-wait-only when system is under load
Performance with Busy-Event Wait
20 ¢ 300
[ Busy Wait (us) [ Busy Wait (us)
18 *? 20 <0
16 + | 3 e
14 T 200 -
12 B
10 £ 150 -
g 8
8 + K
6 & 100 T
2 :
F 50 T
2 f -
; PMEM-like I SSD-like
0 0
(] 2000 4000 6000 8000 10000 (] 1000 2000 3000 4000 5000
Throughput (MB/s) Throughput (MB/s)

Wait-decision:
threshold = busy wait_period + event_wait_overhead
= 10us + 5Sus = 15us
if observed_latency < threshold

do busy-event wait

else
do event wait
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Parametric Analysis: Thread Placement

In production environments where thread placement can be controlled

Placement of app thread and corresponding daemon thread:

* PMEM-like storage, different CPUs
* Two threads affined on the same CPU cannot busy-wait for each other.

e SSD-like storage: same CPU

e Event notification on local CPU is faster than that across CPUs.
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Parametric Analysis: Channel Selection

Findings

* Best strategy: evenly distribute requests across all channels

* Avoid policies that keep on switching to an idle channel, which renders busy-wait ineffective

(see the RR line in PMEM-like figure).

* PID and HASH policies perform well in repeated tests

* PID-policy is computationally cheaper. HASH-policy consistently avoids skewed request distribution
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Channel selection

channel_index = val % channel_num

Where val is

PID: thread id

CPUID: id of CPU

RR: round-robin, i.e. val = ++channel_index
ST: thread start time

HASH: hash of thread id
Compute 3 different hashes
Select the channel with the shortest queue



Parametric Analysis: XFUSE vs FUSE

* Project the best-case performance that XFUSE can achieve

* XFUSE configuration:
* Adaptive busy-event wait: busy-wait period 10us. event-wait overhead 5us
e 24 channels. 24 threads in TimingFS, one for each physical core.
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System-Level Performance

Setup a common basis for comparing XFUSE, FUSE and Storage types
lar k I-mode EXT4
regular kernei-mode - RAMDisk: PMEM-like

* Erron the side of being conservative for XFUSE
I né vatlv * FastDisk: SSD-like cloud disk. Avg 4KB read latency:

115us. Max 80K IOPS

Evaluate the performance potential of XFUSE * SlowDisk: Cloud disk. Avg 4KB read latency: 250us. Max

* In cases where FUSE has a significate gap with EXT4 SK'10PS

Filebench simulates workloads

* Web-Server, Random-Read, File-Create
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System-Level Performance: Results

RAMDisk (PMEM:-like)

SlowDisk

* XFUSE closes the perf gap with kernel-mode EXT4. .

* For random-read, XFUSE achieves 3x throughput over FUSE

FastDisk (SSD-like)

* XFUSE offers significant benefit over FUSE.

* For random read, XFUSE delivers full throughput of the

FastDisk, maxed at 80K IOPS.
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Performance is bottlenecked by the storage than by conduit to user space

File-Create

XFUSE outperforms FUSE for RAMDisk and FastDisk but by a smaller margin

Benefit of XFUSE over FUSE is limited by the scalability of StackFS and EXT4
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XFUSE

A FUSE-compatible framework for filesystem in user space

Enables significantly higher performing user space filesystems

* Delivers round-trip latency in the 4 us range, offers throughput exceeding 8 GB/s

Supports filesystems with strict RAS requirements in production
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