
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Hashing Linearity Enables Relative Path Control
in Data Centers

Zhehui Zhang, University of California, Los Angeles; Haiyang Zheng, Jiayao Hu,
Xiangning Yu, Chenchen Qi, Xuemei Shi, and Guohui Wang, Alibaba Group

https://www.usenix.org/conference/atc21/presentation/zhang-zhehui

Hashing Linearity Enables Relative Path Control
in Data Centers

Zhehui Zhang1, Haiyang Zheng2, Jiayao Hu2, Xiangning Yu2, Chenchen Qi2, Xuemei Shi2, Guohui Wang2

1University of California, Los Angeles, 2Alibaba Group

Abstract
A data center network is an environment with rich path

diversity, where a large number of paths are available between
end-host pairs across multiple tiers of switches. Traffic is
split among these paths using ECMP (Equal-Cost Multi-Path
routing) for load balancing and failure handling. Although it
has been well studied that ECMP has its limitations in traffic
polarization and path ambiguity, it remains the most popular
multi-path routing mechanism in data centers because it is
stateless, simple, and easy to implement in switch ASICs.

In this paper, we analyze the ECMP hash algorithms used
in today’s data center switch ASICs, aiming for lightweight
path control solutions that can address the ECMP limitations
without any changes to existing data center routing and trans-
port protocols. Contrary to common perceptions about the
randomness of ECMP hashing, we reveal the linear property
in the hash algorithms (e.g. XOR and CRC) used in widely
deployed switch ASICs in data centers. Based on the hash-
ing linearity, we propose relative path control (RePaC), a new
lightweight, and easy-to-deploy path control mechanism that
can perform on-demand flow migration with deterministic
path offsets. We use a few case studies to show that RePaC
can be used to achieve orders of magnitude faster failover and
better path planning with up to 3 times link utilization gain in
hyper-scale data centers.

1 Introduction

To support the high bandwidth and high availability require-
ments of cloud and big data applications, data center networks
are often designed with rich path diversity. Typical data center
network topologies, such as FatTree [1], Clos [10], or Hyper-
Cube [16], offer hundreds of paths across multiple tiers of
switches between any pair of servers. In such a multi-path
network, managing a large number of paths among all end-
point pairs is challenging. The path selection mechanism is
always a key part of data center network design to fully utilize
the high bandwidth from these paths and achieve good traffic
load balance and fault-tolerance properties.

The multi-path IP routing protocol (e.g. BGP [27]) with
ECMP [20] is the most common routing scheme in many
production data centers [13, 26]. In such networks, reachable
network prefixes and available paths are propagated to all the
switches using BGP, and each switch uses ECMP to select
a next hop based on the hash value from specified packet
header fields. To understand the performance of ECMP-based
routing, much research has been done. A common perception
is that ECMP offers reasonable load balancing and fault tol-
erance among a large number of uniform flows, however, it
is difficult to perform any explicit path control on ECMP
because it is stateless, and its hashing calculation is ran-
dom [18,21,46]. Besides, ECMP suffers from traffic polariza-
tion because it performs static load balancing based on header
fields without considering flow sizes [2].

Many alternative path control mechanisms, such as Hed-
era [2], XPath [21] and Multi-path TCP [36, 37], have pro-
posed to redesign routing and transport layers to better lever-
age the path diversity. However, these proposals often require
a redesign in either the server network stack or routing pro-
tocol of data center switches. As a result, although these pro-
posals offer many advantages over ECMP on dynamic load
balancing and precise path control, they have seen very lim-
ited deployment in today’s production data centers. For the
path selection mechanism, ECMP remains the common prac-
tice because it is stateless, simple, and easy to implement in
switch ASICs.

In this work, we take a different approach to address the
ECMP limitations in load balancing and failure handling.
Given the wide deployment of BGP with ECMP routing, we
look for solutions that require minimal changes to server
software stack and data center routing protocols. Instead of
treating ECMP as a random path selection black-box, we
analyze the ECMP path selection process and investigate typ-
ical hash algorithms used in the most popular data center
switch ASICs on the market. Our study reveals that most
widely-deployed switches use XOR, CRC or their variants
for ECMP hashing. These hash algorithms hold a linear prop-
erty (ECMP(a)⊕ECMP(b) = ECMP(a⊕ b)⊕ECMP(0)),

USENIX Association 2021 USENIX Annual Technical Conference 565

Figure 1: A Clos-based data center network topology

which guarantees a deterministic mapping between packet
header changes and path changes. We analyze how hashing
linearity affects traffic load balance and how the hashing lin-
earity can be used to control the flow paths to better leverage
the path diversity.

We propose a relative path control (RePaC) scheme, which
uses the deterministic mapping between the header change
and path change to perform on-demand flow migration for
failure handling and load balancing. We validate the hashing
linearity and relative path control scheme on a testbed with the
same ECMP configuration as our production data centers. Our
evaluation shows that RePaC can achieve fast failover and bet-
ter traffic engineering for TCP and RDMA applications. With
RePaC, failover speeds up by orders of magnitude compared
with existing in-network failover approaches. RePaC also out-
performs MPTCP with 2(4) subflows in recovery success rate
by 36%(21%). In addition, RePaC-based traffic engineering
reduces flow completion time by up to 25% and improves
link utilization by up to three times. Proven to be simple and
effective, RePaC can be readily deployed in production data
centers with no changes required in the routing and transport
protocols.

As far as we know, our work is the first study that investi-
gates the linear property of ECMP hash algorithms and dis-
cusses its applications to data center path control. We show
the feasibility of leveraging the hash algorithm properties to
develop flexible path control algorithms for load balancing
and failure handling, which contradicts the common percep-
tion about the randomness and ambiguity of ECMP path se-
lection. The resulting solution RePaC is lightweight, easy to
deploy in production data centers, and easy to integrate with
a large spectrum of applications. Our work sheds light on a
new perspective of multi-path routing, traffic engineering and
application design in data centers.

2 Background and Motivation

2.1 Data Center Networking Primer

Most data center networks adopt some variant of a multi-
rooted tree topology. Figure 1 shows an example of a Clos-
structured data center network with three tiers of switches,
which provides abundant paths between any pair of servers to

achieve high aggregated bandwidth and tolerate potential link
and device failures. To better utilize the available paths in the
network, multi-path routing is the key part of the data center
network design, with load balancing and fault tolerance as
two primary design goals.

Multi-path BGP with ECMP is the most common multi-
path routing design in hyperscale data centers [27]. In this de-
sign, switches establish BGP sessions among each other over
the connected links and choose next hops based on BGP rout-
ing information. Multiple equal-cost next hops are grouped as
ECMP groups when routes are installed into the routing table
in the switch ASIC. When a packet reaches a switch, a random
next hop will be selected in the ECMP group, so flows can be
evenly distributed among parallel links for load balancing. As
shown in Figure 1, if a packet is being sent to switch L3 via
switch L1, the BGP session running on L1 will first decide
all equal-cost next hops, S1 and S2. In ECMP, each switch
distributes packets based on a hashing value calculated from
specific packet header fields. ECMP would select one from S1
and S2. If ECMP distributes flows to S1 and S2 evenly, load
balancing is fulfilled. To support failover, the in-network BGP
sessions send keepalive messages to detect whether the link is
still available. In case of failure, BGP tears down the session
of the malfunctioning link, and the corresponding next hop
is removed from ECMP. Therefore ECMP is critical for both
load balancing and failure handling in data center networks.

2.2 The Limitations of ECMP

Many previous studies have shown that ECMP has several key
limitations in practice. First, ECMP fails to leverage the path
diversity in a lot of scenarios. Hedera [2] shows ECMP may
cause significant bandwidth loss when flows are not evenly
distributed. The situation becomes worse when large and long-
lived flows co-exist. Second, ECMP distributes traffic using
random hash algorithms, which makes it difficult to perform
precise path control. A lot of fine-grained flow scheduling
and traffic engineering mechanisms cannot be done in data
center networks over ECMP [5, 21].

Due to the aforementioned limitations, a common percep-
tion of ECMP is that ECMP provides decent load balancing
among a large number of flows evenly distributed across a
large header space. However, ECMP works under strong as-
sumptions about traffic patterns, and it may fail in many cases
with traffic polarization, slow failover, and under-utilized links.
And it is difficult to perform deterministic path control be-
cause ECMP path selection is random.

Several previous studies have proposed alternative solu-
tions to address the limitations of ECMP from both routing
and transport layers. For example, Hedera [2] is proposed to
perform dynamic flow scheduling based on a traffic matrix
using OpenFlow. XPath [21] proposes to enable explicit path
control for data center applications using pre-installed routes.
FUSO [8] proposes a multi-path loss recovery mechanism

566 2021 USENIX Annual Technical Conference USENIX Association

on MPTCP to enable fast failure recovery in data centers.
However, these solutions require major redesigns of the data
center routing protocol or server network stacks. And ma-
jor redesigns of routing and transport protocols have huge
impacts on the data center applications and daily network
operations. As a result, these solutions still have very limited
deployment in today’s production data centers.

ECMP still has wide deployment in many production data
centers for multi-path routing, however, the implementation
of the ECMP hashing mechanism remains a mystery for the
research community. There isn’t a thorough analysis of the
details of the ECMP mechanism on popular data center switch
ASICs. Volur [47] is the only study we have seen, which tries
to model ECMP as a deterministic mapping from headers to
paths. It aggregates all the mappings from all switches and
uses model replay to predict ECMP path selection. However,
Volur still treats ECMP as a black-box model, and a full net-
work model replay incurs too much overhead for real-time
traffic engineering and path control in large data centers.

This dilemma of path control in data centers motivates
us to dig into the black-box of ECMP implementation of
widely-deployed data center switches and look for lightweight
solutions to address the ECMP limitations. Such solutions
can be incrementally deployed to a large volume of existing
data centers and benefit data center applications without a
major redesign of the network. We explore the factors that
affect ECMP path selection and reveal an interesting property,
linearity of hash algorithms used by most merchandise switch
ASICs, which could be used to enable a new relative path
control scheme.

3 Demystifying ECMP Path Selection

Our analysis of ECMP path selection is based on the ECMP
implementation of popular switch ASICs available on the
data center switch market. We look into the publicly available
open source repositories and documents about the ECMP im-
plementation on widely deployed switch ASICs [6,12,31,33].
We also investigate the ECMP configurations from the widely-
adopted open switch abstraction interface (SAI) [34], which is
supported by most switch ASIC vendors, such as Broadcom,
Barefoot, CISCO, Mellanox, and Marvell [29]. We consider
the variations of ECMP implementations [20,32,38] and vali-
date our analysis with commercial switches. Specifically, our
validation covers Broadcom Tomahawk series, Trident series,
and Barefoot Tofino series [7].

3.1 Modeling ECMP Path Selection
ECMP is typically implemented as part of the routing table
matching stage in the switch ASIC pipeline. When multiple
routes are available for a given network prefix, equal-cost
next hops are added into an ECMP group in the routing ta-
ble. When a routing table entry is matched for an incoming

packet, the packet will be forwarded to one of the next hops
in its ECMP group, based on the hashing of the packet header
fields [33].

Figure 2 shows a general ECMP processing model from
typical switch ASICs. The input of ECMP is header fields,
and the output is a next hop ID. There are four stages in
ECMP processing: pre-processing, hashing, post-processing,
and bucket mapping. We use the following functions to de-
note the ECMP stages: Pre_proc(), Hash(), Post_proc(),
BucketN

B (). The overall ECMP processing can be described
as:

ECMP(h) = BucketN
B (Post_proc(Hash(Pre_proc(h))))

(1)
where the hash function plays a key role in path selection.

In the Pre_proc(h) stage, the H-bit input packet header
fields h, with range {0,1}H , together with a configurable hash
seed are processed using bit-wise operations, such as AND,
XOR, shifting and masking. For example, if we use source
and destination IP addresses and port numbers as input, H
would be 96. Then Hash() denotes the hash function from
{0,1}I to {0,1}O, where I is the length of the pre-processed
input and O is the length of the output hash result, both in
number of bits. O is usually 32 or 16 since most switches
use 32-bit or 16-bit values to represent hash results [12, 31].
In the Post_proc() stage, the hash result is further shuffled
using bit-wise operations. Then BucketN

B () performs modulo
operations to map the post-processed hash result {0,1}O to
one of the next hops in the ECMP group {0, ...,N−1} placed
in B hash buckets, where N is the number of next hops. The
entire ECMP process is a mapping from {0,1}H to a number
in {0, ..., N−1}.

3.2 The Linearity of ECMP Process

In this section, we discuss the linear property of the most
common ECMP hash functions, and how linearity impacts
the path selection.
Hash functions overview: The commercial switch ASICs
support various hash functions for ECMP, such as random,
XOR, CRC and Pearson hashing [11, 24, 31]. Among them,
CRC and XOR are two popular hash algorithms defined in
SAI [34], and supported by most switch vendors [29]. There
are two reasons that CRC and XOR are widely adopted. These
two algorithms have been used in communication systems
with mature and efficient ASIC implementation, which in-
cludes plenty of circuit optimization [31, 42, 45]. In addition,
previous analysis has shown that CRC and XOR algorithms
have good load balancing performance given a uniform distri-
bution of flows [49].

The SAI [34] also cites the random hash algorithm, but it is
not commonly used in the ECMP implementation of modern
switches. The reasons are twofold. First, packet-level random
path selection will result in a nightmare in network monitoring

USENIX Association 2021 USENIX Annual Technical Conference 567

Figure 2: An example of an ECMP packet processing pipeline: pre-process certain header fields, hash and post-process the hash
results to get bucket number two, then refer to the bucket for the next hop ID

and troubleshooting. Second, packets from the same flow need
to be hashed onto the same path to avoid the out-of-order
issues that affect end-to-end transport performance. There are
other hash algorithms that are not included in SAI, such as
Pearson hashing, which are proprietary of a specific switch
ASIC vendor. In this paper, we will focus on the properties of
the most common hash functions using CRC and XOR.
The linearity of hash functions: We define the hashing
linearity as follows: a hash function is linear, if

Hash(hi)⊕Hash(h j) = Hash(hi⊕h j)⊕Hash(0) (2)

where hi and h j are arbitrary packet headers, and Hash(0) is
the hash result for a packet with all 0’s, which is a constant
given the initial hashing seed. Both XOR and CRC hashing
satisfy hashing linearity. The detailed proof of CRC/XOR
hash linearity can be found in supplemental materials [48].

Insight: If the linear hash function is fixed, for any packet
header hi, the hash value after a relative change ∆ on the
original header fields is deterministic, i.e. Hash(hi⊕∆) =
Hash(hi)⊕Hash(∆)⊕Hash(0). In other words, as long as
we know the mapping from ∆ to Hash(∆) and Hash(0), we
can predict the relative hash value change.
The linearity of ECMP(): We prove the linearity of
ECMP by proving the linearity of the other three procedures
Pre_proc(), Post_proc(), and BucketN

B (). The pre-processing
and post-processing functions are bit-wise operations used
to shuffle certain fields of the packet header or hash result
to cope with hash polarization [20, 24, 31]. Hash polariza-
tion would cause load imbalance when hashing results favor
certain buckets over others. Pre-processing usually uses bit-
wise operations such as AND, XOR, bit shifting and masking.
Post-processing uses XOR-folding of 32-bit hash results to
get a 16-bit result [38]. Our analysis shows that these bit-wise
operations in pre-processing and post-processing functions
do not affect the linear property of ECMP path selection. The
detailed proof can be found in supplemental materials [48].

Linearity also holds for the BucketN
B () function if N and

B are both powers of two, which is expected if a fat-tree
topology is used. Then the modulo operation is equivalent
to a bit-wise shifting, which is proved to be linear. There are
two scenarios in which linearity does not apply for ECMP.
The first scenario is that the next hop ID of the Bucket is
randomized. However, we can reorder buckets based on the
next hop ID after bucket mapping updates, which is commonly
adopted for consistent hashing. The second scenario is that
the number of buckets is not a power of two 2k, where k is
an integer. The number of buckets depends on the topology.

1
2
3
4
5
6
7

2 next
hops down

0
1
2
3

1
5
6

2 3 5 6

Remap

Bucket 8
8 Bucket 8

6

0
1
2
3
4
5
6
7

0

0

1 2 3 5 60

Figure 3: Consistent bucket mapping upon 2 link failures.
Buckets of failed hops are remapped to 6 virtual entries.

Table 1: Probability of different failure scenarios with various
of failed links and probability that linearity holds (P) under
various link failure ratios σ (B = 8)

failed links 0 1 2 3 P
σ=1% 92.2% 7.45% 0.26% 0.005% 99.68%
σ=0.1% 99.2% 0.79% 0.003% < 10−9 99.90%
σ=0.01% 99.9% 0.08% < 10−6 < 10−10 99.99%

If a fat-tree topology is used, the number of buckets is 2k. If
the data center adopts a variation of a fat-tree topology, each
switch can enable consistent hashing by adding virtual nodes
to make the bucket number as 2k [33].

Thus we have

ECMP(h j⊕∆) = ECMP(hi)⊕ECMP(∆)⊕ECMP(0) (3)

where hi and h j are arbitrary packet headers, ECMP(0) is the
output given an all 0’s header, a constant for a given ECMP
configuration.
Linearity upon link and device failures: In the case of
link and device failures, the number of next hops N varies and
may not always be a power of two, which breaks the linearity
of the whole ECMP process. We leverage consistent hashing
and bucket remapping to guarantee linearity for most links
in the ECMP group. We illustrate our ideas with an example
with two link failures. In the case of failures, for example
both next hop 4 and 7 fail as shown in Figure 3, removing
two buckets (Bucket6

6) will break linearity since 6 is not a
power of two. If we keep these two buckets and simply adopt
consistent hashing to remap these two buckets to two random
available next hops, the load is imbalanced given 8 buckets
are mapped to 6 hops. We thus remap these two buckets
to 6 virtual entries and map these entries to available next
hops uniformly as shown in Figure 3. Therefore, we can still

568 2021 USENIX Annual Technical Conference USENIX Association

preserve the linearity for available links by fixing the hash
bucket B as a power of two. The load balancing performance
is equivalent to an ECMP table with size of the least common
multiples of B and N. And the BucketN

B () function can be
modeled as follows:

BucketN
B ()=BucketB

B () is down? BucketN
N () : BucketB

B () (4)

where BucketB
B () holds linearity as B is a power of two. And

the non-linear function BucketN
N () is a modulo operation over

N followed by a mapping from {0, ...,N−1} to all available
next hop IDs.

As stated in [15], links and devices inside data center net-
works usually have four 9’s of high availability. Before BGP
updates bucket mapping upon the first link failure, linearity
still holds since the output of Bucket() remains the same. The
linearity-based path control might fail upon more failures,
but the probability is low. For example, the probability that
more than 1 failure happens in the same ECMP group is only
41% [15]. We analyzed the probability that linearity holds
under various link failure ratios as shown in Table 1. We con-
sider the probability of occurrence with various numbers of
failed links under different link failure ratios. Given F next
hops removed due to failure links, BucketN

B () holds linearity
with a probability of 1−F/B. Based on our observation of
1%-0.01% failure rate σ in our production data centers of
more than 1500 links, the probability that linearity holds is
more than 99% even when link failures are considered. Here
we assume link failures are independent. If we assume the
probability of link failures under the same ECMP group is
positively correlated, the probability of recovery decreases.
However, according to previous studies [15] and our observa-
tions in our own data centers, the probability of concurrent
failures in one ECMP group is low.
Validation: We validate linearity in commercial switches
by checking whether Equation 3 holds. We configure the
switch with 8 next hops. First, we generate 1 million packet
headers with random IP addresses, port numbers, protocol
field and reserved fields. For each header, we record the output
of ECMP before and after adding the offset ∆, which are de-
noted as ECMP(hi) and ECMP(hi⊕∆), where hi are random
packet headers and ∆ ranges from 0 to 2k−1 for a k bit field.
We do the same for another random packet header h j. Finally,
as shown in Figure 4, by comparing whether ECMP(hi)⊕
ECMP(hi ⊕ ∆) = ECMP(h j)⊕ ECMP(h j ⊕ ∆),∀i, j holds,
we verify that switches from Broadcom and Barefoot all sat-
isfy the linearity. We also compare with different hashing
seed configurations. The results show that linearity holds for
different seed settings from 0 to 232−1. Linearity holds for
validated vendors under XOR hashing, CRC hashing, and
variants of XOR/CRC hashing (e.g. optimized hashing by
concatenating COR hashing results and CRC hashing results).
Besides the Broadcom and Barefoot switches that we vali-
dated in the paper, switches from 100+ platforms with SAI
also support linear hashing [29, 34].

(a) Different vendors (b) Impact of seeds

Figure 4: Validation with commercial switches. Accuracy of
ECMP linearity-based prediction is 100% in different vendors
and under selection of different seeds.

3.3 The Path Linearity
Our previous analysis has demonstrated the linearity of ECMP
path selection at a single switch. In this section, we analyze
the linearity behavior of ECMP in the multi-hop environment
and discuss how the linearity can be used for path control.
Multihop linearity: In the multihop environment, a path
is defined as a list of end hosts and switches, for example,
(A→ L1→ S2→ C3→ S4→ L4→ B) is a path from the
end host A to the end host B in Figure 1. In general, a path
is modeled as (sender,s1, ...,sX ,receiver),si ∈ {0, ...,Ni−1},
where X is the number of hops, Ni is the number of equal-cost
next hops at hop i, and si is the next hop ID chosen by hop
i−1. There can be one or more links between the end host
and leaf switches.1

We compile the path as the concatenation of the bi-
nary representation of next hop selections Path(h) = s1 ·
s2 · ... · sX , where the sender and receiver are omitted. In
a typical three-tier data center network, X is 5 for inter-
pod traffic and 3 for intra-pod traffic, where a pod is an
aggregation of leaf and spine switches as shown in Fig-
ure 1. Since ECMP decides the next hop at each switch,
we have si = ECMPsi−1(h), i = 1, ...,X . In order to calcu-
late a path, we need the ECMP functions of all switches
along the path. However, since we are only interested in the
linearity, we aim to calculate Path(h⊕∆). As our analysis
shows, the linearity ECMP(h) holds at a single hop. For two
hops s1 · s2, concatenation of s1 = ECMPsender(h) and s2 =
ECMPs1(h) still satisfies ECMPsender(h⊕∆) ·ECMPs1(h⊕
∆) = (ECMPsender(h) · ECMPs1(h)) ⊕ (ECMPsender(∆) ·
ECMPs1(∆))⊕ (ECMPsender(0) ·ECMPs1(0)) under the as-
sumption that the selection of s1 will not affect ECMPs1(∆)
and ECMPs1(0). Note this assumption holds as long as
switches in the same ECMP group are configured with the
same hashing configuration. By the same methodology, we
can prove the linearity for the concatenation of the entire path.
Then we have

Path(h⊕∆) = Path(h)⊕Path(∆)⊕Path(0) (5)

1If there are several leaf switches to choose, the end host usually adopts
Link Aggregation Control Protocol (LACP) to choose the next hop based on
the hashing result of packet header fields like ECMP [4, 9]. Our analysis on
ECMP linearity applies to LACP.

USENIX Association 2021 USENIX Annual Technical Conference 569

Figure 5: Illustration of pathmap. There are 64 offsets for
a header space with 64 bits. Each row represents the path
change O(∆) for northbound and southbound with offset ∆.

Pathmap: Equation 5 suggests that with the linearity of
ECMP path, given a relative change to an arbitrary packet
header (h⊕ ∆), we can predict the corresponding ECMP
path change as Path(h⊕∆) = Path(h)⊕O(∆), where O(∆) =
Path(∆)⊕Path(0). This mapping relationship from ∆ to O(∆)
can be modeled with a pathmap structure. As shown in Fig-
ure 5, we use a K× 2 table to represent the pathmap of a
single switch, where K is the number of bits used for path
control, and each column corresponds with the northbound
and southbound path offset O(∆) for corresponding header
offset ∆. If there are N hops, we need a K×N table. Here
we use K entries since we can represent the entire header
space by XORing ∆, where ∆ are headers 0...010...0 with
only one significant bit. With this model, we compress the
ECMP model exponentially from the header space 2K . In
most well-defined packet headers, the number of bits that can
be used for path control is limited, which restricts the size of
the pathmap.

Insights: Given the proven linearity, we can control the
relative path change by changing certain header fields. This
is feasible since hashing linearity is a built-in property for
linear hashing algorithms. To extend hashing linearity to path
linearity and improve accuracy upon link failure, we also need
to adopt several ECMP hashing configurations, i.e. consistent
hashing, bucket remapping and the same hashing configura-
tion for the same ECMP group2.

4 Relative Path Control

4.1 Design

Our analysis of the ECMP hash linearity suggests a determin-
istic mapping between the packet header changes and path
changes. It provides a powerful tool to predict the relative
path offset O(∆) based on a packet header offset ∆.

We propose a relative path control algorithm, RePaC, based
on the insight from hashing linearity. RePaC has two parts:
offline pathmap collection and online path control. The of-
fline pathmap collection module acquires the mapping from
relative header change to the relative path change based on
the static configuration of the network. The online module

2Supplemental materials [48] discuss a solution with relaxed requirements
that allow different hashing seeds.

Figure 6: Relative Path Control Process

decides the header change accordingly and alters packets to
navigate certain flows to a different path with deterministic
offset. The overall procedure is shown in Figure 6.

Offline pathmap collection: In order to collect the
pathmap for a switch as shown in Figure 5, we need to send
the packets with reference headers with different offsets ∆ to
northbound and southbound egress ports on the switch. As
introduced in Section 3.3, ∆ is 0...010...0 with a single signif-
icant bit, and the position of the significant bit ranges from 1
to K, where K is the number of controllable bits in the packet
header. The pathmap of a switch depends on the static ECMP
hash configuration. So to collect the pathmap for a whole data
center network, we need to consider different hashing algo-
rithms (e.g. XOR, CRC with different polynomials) and dif-
ferent hashing seeds. In production data centers, the switches
in the same tiers of the network are often designed to use
the same ECMP configurations for the simplicity of network
management and operations. Then we only need to collect
pathmaps for three types of ECMP hash configurations for
a typical data center network in a 3-tier Clos topology. Note
if the hashing algorithm is fixed, the mapping between the
hashing seed and pathmap is deterministic, which reduces the
overhead of collecting pathmaps from switches with different
hashing seeds. The offline pathmap collection can be easily
done on today’s network management systems.

Online path control: The online path control module
has two parts, the triggering function and the decision func-
tion. The triggering function is triggered when path control
is needed, for example, upon failures. The decision function
decides the path header offset. Users can design the deci-
sion function based on application requirements. We define
a utility function util(∆) for path control. The target of path
control is ∆̂ = argmax(util(∆)). For example, if the target is
to change the path, we define util(∆) = Path_changed(∆),
where Path_changed(∆) is a function to check whether ap-
plying header offset ∆ could change the path. We showcase
how to design the utility function in Section 4.2.

Based on the designed utility function, the pathmap can be
reconstructed in different formats to facilitate searching for
an offset for a specified relative path change. For example,
a pathmap can be compressed into a hashmap with keys as
desired path changes and values as all possible header offsets.
For solutions that are not sensitive to the value of relative
path change, for example, a failover solution that aims to use

570 2021 USENIX Annual Technical Conference USENIX Association

a specific path change, the pathmap can be compressed to
a list of desired header offsets that can lead to the desired
path change. The structure of the pathmap is decided by the
granularity of path control required by applications.

Another key question is which header fields to use for
path control. Options depend on what user-defined fields are
configured for ECMP hashing. By default, switches might
only configure IP addresses and port numbers for ECMP
hashing. Based on [28], SAI-supported switches can configure
all header fields for hashing. Among all the fields, the high
significant bits of TTL fields (8 bits) are typically usable since
the number of hops in data centers is small. If switches do
not support user-defined fields, the source port number (16
bits) can be leveraged though it might require changes of
the port allocation. Besides, the source IP address can be
controlled with certain flexibility in incast scenarios if there
is a configurable DHCP server inside the pod to assign IP
addresses dynamically.

4.2 The Applications of Relative Path Control

In this section, we present two case studies to demonstrate
the applications of relative path control.

4.2.1 RePaC for fast failover

Leveraging relative path control, we design a lightweight
and fast failover mechanism to detect path failures at the trans-
port layer and update the packet headers to migrate the traffic
from the failed path. Our approach relates to the previous
end-host-based failure recovery [19,23] but gives strong guar-
antees on path control with the ECMP hashing linearity and
does not require any changes to the network protocols and
switch hardware. We demonstrate a failover mechanism with
TCP traffic as an example. The RePaC-based failover mecha-
nism generally applies to any network transport layer protocol
with a retransmission mechanism.

The RePaC-based fast failover involves retransmission-
triggered failure detection and failure recovery by altering
packet headers. It works as shown in Algorithm 1. Our al-
gorithm detects the second retransmission of each flow to
trigger failure recovery, then every packet in that flow will be
marked for path control. We choose the higher four bits of
TTL fields and TCP five tuples as input for ECMP(). In this
case, we can vary the higher four bits of TTL fields, so ∆ is
in {0001,0010,0100,1000}.

After failure recovery is triggered, we mark the reserved
bits with a different value to reroute this packet to a different
path. In theory, if the path offset O(∆) is non-zero at each hop,
we can ensure the new path Path(h⊕∆) has no overlapping
links or devices with Path(h), where h is the packet header
of the flow affected by the failure. With RePaC, we can gen-
erate a path mapping table from all marking values to the

Algorithm 1 Failure recovery

Input: Packet p and corresponding flow f
Output: Packet p with f .mark within path marking period.

Otherwise, original packet p
1: if p is a repeated retransmission then
2: Update f .mark = SelectNextMark(p)
3: Begin path marking period
4: end if

Figure 7: Example network. Flow polarization causes under-
utilization of paths.

network path change, as illustrated in Figure 5. And we de-
sign the utility function as util(∆)=Path_changed(∆), where
Path_changed(∆) is a simple function to check whether O(∆)
is non-zero for each hop, which indicates that the next hop
selected at each hop would be different from the previous
path. Then we use a subset of eligible ∆ as marking values for
fast failover purposes. If we cannot find an O(∆) with all hops
changed, we select the one with the most changes. RePaC will
stop path marking after a configurable timer. We set the timer
as the failure detection time in BGP. Path marking will be
triggered again if BGP fails to recover the failure.

4.2.2 RePaC for traffic engineering

Given the multi-path nature of data center networks, traf-
fic engineering, the ability to schedule traffic on many non-
overlapped paths to better leverage the network bandwidth,
has been a key part of data center network design [2,5,30,37].
Compared to existing proposals, such as Hedera [2], Mi-
croTE [5], and XPath [21], RePaC provides a lightweight tool
for us to plan and distribute flows in data center networks for
traffic engineering without any changes to the switch hard-
ware and routing protocols.
Path planning using RePaC: Given the topology and
ECMP configurations of the network, we derive the pathmap
M, a map between each path offset O(∆) and the correspond-
ing header offset ∆, by sending probing packets with different
∆. Here we show an example for the network in Figure 7. We
consider the lower 6 bits of src_port is controllable and probe
switch L1 for O(∆) to get Table 2. Table 2 shows how chang-
ing a bit in src_port changes the selected hop ID. XORing all
possible hop ID changes results in four different path offsets.

USENIX Association 2021 USENIX Annual Technical Conference 571

Table 2: Probed results. Six controllable bits generate six
headers ∆, each with one significant bit. Then RePaC uses six
headers to get O(∆).

∆ 000001 000010 000100 001000 010000 100000
O(∆) 00 00 01 00 01 10

Table 3: Calculated M = (O(∆),∆) for path planning. For
each ∆ = 0, ...,63, RePaC calculates the Path ID.

O(∆) 0 1 2 3
∆ 0-3, 8-11,

20-23,
28-31

4-7,
12-19,
24-27

32-35,40-
43, 52-55,
60-63

36-39,
44-51,
56-59

We then derive all the possible header changes for each path
offset O(∆). For example, ∆ = 000100⊕100000 is mapped
to path offset 01⊕ 10 = 11. We index these path offsets as
Path IDs to differentiate paths for path planning. Finally, We
get the pathmap M as shown in Table 3, which is a map from
Path ID O(∆) to a set of ∆ sharing the same path offset O(∆).

From Table 3, we can observe that the selected Path IDs are
limited to two choices for src_port values from 0 to 31. This
means if E1 sends flows with src_port ranges from 0 to 31,
ECMP will select only half of the next hops. We conjecture
that only a subset of bits in the hash results are selected by
the post-processing function for final ECMP resolution. This
suggests that the default ECMP path selection could result in
only half of the paths being utilized in the example scenario.
Based on the pathmap M in Table 3, we can assign src_port
values (e.g. i, i⊕4, i⊕32, i⊕36) for those 4 flows to ensure
that all four possible paths are utilized.

Based on the analysis in Section 3.3, we can infer the path
offset between two flows by looking up the ∆ of their packet
headers in the pathmap. Therefore, we can use a valid packet
header hre f as a reference, then for each f lowi, look up the
desired path offset in the pathmap for unused ∆ and assign
hre f ⊕∆ as packet header hi. We plan the paths for all flows
based on estimated loads as shown in Algorithm 2. In the
example network of Figure 7, flows might conflict with each
other according to default ECMP. With our algorithm, flows
are evenly distributed on diverse paths. Note we can extend
the algorithm to consider both the request load and the re-
sponse load. The pathmap at the receiver can predict the path
for response load.

5 Evaluation

5.1 Implementation and Test-Bed Setup
We implement RePaC as a library on the servers to perform
on-demand path control. There are three components in the
implementation, a pathmap collector that generates a pathmap
database given a network, a module that monitors all outgoing

Algorithm 2 Load based path planning

Input: Pathmap M as illustrated in Table 3,
Output: assign a packet header hi for f lowi to minimize the

deviation of bandwidth utilization Lp for each path
1: hre f ← a random valid packet header; Lp← 0 for all paths
2: for f lowi in all flows do
3: Find ∆ ∈M for Path ID p with the minimum load Lp
4: hi = hre f ⊕∆

5: Lp += estimated bandwidth utilization for f lowi
6: end for

Figure 8: Test topology

traffic on servers to perform TCP failover, and a path planner
application that generates the best paths for applications. We
implement flow monitoring with the VNIC, which maintains
a soft stateful flow table. For each TCP flow, RePaC checks
for packet retransmissions and marks packets to perform traf-
fic failover as discussed in Algorithm 1. The total software
modules are implemented in 1066 lines of C code. The RePaC
library is a lightweight software module that can be easily
installed on servers.

We evaluate the performance of RePaC in a fat-tree topol-
ogy as shown in Figure 8. In this testbed, all the links are
25Gbps. 8 spine switches (Broadcom Trident 3) interconnect
4 leaf switches (Broadcom Tomahawk 3). We run SONiC [35]
(an open-source network operating system) on all switches
and adopt different ECMP configurations at each tier to avoid
traffic polarization. Four physical servers are connected to leaf
switches L1 & L2, and another four are connected to L3 & L4.
With each server connected to two switches, the server can
still connect to another leaf switch if one fails. Each server is
equipped with Linux 3.10 or Linux 4.19 and TCP NewReno.
These settings are consistent with our production data center
networks.

5.2 Effectiveness and Overhead
Path control upon link and device failures: We first eval-
uate the accuracy of path control under various failure sce-
narios. Link and device failures are injected based on failure
statistics collected in production data centers during one week.
We gauge the accuracy of path control by calculating the per-
centage that the selected path is the expected path. We test
with various numbers of spine switches to validate the perfor-

572 2021 USENIX Annual Technical Conference USENIX Association

Table 4: Accuracy of path control under failures

of spine switches 4 8 16 32
RePaC w\o failures 100.0% 100.0% 100.0% 100.0%
RePaC w\ failures 97.0% 98.5% 99.24% 99.62%
Random w\o failures 25% 12.5% 6.3% 3.1%

mance under different network scales. As shown in Table 4,
the accuracy increases with the number of spine switches
since the proportion of failed links of total links decreases.
As discusses in Section 3.1, RePaC can provide accurate path
control for the first link failure if RePaC is triggered before
BGP changes the bucket. But RePaC might not work at the
first attempt if there are two and more link failures in the
same ECMP group. Table 4 shows RePaC provides >97.0%
accuracy while the random path selection can only provide
<25% .
Overhead: We test the CPU overhead and the memory cost
of RePaC with 1 thousand to 1 million concurrent connections.
The average CPU cost on a 64-core processor is about 0.01%
for 1k connections and 0.05% for 1m connections. Note that
the performance of RePaC is independent of the kernel version
because RePaC is lightweight and implemented in a portable
VNIC module. At each server, we allocate about 64 bytes of
extra memory for each connection to keep track of its state.
We also evaluate whether RePaC reduces packet processing
speed. RePaC looks up the flow table on every packet, checks
packet sequence number, and updates the flow state accord-
ingly. These bring a few extra memory accesses to the data
path. We observe no degradation in packet processing speed
with different workloads.

5.3 RePaC for Failover Evaluation

Experiment methodology: We study the failover perfor-
mance of RePaC by measuring throughput and downtime un-
der common failure scenarios. We run a high-priority appli-
cation on the VNIC interface to collect throughput measure-
ments at a 20ms interval, which also helps us determine the
downtime upon failure. We consider two failure scenarios,
silent drop failures and link failures. We simulate silent drop
failures by configuring an ACL rule to discard the data traffic.
We simulate link failures by issuing ifconfig down command
to deactivate one of the interfaces from receiving and send-
ing data from switch CLI. There are many existing studies
on failover [19, 23, 43, 44, 50]. Among them, MPTCP is a
fair baseline as an end-host-based mechanism. MPTCP em-
ploys a group of subflows with random paths for failover
without adding any centralized controller or advanced hard-
ware. We use MPTCP v0.90 with the redundant scheduler
for comparison with RePaC. We test MPTCP with the redun-
dant scheduler over the default scheduler since it provides
better fault tolerance by sending redundant copies through all
subflows.

(a) With RePaC (b) with MPTCP

Figure 9: Throughput during failure

Failure recovery performance: We compare RePaC with
both end-to-end and in-network failover design. Compared
with end-to-end failover MPTCP, which recovers with a ran-
dom backup path, RePaC provides better recoverability. Com-
pared with in-network failover approaches, RePaC covers
more failure types and reduces downtime by orders of magni-
tude.

We first compare RePaC with MPTCP in Figure 9. Fig-
ure 9a shows an example trace the silent drop on leaf switch
L1 get recovered after silent drop failure with RePaC. Flow 3
and flow 4 are forwarded to L1 by ECMP and hence dropped
by ACL. Both flows experience around 1 second of disrup-
tion and then are re-routed to switch L2. Flow 1 and flow 2
forwarded by switch L2 only experience oscillation. During
the oscillation, the throughput of flow 1 and flow 2 first dou-
bles when the other two flows stop transmission, then returns
to similar throughput as before. All flows eventually share
the bandwidth of the bottleneck link fairly with congestion
control. Note that the bottleneck is the L3-E5 link, so the
throughput before and after the failover are similar. In com-
parison, Figure 9b shows that MPTCP failover performance
is unsatisfactory. We configure each flow with 4 subflows to
increase the path diversity. Figure 9b shows that MPTCP can
recover all affected flows except flow 1 because all subflows
of flow 1 are dropped. The throughput of flows 2-4 increases
after flow 1 is deactivated. Overall throughput performance
with MPTCP is worse than RePaC since MPTCP with the
redundant scheduler copies packets on all available subflows.

We further compare the failure recovery ratio between
RePaC and MPTCP with different numbers of subflows for
MPTCP. We define the recovery ratio as the probability that
a flow affected by failure is recovered. As shown in Fig-
ure 10, MPTCP offers a higher recovery ratio with more sub-
flows. Although MPTCP provides a reasonable recovery ratio
with the redundant scheduler, RePaC performs better by lever-
aging path diversity with the pathmap. RePaC outperforms
MPTCP with 2(4) subflows by 36%(21%). RePaC outper-
forms MPTCP because MPTCP cannot guarantee there exists
at least a subflow unaffected by the failure.

We also compare RePaC with in-network failover mecha-
nisms under various failure scenarios. As shown in Figure 11a,
we start a single TCP flow from E1 to E5 and measure the
downtime after simulating a device failure at L1. We simulate
the device failure by deactivating all the interfaces. In prac-

USENIX Association 2021 USENIX Annual Technical Conference 573

Figure 10: Recoverability comparison be-
tween RePaC and MPTCP.

(a) Comparison between RePaC and in-
network failover under device failure

(b) RePaC with in-network failover under
slient drop and link down

Figure 11: Downtime comparison under various minimum RTOs

tice, device failures might be triggered by hardware failure,
unexpected reboot, or power loss. Although this type of fail-
ure can be detected by Link Aggregation Control Protocol
(LACP) using heartbeat signals, it takes up to 90 seconds.
In comparison, RePaC significantly reduces the downtime by
orders of magnitude. Note the recovery Algorithm 1 initiates
path control after the second TCP retransmission. Our solu-
tion performs better with a smaller minimum RTO. RePaC
reacts to failures in around 60ms with a 20ms minimum RTO.
Theoretically, RePaC can provide sub-ms recovery if the end
hosts adopt high-resolution timers.

In Figure 11b, we evaluate how our solution can cooper-
ate with the existing in-network failover approaches used in
data centers, such as link scan, Bidirectional Forwarding De-
tection (BFD), LACP, and BGP. We compare the downtime
caused by two types of failures, silent drop failures and link
down events. For silent drop failures, our design can recover
affected flows within three times of RTO, as shown in the
solid line in Figure 11b. After a link down failure is injected,
RePaC is triggered faster than in-network approaches when
the second retransmission is triggered before the shortest in-
network failover timers (130 ms for the link scan function).
Note RePaC kicks in after around the triple of the minimum
RTO. When the minimum RTO increases, RePaC will not be
triggered since the link scan function would recover failures
faster. In summary, Figure 11 proves RePaC can cooperate
well with existing failover mechanisms and help to reduce the
flow downtime.

5.4 RePaC for Traffic Engineering Evaluation
Experiment methodology: We gauge the performance
of load balancing and flow completion time of RePaC com-
pared with random path selection, precise path control via
XPath [21], and in-network load balancing via CONGA [3].
We evaluate RePaC for load balancing under two scenarios:
one-to-one flows and many-to-one incast flows. For one-to-
one flows, we vary the src_port to vary the path selection of
these parallel flows. For many-to-one incast flows, we vary
src_ip and src_port for four servers under the same rack. We
assume the source port number is flexible for traffic engi-
neering applications. For many-to-one flows, we assume the
source IP address is also assignable. We vary the least signifi-

cant 8 bits of src_ip inside a cluster to improve path diversity.
We test with three representative traffic patterns, same-size
flows, webserver flows, and Hadoop flows. Webserver flows
follow a uniform size distribution, and Hadoop flows follow
a skewed size distribution [40].
Load balance performance: In Figure 12, we compare
the bandwidth utilization of RePaC path planning with random
path planning. The bandwidth utilization is measured using
the average utilization ratio of the links in the network. For
one-to-one flows, as seen in Figure 12a, RePaC increases the
bandwidth utilization by up to 3 times when the total number
of flows is 16. For many-to-one connection, Figure 12b shows
the bandwidth utilization of links when flows of the same size
from different sources are sent to a single destination. Our
solution can evenly distribute the flows across different paths,
achieving well-balanced bandwidth utilization. For the web-
server case, as shown in Figure 12c, the bandwidth utilization
increases from 0.54 to 0.99 using RePaC, compared to 0.34 to
0.85 with random selection as the number of flows increases
from 16 to 4096. Figure 12d shows the bandwidth utilization
for Hadoop with skewed flow size distribution. Both algo-
rithms show low bandwidth utilization when the number of
flows is small. When more flows join, RePaC can 20% to 50%
better bandwidth utilization.

In Figure 13, we compare our solution with random path se-
lection by measuring the load on each path when the number
of concurrent flows increases from 16 up to 4096. Here we
calculate the load at each path and plot the standard deviation
over mean in Figure 13. As the number of flows increases,
RePaC provides much better performance. For webserver traf-
fic, the std./mean reduce by 58% to 97% as shown in Fig-
ure 13a. Our design tends to select a path with the least load
for each flow. In Figure 13b, when the number of flows is
greater than 64, the std./mean is reduced by more than 41%.

For time-sensitive applications, such as distributed file sys-
tems (DFS), flow completion time is crucial. We simulate
DFS by sending 100GB of data from one host to another. We
compare the completion time of all concurrent flows between
RePaC and random path selection. RePaC can plan paths based
on the traffic load, so elephant flows are distributed to sepa-
rate paths. We notice that the average completion time of our
solution is considerably less than the random path selection
as shown in Figure 14a. When there are 16 flows, the comple-

574 2021 USENIX Annual Technical Conference USENIX Association

(a) One-to-one connection (b) Many to one - flows of the same size (c) Many to one - web server (d) Many to one - Hadoop

Figure 12: Link bandwidth utilization of path planning.

(a) Web server (b) Hadoop

Figure 13: Load balance of path planning. The shading area
shows the std./mean. of load on each switch. Larger shading
area means load is more unbalanced.

(a) File distribution (b) Short requests

Figure 14: Flow completion time.

tion time reduces by 25% from 3.6 seconds to 2.7 seconds.
Besides large file distribution, we also simulate short requests
and gauge the flow completion time compared with random
path selection and CONGA [3]. We use simulation since
CONGA requires advanced hardware. Each host will inject
flows with empirical traffic distributions of short requests into
different queues based on the given path selection algorithm.
CONGA will measure the queuing time of each path and
choose the path with the least queuing time to send flowlets,
thus performs best. RePaC tends to select the path with the
least number of concurrent flows. As shown in Figure 14b,
RePaC’s performance is comparable with CONGA.
Load balance performance under topology updates:
The network topology might change if network devices are
removed for maintenance or upgrade. In Figure 15, we com-
pare the load balance performance between random path se-
lection, RePaC, and XPath [21] when the network topology
changes. Since XPath is based on source routing, which lim-
its its deployment on our testbed, we use simulation with
the same testbed topology. We simulate multiple concurrent
flows between end-hosts and compare load balance by the
standard deviation of the load on each available path. XPath
relies on a centralized controller to perform topology updates,
which, we assume, can provide accurate path estimation. As
shown in Figure 15a, without topology updates, both RePaC
and XPath distribute the flows evenly. After removing a spine

(a) w/o topology updates (b) w/ topology updates

Figure 15: Load balance performance when topology changes

switch, as shown in Figure 15b, XPath can still balance the
flows using accurate path information. RePaC can distribute
most flows evenly on the unchanged paths using outdated
pathmaps. In conclusion, XPath has the best performance
leveraging pre-installed routes and real-time path information
updates. RePaC degrades because of the outdated pathmap.
However, both outperform the random path selection signifi-
cantly. Compared with XPath, RePaC is a lightweight solution
that significantly outperforms the random scheme without
redesigning the routing protocols .

6 Discussion
Our work is the first study that performs a detailed analysis
on the ECMP hashing linearity and its applications to path
control in data centers. More work could be done to further
explore the design of multi-path hashing mechanisms and
their implications to data center networks.
ECMP configuration optimization: Our analysis has
demonstrated that the properties of ECMP hashing algorithms
have significant impacts on traffic engineering and failover
in data center networks. However, ECMP configurations in
today’s production data centers are still done by operators us-
ing ad-hoc approaches. Future investigations of ECMP might
reveal other interesting properties rather than linearity, which
could facilitate the data center network optimization and result
in a more scientific approach to network-wide configuration
optimization.
Flow analysis based on hash simulation: Analysis of
the ECMP path selection algorithm also sheds insights on
how flows are distributed. Using real-time network topology
information, network operators could build a lightweight sim-
ulation network with the model of ECMP hashing behaviors.
The simulation network can answer many what-if questions
about the network performance and flow distributions, such
as how many flows will be affected by certain failure events

USENIX Association 2021 USENIX Annual Technical Conference 575

or a congested link.
Programmable hashing on switch ASICs: Today’s data
center switch ASICs provide limited interfaces to config-
ure ECMP hash algorithms and parameters. Even on pro-
grammable switch ASICs (e.g. Tofino), where users can
program the packet processing pipeline with network pro-
gramming languages, there is still limited programmability
to define ECMP hashing behaviors. Given that the hash al-
gorithm could significantly impact the overall networking
performance, a programmable interface that allows users to
redesign the hash algorithms could lead to more innovations
in this space.
RePaC capable applications: RePaC provides a
lightweight mechanism for applications to predict and con-
trol the paths of packet flows in the network, without the
requirements for deploying any new protocols, centralized
controllers, or advanced hardware. Many applications can
benefit from path diversity. For example, network probing
tools, such as PingMesh [17], can guarantee full network cov-
erage while minimizing the probing overhead with the help
of pathmap. The same benefits apply to applications with low
latency and high throughput requirements, such as distributed
file systems or AI training clusters. RePaC provides a power-
ful tool for the applications to schedule flows to avoid traffic
congestion and disruption.
RePaC and future ECMP: RePaC requires hashing lin-
earity, which is a built-in feature for linear hashing algo-
rithms. For future hashing algorithms, there is no conclusion
on whether linear hashing is preferred or non-linear hashing.
Existing ASICs combine XOR and CRC to improve hash-
ing while keeping linearity [33]. We are not aware of any
studies on the possible tradeoff between linearity and hashing
performance. It is still unclear whether non-linear hashing def-
initely outperforms all variants of linear hashing. Lightweight
path control for future variants of hashing algorithms remains
an interesting research problem. In order to support RePaC,
ECMP can only adopt linear hashing algorithms. We expect
future standardizations of ECMP to include linearity as an-
other metric to consider besides hashing performance.

7 Related Work
RePaC is related to several prior lines of work:
End-host based path control: There are two spectrums of
end-host-based path control. The first spectrum of approaches
gets rid of ECMP and redesigns the routing protocols in the
network [21,22,39,41]. XPath is the most recent work, which
identifies and pre-installs routes on switches [21]. Though
XPath reduces the routing table storage with compression
algorithms, the communication between end-hosts and the
path manager under topology changes and link failures incurs
too much overhead. MPLS is the common practice for traffic
engineering in core networks [39, 41]. However, MPLS is not
suitable for data centers since it can only support a limited

number of tunnels. The OpenFlow-based solution relies on
on-chip forwarding rules and compresses forwarding rules
with a tiny flow table [22]. However, this approach does not
apply to data centers due to too many flows. Fundamentally,
these approaches require excessive routing/forwarding tables
because of the large scale of header space and the variability
of paths.

Another spectrum still keeps ECMP as the path selection
in switches but extracts the path selection model. Volur [47]
attempts to provide path control with a centralized controller
that aggregates routing information from in-network switches
and disseminates routing information to end-hosts. However,
the path selection model incurs too much overhead since it
uses a mapping from the entire header space to all possible
paths. The header space grows exponentially to the number of
bits in header fields used by ECMP. We argue that explicit path
control is not necessary so that we can reduce the complexity
of the path selection model. Compared with this spectrum of
work, we leverage the linearity of ECMP path selection and
reduce the model complexity significantly.
Failover and traffic engineering: While our work is
closely related to prior studies on failover [14, 19, 23, 25, 43,
44,50] and traffic engineering [2,3,5], it is also fundamentally
different. First, RePaC enables path control, which is different
from the random path selection scheme in [19,23,44]. Second,
RePaC is lightweight and easy to deploy, while existing ap-
proaches rely on advanced programmable switches [3, 14, 19,
43, 44, 50], switch redesigning (e.g. installing Openflow) [5],
or a centralized scheduler to get path information [2]. Third,
RePaC enables data traffic based path discovery, which outper-
forms traceroute traffic based approach [25] since the header
fields in original data traffic and traceroute traffic are different.

8 Conclusion

In this paper, we analyze the ECMP hash algorithms used in
today’s data center switch ASICs. Our analysis shows that
the hash algorithms (e.g. XOR and CRC) used in the most
popular switch ASICs on the market maintain linearity. We
analyze how linearity sheds insights on relative path control.
We design RePaC to leverage linear property and show that
RePaC can be used in two representative applications, faster
failover and traffic engineering. Through extensive evaluation
in production data centers, we show that RePaC is easy to
deploy and benefits failover and traffic engineering.

Acknowledgments

We would like to thank our shepherd, Amy Ousterhout, and
the anonymous reviewers for helping us improve this paper.
We would also like to thank the anonymous referees for their
valuable comments and helpful suggestions on earlier versions
of this paper.

576 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network ar-
chitecture. ACM SIGCOMM computer communication
review, 38(4):63–74, 2008.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, Amin Vahdat, et al.
Hedera: dynamic flow scheduling for data center
networks. In Nsdi, volume 10, pages 89–92, 2010.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, et al. Conga: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 503–514,
2014.

[4] Arista. Port channels and lacp. https://www.aris
ta.com/assets/data/pdf/user-manual/um-eos
/Chapters/Port%20Channels%20and%20LACP.pdf,
2019.

[5] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained traffic engineer-
ing for data centers. In Proceedings of the Seventh
COnference on Emerging Networking EXperiments and
Technologies, CoNEXT ’11, New York, NY, USA, 2011.
Association for Computing Machinery.

[6] Broadcom. Broadcom-network-switching-software.
https://github.com/Broadcom-Network-Swi

tching-Software/SDKLT/blob/7a5389c6e0dfe
7546234d2dfe9311b92b1973e7b/src/bcmptm/incl
ude/bcmptm/bcmptm_rm_hash_internal.h, 2019.

[7] Emily Carr. Why merchant silicon is taking over the data
center network market. https://www.datacenter
knowledge.com/networks/why-merchant-silic
on-taking-over-data-center-network-market,
2019.

[8] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan,
Dan Pei, Peng Cheng, Layong (Larry) Luo, Yongqiang
Xiong, Xiaoliang Wang, and Youjian Zhao. Fast and
cautious: Leveraging multi-path diversity for transport
loss recovery in data centers. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 29–42,
Denver, CO, June 2016. USENIX Association.

[9] Cisco. Understanding etherchannel load bal-
ancing and redundancy on catalyst switches.
https://www.cisco.com/c/en/us/support/docs
/lan-switching/etherchannel/12023-4.html,
2007.

[10] Charles Clos. A study of non-blocking switching net-
works. Bell System Technical Journal, 32(2):406–424,
1953.

[11] M. Davies. Traffic distribution techniques utilizing
initial and scrambled hash values, 2010. US Patent
US7821925.

[12] Dell. Dell configuration guide for the s4048-
on system 9.9(0.0) ecmp-rtag7. https:
//www.dell.com/support/manuals/us/en/19/
force10-s4048-on/s4048_on_9.9.0.0_config_p
ub-v1/rtag7?guid=guid-9bda04b4-e966-43c7-a
8cf-f01e7ce600f4&lang=en-us, 2019.

[13] Nathan Farrington and Alexey Andreyev. Facebook’s
data center network architecture. In 2013 Optical Inter-
connects Conference, pages 49–50. Citeseer, 2013.

[14] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey,
Yashar Ganjali, and Amin Firoozshahian. Drill: Mi-
cro load balancing for low-latency data center networks.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 225–238,
2017.

[15] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proceedings of
the ACM SIGCOMM 2011 conference, pages 350–361,
2011.

[16] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan
Zhang, Yunfeng Shi, Chen Tian, Yongguang Zhang, and
Songwu Lu. Bcube: a high performance, server-centric
network architecture for modular data centers. In Pro-
ceedings of the ACM SIGCOMM 2009 conference on
Data communication, pages 63–74, 2009.

[17] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
pages 139–152, 2015.

[18] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter,
John Carter, and Aditya Akella. Presto: Edge-based
load balancing for fast datacenter networks. ACM SIG-
COMM Computer Communication Review, 45(4):465–
478, 2015.

[19] Thomas Holterbach, Edgar Costa Molero, Maria Apos-
tolaki, Alberto Dainotti, Stefano Vissicchio, and Laurent
Vanbever. Blink: Fast connectivity recovery entirely in
the data plane. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),

USENIX Association 2021 USENIX Annual Technical Conference 577

https://www.arista.com/assets/data/pdf/user-manual/um-eos/Chapters/Port%20Channels%20and%20LACP.pdf
https://www.arista.com/assets/data/pdf/user-manual/um-eos/Chapters/Port%20Channels%20and%20LACP.pdf
https://www.arista.com/assets/data/pdf/user-manual/um-eos/Chapters/Port%20Channels%20and%20LACP.pdf
https://github.com/Broadcom-Network-Switching-Software/SDKLT/blob/7a5389c6e0dfe7546234d2dfe9311b92b1973e7b/src/bcmptm/include/bcmptm/bcmptm_rm_hash_internal.h
https://github.com/Broadcom-Network-Switching-Software/SDKLT/blob/7a5389c6e0dfe7546234d2dfe9311b92b1973e7b/src/bcmptm/include/bcmptm/bcmptm_rm_hash_internal.h
https://github.com/Broadcom-Network-Switching-Software/SDKLT/blob/7a5389c6e0dfe7546234d2dfe9311b92b1973e7b/src/bcmptm/include/bcmptm/bcmptm_rm_hash_internal.h
https://github.com/Broadcom-Network-Switching-Software/SDKLT/blob/7a5389c6e0dfe7546234d2dfe9311b92b1973e7b/src/bcmptm/include/bcmptm/bcmptm_rm_hash_internal.h
https://www.datacenterknowledge.com/networks/why-merchant-silicon-taking-over-data-center-network-market
https://www.datacenterknowledge.com/networks/why-merchant-silicon-taking-over-data-center-network-market
https://www.datacenterknowledge.com/networks/why-merchant-silicon-taking-over-data-center-network-market
https://www.cisco.com/c/en/us/support/docs/lan-switching/etherchannel/12023-4.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/etherchannel/12023-4.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/etherchannel/12023-4.html
https://www.dell.com/support/manuals/us/en/19/force10-s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7?guid=guid-9bda04b4-e966-43c7-a8cf-f01e7ce600f4&lang=en-us
https://www.dell.com/support/manuals/us/en/19/force10-s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7?guid=guid-9bda04b4-e966-43c7-a8cf-f01e7ce600f4&lang=en-us
https://www.dell.com/support/manuals/us/en/19/force10-s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7?guid=guid-9bda04b4-e966-43c7-a8cf-f01e7ce600f4&lang=en-us
https://www.dell.com/support/manuals/us/en/19/force10-s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7?guid=guid-9bda04b4-e966-43c7-a8cf-f01e7ce600f4&lang=en-us
https://www.dell.com/support/manuals/us/en/19/force10-s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7?guid=guid-9bda04b4-e966-43c7-a8cf-f01e7ce600f4&lang=en-us

pages 161–176, Boston, MA, February 2019. USENIX
Association.

[20] C. Hopps. Analysis of an equal-cost multi-path algo-
rithm. RFC 2992, RFC Editor, November 2000.

[21] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan,
Hao Wang, Hongze Zhao, and Chuanxiong Guo. Ex-
plicit path control in commodity data centers: Design
and applications. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15),
pages 15–28, Oakland, CA, May 2015. USENIX Asso-
ciation.

[22] Sangeetha Abdu Jyothi, Mo Dong, and P. Brighten God-
frey. Towards a flexible data center fabric with source
routing. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research,
SOSR ’15, New York, NY, USA, 2015. Association for
Computing Machinery.

[23] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and
Fabien Duchene. Flowbender: Flow-level adaptive rout-
ing for improved latency and throughput in datacenter
networks. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’14, page 149–160, New
York, NY, USA, 2014. Association for Computing Ma-
chinery.

[24] M. Kalkunte. High speed trunking in a network device,
2005. US Patent US20060114876A1.

[25] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy,
Aran Bergman, Changhoon Kim, and Jennifer Rexford.
Clove: Congestion-aware load balancing at the virtual
edge. In Proceedings of the 13th International Confer-
ence on Emerging Networking EXperiments and Tech-
nologies, CoNEXT ’17, page 323–335, New York, NY,
USA, 2017. Association for Computing Machinery.

[26] Parantap Lahiri, George Chen, Petr Lapukhov, Edet
Nkposong, Dave Maltx, Robert Toomey, and Lihua Yuan.
Routing design for large scale data centers. NANOG 55,
2012.

[27] Petr Lapukhov, Ariff Premji, and Jon Mitchell. Use
of bgp for routing in large-scale data centers. Internet
Requests for Comments RFC Editor RFC, 7938, 2016.

[28] Guohan Lu. Sai hash enhancement with user defined
field. https://github.com/opencomputeprojec
t/SAI/blob/master/doc/SAI-Proposal-13-Has
h-UDF.md, 2016.

[29] Guohan Lu and Xin Liu. Sai update and look for-
ward. https://www.opencompute.org/files/OC
P2018-SAI-Engineering-Talk-MSFT-final.pdf,
2018.

[30] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen, and
Thomas Moscibroda. Multi-path transport for {RDMA}
in datacenters. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18), pages 357–371, 2018.

[31] Brad Matthews and Puneet Agarwal. Flow based path
selection randomization, 2013. US Patent US8503456.

[32] Liron Mula, Gil Levy, and Aviv Kfir. Using con-
sistent hashing for ecmp routing, 2017. US Patent
US9853900B1.

[33] Cumulus networks. Equal cost multipath load sharing -
hardware ecmp. https://docs.cumulusnetworks
.com/cumulus-linux/Layer-3/Equal-Cost-Mul
tipath-Load-Sharing-Hardware-ECMP, 2019.

[34] opencomputerproject. Sai. https://github.com/o
pencomputeproject/SAI/blob/484b8b150e53b9a
818af9a850d4a78581ca7e9bc/inc/saiswitch.h#
L188, 2019.

[35] opencomputerproject. Sonic. https://azure.gith
ub.io/SONiC/, 2019.

[36] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Handley.
Improving datacenter performance and robustness with
multipath tcp. In Proceedings of the ACM SIGCOMM
2011 Conference, SIGCOMM ’11, pages 266–277, New
York, NY, USA, 2011. ACM.

[37] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan
Ford, Michio Honda, Fabien Duchene, Olivier Bonaven-
ture, and Mark Handley. How hard can it be? designing
and implementing a deployable multipath TCP. In 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 399–412, San Jose,
CA, April 2012. USENIX Association.

[38] Jarno Rajahalme. Performing a finishing operation to
improve the quality of a resulting hash, 2014. US Patent
US10193806B2.

[39] Eric Rosen, Arun Viswanathan, Ross Callon, et al. Mul-
tiprotocol label switching architecture. 2001.

[40] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (dat-
acenter) network. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM ’15, pages 123–137, New York,
NY, USA, 2015. ACM.

[41] Martin Suchara, Dahai Xu, Robert Doverspike, David
Johnson, and Jennifer Rexford. Network architecture

578 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/opencomputeproject/SAI/blob/master/doc/SAI-Proposal-13-Hash-UDF.md
https://github.com/opencomputeproject/SAI/blob/master/doc/SAI-Proposal-13-Hash-UDF.md
https://github.com/opencomputeproject/SAI/blob/master/doc/SAI-Proposal-13-Hash-UDF.md
https://www.opencompute.org/files/OCP2018-SAI-Engineering-Talk-MSFT-final.pdf
https://www.opencompute.org/files/OCP2018-SAI-Engineering-Talk-MSFT-final.pdf
https://docs.cumulusnetworks.com/cumulus-linux/Layer-3/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP
https://docs.cumulusnetworks.com/cumulus-linux/Layer-3/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP
https://docs.cumulusnetworks.com/cumulus-linux/Layer-3/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP
https://github.com/opencomputeproject/SAI/blob/484b8b150e53b9a818af9a850d4a78581ca7e9bc/inc/saiswitch.h#L188
https://github.com/opencomputeproject/SAI/blob/484b8b150e53b9a818af9a850d4a78581ca7e9bc/inc/saiswitch.h#L188
https://github.com/opencomputeproject/SAI/blob/484b8b150e53b9a818af9a850d4a78581ca7e9bc/inc/saiswitch.h#L188
https://github.com/opencomputeproject/SAI/blob/484b8b150e53b9a818af9a850d4a78581ca7e9bc/inc/saiswitch.h#L188
https://azure.github.io/SONiC/
https://azure.github.io/SONiC/

for joint failure recovery and traffic engineering. In Pro-
ceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’11, page 97–108, New York,
NY, USA, 2011. Association for Computing Machinery.

[42] Kovsky T., J. Tsai, and Joe Chang. High performance
crc calculation method and system with a matrix trans-
formation strategy, 2003. US Patent US7219293B2.

[43] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Distributed network monitoring and debugging with
switchpointer. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
pages 453–456, Renton, WA, April 2018. USENIX As-
sociation.

[44] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin
Taheri, and Tom Edsall. Let it flow: Resilient asym-
metric load balancing with flowlet switching. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 407–420, Boston, MA,
March 2017. USENIX Association.

[45] WiKipedia. Computation of cyclic redundency
checks. https://en.wikipedia.org/wiki/Comp
utation_of_cyclic_redundancy_checks, 2019.

[46] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and
Mosharaf Chowdhury. Resilient datacenter load balanc-
ing in the wild. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 253–266, 2017.

[47] Qiao Zhang, Danyang Zhuo, Vincent Liu, Petr La-
pukhov, Simon Peter, Arvind Krishnamurthy, and
Thomas E. Anderson. Volur: Concurrent edge/core route
control in data center networks. CoRR, abs/1804.06945,
2018.

[48] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning
Yu, Chenchen Qi, Xuemei Shi, and Guohui Wang. Sup-
plementary material to hashing linearity enables relative
path control in data centers. https://zhehuizhang.
github.io/files/atc21_sup.pdf, 2021.

[49] Zhiruo Cao, Zheng Wang, and E. Zegura. Performance
of hashing-based schemes for internet load balancing.
In Proceedings IEEE INFOCOM 2000. Conference on
Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies (Cat. No.00CH37064), volume 1, pages 332–
341 vol.1, March 2000.

[50] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption

in data center networks. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, pages 362–375, 2017.

USENIX Association 2021 USENIX Annual Technical Conference 579

https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks
https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks
https://zhehuizhang.github.io/files/atc21_sup.pdf
https://zhehuizhang.github.io/files/atc21_sup.pdf

	Introduction
	Background and Motivation
	Data Center Networking Primer
	The Limitations of ECMP

	Demystifying ECMP Path Selection
	Modeling ECMP Path Selection
	The Linearity of ECMP Process
	The Path Linearity

	Relative Path Control
	Design
	The Applications of Relative Path Control
	RePaC for fast failover
	RePaC for traffic engineering

	Evaluation
	Implementation and Test-Bed Setup
	Effectiveness and Overhead
	RePaC for Failover Evaluation
	RePaC for Traffic Engineering Evaluation

	Discussion
	Related Work
	Conclusion

