
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Lodic: Logical Distributed Counting for
Scalable File Access

Jeoungahn Park, KAIST; Taeho Hwang, Hanyang University; Jongmoo Choi,
Dankook University; Changwoo Min, Virginia Tech; Youjip Won, KAIST

https://www.usenix.org/conference/atc21/presentation/park

LODIC: Logical Distributed Counting for Scalable File Access

Jeoungahn Park∗ Taeho Hwang† Jongmoo Choi‡

Changwoo Min § Youjip Won ∗

∗KAIST, Korea †Hanyang University, Korea ‡Dankook University, Korea §Virginia Tech, USA

Abstract
We develop a memory-efficient manycore-scalable dis-

tributed reference counter for scalable file access, Logical
Distributed Counting (LODIC). In Logical Distributed Count-
ing, we propose to allocate the local counter on a per-process
basis. Our process-centric counter design saves the kernel
from the excessive memory pressure and the counter query
latency issues in the existing per-core based distributed count-
ing schemes. The logical distributed counting is designed to
dynamically incorporate the three characteristics for refer-
ence counting: i) the population of the object, ii) the reference
brevity, and iii) the degree of sharing. The key ingredients of
the logical distributed counting are Memory mapping, Counter
Embedding, and Process-space based reverse mapping. Via
mapping a file region to the process address space, LODIC
can allocate the local counter at the process address space.
With Counter Embedding, the logical distributed counting de-
fines the local counters without the significant changes in the
existing kernel code and without introducing significant mem-
ory overhead for the local counters. Exploiting the virtual
memory segment allocation algorithm of the existing Linux
kernel, the process-space based reverse mapping locates the
local counter of the physical page without the substantial over-
head. Logical Distributed Counting increases the throughput
by 65× against stock Linux in reading the shared file block.
LODIC exhibits as good performance as the ideal scalable
reference counter when deployed in the RocksDB (key value
storage) and NGINX (web server) applications.

1 Introduction

Reference counting is a vital part of the modern Operating
System (OS). Various kernel objects, e.g. page frame, inode,
and file descriptor table maintain the reference counter to
prohibit them from being reclaimed prematurely while al-
lowing them to be accessed concurrently by a number of
processes without the exclusive lock. The contention on up-
dating the reference counter makes the associated cacheline

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

of processes

Vanilla

LODIC

124% Increase

Figure 1: Web server performance accessing the shared web page:
wrk benchmark [69] of NGINX web server engine, 120 CPU-cores
(Intel Xeon E7-8870 v2 processors, 8 sockets and 15 cores per
socket) and 780GB DDR3 DRAM

to be fetched across the CPU cores, and renders the scala-
bility failure due to the cacheline bounce. The importance
of the scalable reference counting gets emphasized further
as the computer system is loaded with a larger number of
CPU cores [17, 23, 31, 40]. Recent demands for the larger
main memory in Deep Learning [22], Graph Analysis [48],
Virtual Machine consolidation [35, 68], and Big Data Ana-
lytics [41] applications make the Operating System to host a
larger number of kernel objects and compound the importance
of the scalable and the memory-efficient reference counting.
Machines with hundreds of the cache coherent cores and the
multi-terabytes of the main memory are currently available in
the market today: SGI’s Ultra Violet 3000 [10], Dell’s Pow-
erEdge R920 [7], and HPE’s Superdome X servers [37]. In
the foreseeable future, we expect a system with thousands
of cache coherent low-processing power cores and with even
petabytes of main memory [38].

Reading a file block is one of the most essential operations
in the computer system, e.g., accessing the web page, search-
ing the database, scanning the key-value file, and etc. Imma-
ture implementation of the reference counter for the page
frame in the modern Operating Systems makes the shared file
block access easily vulnerable to cacheline bounce associated
with the reference counter update, leading to scalability and
performance collapse [51].

USENIX Association 2021 USENIX Annual Technical Conference 907

We examine the performance of web server where a popu-
lar web page is shared by the number of clients. We increase
the number of clients that request for the same web page. Web
server daemon deploys multiple processes. Each process ser-
vices the web page requests from the clients. Fig. 1 illustrates
the results. In vanilla Linux that adopts the global reference
counting for the page cache entry, the web server throughput
saturates at 30 cores. With our logical distributed counting,
the web server throughput increases as much as by 2.23×
when there are fifty processes. This simple experiment shows
that from the application’s point of view, reference counting
is a vital component in making the shared file block access
scalable.

A fair number of works have been proposed to mitigate the
contention on the global reference counter [5,14,17,23,26,31,
40]. They mitigate the contention on the global counter via
allocating the per-core local counters and subsequently via
distributing the accesses to the global counter to a number of
local counters. They represent a global state of the references
using a set of local counters. These works trade the mem-
ory pressure and the counter query latency for the scalability
for the counter update. To mitigate the memory pressure for
the local counters, the recent works propose to allocate the
counter cache for each core. The per-core counter cache hosts
the recently accessed counters [16, 18, 23, 40].

The existing distributed counter designs are grounded upon
the view that the cacheline bounce is caused by the contention
among the processors. This processor-centric view on the
cacheline contention leads the kernel to define the local coun-
ters for each processor core. They blindly define the same
number of local counters for all objects regardless of the
access popularity. The per-core based distributed counting
schemes fail to take into account the actual degree of shar-
ing and impose overly pessimistic estimation on the number
of local counters that are required to mitigate the counter
contention.

In this work, we view that the cacheline contention in updat-
ing the reference counter is driven by the contention among
the processes, not by the contention among the processors.
Based upon this new view, we propose to allocate the local
counters for a given object in per-process basis. We allocate
the local counters for a given object to each process that ac-
cesses it. We call this distributed counting scheme, Logical
Distributed Counting, LODIC for short. We call it a logical
counter since the local counters are associated with the logical
entity, the process, not with the physical entity, the processor.
In LODIC, the counter query latency is governed by the actual
number of processes that share a given file block.

LODIC is designed to address the scalability issue in read-
ing the shared file block [40, 51]. There are three character-
istics that need to be incorporated in designing the reference
counting scheme: the degree of sharing, the object population,
and the reference brevity. Each kernel object, e.g., page frame,
dentry entry, inode, and file descriptor table, has widely dif-

ferent reference characteristics along these three axis. The
reference counter design should be tailored with respect to
the characteristics of the object.

The Logical Distributed Counting consists of three key in-
gredients: (i) file mapping, (ii) counter embedding, and (iii)
process-space based reverse mapping. The first ingredient is to
map a file region that needs to be shared to the process address
space. This plain and simple mechanism provides a founda-
tion for the logical distributed counting. Via attaching the
file-backed page frame to the process address space, LODIC
enables the kernel to define the reference counter for the
page frame in the process address space, i.e., in per-process
basis. The second ingredient is Counter Embedding. With
Counter Embedding, LODIC represents the logical counter
using the unused bits in page table entry (PTE). Counter
Embedding eliminates the need to define a new kernel data
structure to represent the local counter and makes the logical
counter memory-efficient. The third ingredient is process-
space based reverse mapping. Locating the page table of a
given page frame is the most expensive task in accessing the
local counter in logical distributed counting. For reverse map-
ping, LODIC scans the virtual memory segments of the pro-
cess, the process-space, unlike the existing reverse mapping
feature, rmap() [24] that scans the virtual memory segments
associated with the file, the file-space. The virtual segment
allocation algorithm of Linux tends to place the file mapped
segments at the high-end of the process virtual address space.
Exploiting this nature, the process-space based reverse map-
ping of LODIC can locate the page table for a given page
frame in nearly constant amount of time regardless of the
degree of sharing and successfully scales with the degree of
sharing. The contribution of LODIC can be summarized as
follows.
• Logical Distributed Counting allocates the local counters

with respect to the actual degree of sharing. The number
of local counters for a file block corresponds to the number
of processes that map the block which can be substantially
smaller than the total number of CPU cores in the large
scale manycore system.

• Logical Distributed Counting scheme develops a scalable
reverse mapping technique, process-space based reverse
mapping. It effectively exploits the virtual memory alloca-
tion algorithm of existing Linux and can locate the logical
counter within a constant amount of time in common cases.
The process-space based reverse mapping makes the reverse
mapping overhead sufficiently small, whose performance
impact associated with accessing the local counter becomes
hardly visible from outside.

• Logical Distributed Counting is nearly memory free. The
logical counter in LODIC exploits the unused bit space
in the page table entry to represent the reference counter.
LODIC successfully addresses the memory pressure issue
in the logical counting.

• With all these benefits, LODIC increases the performance

908 2021 USENIX Annual Technical Conference USENIX Association

of shared block read by 64× compared to the stock Linux.
When the file block is shared and accessed by 120 cores.

2 Background and Motivation

2.1 Reference Counting in File Block Access

Page Cache and Reference Counting. OS kernel manages
the page cache (or buffer cache) to speed up the file access
by caching the frequently accessed disk contents to memory.
Linux kernel (and many other OSes) manages per-file (inode)
page cache. A page cache maintains the mapping information
from a file offset to a physical page frame that holds the as-
sociated disk content. In servicing a read/write system call,
OS kernel first looks up the page cache to avoid costly storage
access. OS kernel tends to keep as much file contents as possi-
ble in a page cache. However, under the memory pressure, OS
kernel evicts infrequently accessed pages to secure more free
memory. One invariant is that OS kernel should not reclaim
a page which is still being accessed. Reference counting is
commonly used to track the page access count in many OS
kernels including Linux. For instance, OS kernel (atomically)
increases per-page reference counter before accessing a page
in the page cache and decreases it after the access completes.
A positive page reference counter means that the page is being
accessed and that the page should not be reclaimed.

Page Cache Reference Counting in Linux Linux kernel
maintains per-inode page cache (address_space) using a
radix tree (XArray). The page cache maps a file offset to
struct page, which is metadata on a physical page frame.
Linux kernel maintains two atomic reference counter per-page.
They are defined in the struct page; _mapcount representing
how many times a page is mmap-ed and _refcount represent-
ing how many tasks are accessing a page [50]. When a file is
shared among the multiple processes concurrently, the con-
current update on the _refcount becomes the performance
bottleneck [51]. When a page frame is chosen for the recla-
mation, the kernel unlinks it not only from the page cache but
also from any page table entries that map a given page cache
entry. To quickly locate the associated page table entries, the
kernel maintains a reverse mapping from a page frame to
a page table entry [24, 25, 43, 67]. Linux kernel maintains
an interval tree, which is a set of virtual memory segments
mapping a given port of a file to virtual address space (stored
in mapping field under struct address_space).

Challenges in Page Cache Reference Counting. There
are two challenges in page cache reference counting. First,
the number of reference counters can be prohibitively large.
For example, 1 million _refcounts are needed to cache 40
GB in Linux. Next, the access characteristics (e.g., access
frequency) of a page cache reference counter is determined
by the applications that accesses the files, which is out of
kernel’s control. Therefore, any reference counting scheme for

 0

 50

 100

 150

 200

 250

1 16 32 48 64 80 96 112 128M
e
m

o
ry

 p
re

s
s
u
re

 (
G

B
)

of cores

page frame
dentry

dst entry

Figure 2: Memory consumption of sloppy counters for page frame
(struct page, dentry and dst_entry) when DRAM size is 256GB,
the number of struct page is 67M, the number of dentry is 220M,
and the number of dst_entry is 32K.

page cache should be memory-efficient to deal with the large
memory capacity and should be adaptable to application’s file
access behavior.

2.2 Scalable Reference Counting

Per-Core Distributed Reference Counting. To avoid the
performance collapse caused by cacheline bouncing in atomic
counter (used in stock Linux kernel), per-core distributed ref-
erence counting schemes – e.g., Scalable Non-Zero Indicator
(SNZI) [31], Sloppy Counter [17], and Approximate Coun-
ters [26, 27] – have been proposed. This approach manages
the per-core local counters in addition to the central object
counter. In the common case, each thread accesses its per-core
local counter, not incurring cacheline bouncing.

While this approach solves the performance problem of the
atomic counter, it has two critical problems that we opted out
using it for page cache. First of all, its memory consumption
linearly increases as the number of objects and the number of
CPU’s increase (see Table 1). When a large number of objects
(e.g., millions page frames [1,3]) exist in a multi-core machine
having tens or hundreds of CPU’s, its memory overhead is
detrimentally large. For example, Figure 2 shows that sloppy
counter requires 60GB of additional memory just to store
the reference counters for the page frames (struct page) in
a 128-core machine with 256GB DRAM (24%). Another
drawback is the query performance – getting the true counter
value – is often proportional to the number of CPU’s. In
sloppy counter, the entire local counters should be traversed
to get the true value (see Table 1). In managing the page cache,
the slow query can slow down the reclamation of page frames
and can cause unnecessary swapping in the worst case.

Hash Table Based Reference Counting. To mitigate the
excessive memory usage of the per-core schemes, per-core
hash table based distributed counting schemes have been pro-
posed. They store local counters at the per-core hash table to
bound the memory usage regardless of the number of objects.

However, they do not fundamentally solve the limitation
of per-core distributed reference counter. Still their mem-
ory consumption is proportional to the number of CPU’s as
shown in Table 1. Also, when the hash collision happens,
they perform its slow path incurring the central contention:

USENIX Association 2021 USENIX Annual Technical Conference 909

Atomic Counter SNZI [31] Sloppy Counter [17] RefCache [23] PayGo [40] LODIC

Counting Overhead Contending
atomic ops

Non-contending
atomic ops Global lock Non-atomic ops

Mostly
non-atomic ops

Mostly non-contending
atomic ops

Space Overhead O(N) O(N·C) O(N·C) O(C·H +N) O(C·H +N) O(N)
Query Overhead O(1) O(1) O(C) O(1)+2·epoch O(C) O(S)
Time Overhead None None Every threshold Every epoch and collision Every hash collision None

N: # of objects C: # of CPUs H: size of hash table S: degree of sharing

Table 1: Comparison of reference counting techniques.

for example, RefCache [23] evicts the original entry to the
central reference and PayGo [40] evicts to the central over-
flow counter list. Therefore, unless the hash table size is large
enough (e.g., 2× of active objects), they still suffer from the
hash table collision and the slow path execution. Also, they
do not improve the query performance because they have to
traverse the entire per-core hash tables. In addition to the
traversal overhead, RefCache has to wait for two epoch peri-
ods until the counter converges, which incurs more delay in
getting the true counter value.

3 Design Principles of LODIC

In this section, we present three design principles of LODIC,
a scalable reference counting scheme designed for page cache
and file access. LODIC should be able to deal with a large
number for objects in multi-core machines leveraging the
skew of file access and the property of page cache access.

P1. Millions of Counters Are Not Uncommon. Recent
advances in multi-core processors and memory technologies
make a server equipped with hundreds of cores and hundreds
GB to a few TB main memory prevalent. For example, a
recent 2-socket Intel Xeon server has up to 112 logical cores
and 9 TB memory (3 TB DRAM and 6 TB NVM). We expect
more cores with larger memory will be prevalent to achieve
higher performance in data-centric applications.

Reference counting should be scalable to the memory ca-
pacity and the number of CPU cores. It should scale at least
millions of page frames (40 GB memory == 10M reference
counters) with a hundred CPU’s. To be future-proof, it should
scale a few hundred millions (i.e., TB scale) with a few hun-
dreds CPU’s. Ideally, the memory consumption should solely
depend on the number of reference counters and the query
performance should not depend on the number of cores, which
have been increasing. While the counter caching approach
using per-core hash table [23, 40] partly mitigates memory
pressure, the current approaches relying on per-core struc-
tures [17, 23, 26, 27, 31] are not appropriate in both memory
consumption and query performance.

P2. Not All File Pages Are Popular. It is well-known that
real-world data access are skewed. Examples include the web
page accesses [19], the popularity of the vocabularies in the
dictionary [28], and the access distribution in the key-value
store [20] to list a few. That implies that the accesses to a
small subset of file pages account for dominant fraction of
all file accesses while most file pages are not concurrently

 0

 15

 30

 45

 60

 75

 90

 0 10 20 30 40 50 60 70 80 90 100

R
e
fe

re
n
c
e
 c

o
u
n
t

Page Rank of Access Popularity (%)

RocksDB (a=0.978)

NGINX (a=0.77)

Figure 3: Maximum reference counter distribution of page frames
for file access under real-world skewed key-value store and web
server accesses on a 120-core server.

accessed at all. The existing distributed reference counting
schemes relying on per-core structures [17, 23, 26, 27, 31] fail
to exploit such access skew. These works assume that all ob-
jects are concurrently accessed from all CPUs. Subsequently,
they blindly pre-allocate same number of per-core local coun-
ters or same amount of per-core counter cache (hash table)
for all objects. The pessimistic assumption on the degree of
concurrent access renders overly excessive memory pressure
and the query overhead. Ideally, reference counting scheme
should allocate the local counters with respect to the actual
degree of sharing, the actual number of processes that share
a page.

We examine the impact of access skew in reference counter
design; we run RocksDB key-value store [34] and NGINX
web server [60]. For key-value store access, we use the ac-
cess skew of the English dictionary (Zipf distribution with
α = 0.98) [28]. For web page access, we use the measure-
ment results for web page access (Zipf distribution with
α = 0.77) [19]. In this experiment, we record the largest ref-
erence counter value in each page frame, which we observed
while running the workloads. 100 concurrent clients stress
RocksDB having 17,000 key-value pairs with 100-byte values.
NGINX runs with 100 concurrent workers. Both were run on
a 128-core server. Figure 3 shows the distribution of the max-
imum reference counter values. X-axis denotes the popularity
rank of the pages. Unsurprisingly, the distribution is highly
skewed. The sum of the maximum reference counter values
for the individual file pages corresponds to the upper bound
on the total number of local counters, which are required to
represent the concurrent accesses. The sloppy counter [17]
allocates 120 local counters for each page. According to this
experiment, sloppy counter creates 13.6× more local counters
for RocksDB and 12× more local counters for NGINX than
are actually needed, respectively.

P3. Reference Duration Is Extremely Short in File Access.
One important factor in designing the distributed reference

910 2021 USENIX Annual Technical Conference USENIX Association

scheme is how to handle the reference split. A process can
be scheduled to the different core while the reference is ac-
tive. Then, the original local counter becomes to reside at the
different core from the core where the process is running as
a result of the process migration. We call this situation as
reference split.

There are two types of approaches to address the reference
split problem. The first type of approach is to eliminate the
possibility of the reference split. One can temporarily dis-
able the interrupt [47] or the preemption [45] to prevent the
process migration. Another type of approach is associated
with resolving the reference split when it happens. When the
reference split happens, the process can decrease (i.e., un-
reference) either the local counter at the current core (e.g.,
RefCache [23]) or the original local counter at the remote
core (e.g., PayGo [40]).

Each type of approaches has its own disadvantage; the
limited usage, the excessive query latency and the memory
overhead. The first is the limited usage. Disabling the inter-
rupt or the preemption cannot be used if the code does not
allow to disable the interrupt or the preemption. The second is
excessive query latency. RefCache should wait for two epochs
to get the real reference counter value. Refcache trades the
query latency with the cost of decrementing the counter at the
local core. The third is the memory overhead. PayGo requires
not only the local counter but also the anchor counter at each
core. Also, PayGo needs to maintain the anchor ID at each
task struct to handle the reference split.

The above mentioned techniques for the reference split may
not deserve its the overhead if the reference split is unlikely
to happen. More importantly, all these elaborate schemes
deserve its overhead only when the reference split happens
frequently. Therefore, an ideal approach should pay the cost
of the reference split only when it really happens.

To understand how often the reference split can happen
in accessing the page cache, we measured the time interval
between the reference and the unreference operations for
five popular kernel objects including struct page. As Fig-
ure 4 shows, the reference duration of page is very short (0.14
µsec). For page access, the reference split happens very rarely
(0.0005%, 5 out of one million page references). To measure
the reference duration of page, we repeatedly read 4KB file
block for 30 seconds. Based on our measurement, we care-
fully conclude that any feature for handling the reference split
may hardly deserve its overhead for the reference counting
for page cache.

4 Design of LODIC

4.1 Design Overview
LODIC is designed to scale with a large amount of physical
memory and with a large number of CPU’s by leveraging the
file access skew and the short access duration. We designed

 0

 1

 2

 3

 4

file descriptor
table

page
rw

semaphore file dentry

re
f-

u
n
re

f

 i
n
te

rv
a
l
(u

se
c)

0.07 0.14 0.38

1.33

2.75

Figure 4: Reference duration for different kernel objects in Linux
OS: file descriptor table (struct files_struct), physical page
frame (struct page), read-write semaphore (rw_semaphore), file ob-
ject (struct file) and directory entry (struct dentry).

LODIC in the following three key insights:
First, per-core local counter approaches are by design mem-

ory inefficient especially for the file-backed page frames. In
file block accesses, the accesses towards a small subset of
popular pages account for the dominant fraction of file block
accesses as shown in Figure 3. To well exploit the charac-
teristics of the shared file page access, we carefully argue
that allocating the local counter in per-process basis than in
per-core basis is appropriate for accessing the page frames. If
the local counters are allocated only for the processes which
actually share the given file, the memory pressure for the local
counters does not increase linearly with CPU-core count but
it is only dependent on the actual degree of page sharing. The
memory saving of the per-process local counter against the
per-core local counter can be particularity substantial in the
large scale machine with hundreds of cores since the number
of processes that share the given file can be much smaller than
the number of CPU cores in the system. Moreover, LODIC
reduces the query overhead substantially because it checks
the local counters of only those processes that are actually
sharing the file. In theory, the number of processes sharing a
file can be greater than the number of CPU’s. However, we
believe such case is rare in practice because, for example,
the administrator guides in many servers suggest not to cre-
ate more (worker) processes beyond the number of CPU’s to
avoid unnecessary contention on the shared resources [58].

Next, we propose a selective distributed counting scheme
that exploits the skew in the file accesses. LODIC can selec-
tively apply the distributed counting for the fraction of a file.
Not all file blocks in a file are frequently accessed. There may
exist a hot region in a file whose reference counting becomes
a bottleneck. Thus, we pay the extra overhead of distributed
counting when only needed. For instance, the first few levels
in B+-tree and log-structured merge (LSM) tree [59] and fre-
quently accessed web pages are the typical examples of the
hot file regions. Note that dynamically detecting the hot file
blocks are well studied in the prior works [21, 52] and it is
out of scope of this paper.

Lastly, we optimize LODIC’s design for the common case
that reference split not happening unlike the prior works [23,
40] preparing handling of the reference split all the time. As
shown in §3, the reference split happens extremely rarely.

LODIC exploits two properties of the modern computer sys-
tem design: (i) there exists a few unused bits left in PTE and

USENIX Association 2021 USENIX Annual Technical Conference 911

User-space program
 ➊ pread(file, …, offset)

(f) Per-process virtual memory
(mm_struct mmap)→

(g) Per-process page table
(mm_struct pgd)→

virtual address (vaddr)

page table entry
(PTE)

Local counter

(e) Per-process virtual memory
(mm_struct mm_rb)→

(c) Per-inode reverse mapping
(address_space i_mmap)→

(b) Reference/Unreference
(e.g., file read)

(d) Per-inode page cache
(address_space i_pages)→

(a) Query
(e.g., page reclamation)

offset

PFN (struct page)

Global counter

➋

 ➍

➎

PFN (struct page)

Global counter

Victim page

➀

VMA

offset
➁

➂ ➌ ➄

➅

radix tree
red-black tree

VMA VMA ...

[start vaddr, size, file, offset]

vaddr

➌

➃➌

Figure 5: Illustrative examples of LODIC for reference/unreference operations (n) and a query operation (n). 3 is an unoptimized step, which
replaced by LODIC’s optimized step 3 (see the details in §4.4.2).

(ii) Operating System uses the search tree structures to orga-
nize the segments in a virtual address space. While the LODIC
is currently built on top of Linux, it can be applied to the other
Operating Systems. For example, similar to Linux that uses
the red-black tree, FreeBSD and Windows use a splay tree
and AVL tree, respectively, to manage process address space.

In the next sections, we present three main components of
LODIC: (1) per-process selective distributed counting (§4.2),
(2) efficient access of a local counter (§4.4), and (3) local
counter embedding to page table entry (PTE) (§4.3). We then
summarize how these are used for each LODIC operations
(§4.5). Figure 5 illustrates the overview of LODIC design for
reference/unreference and query operations.

4.2 Selective Distributed Reference Counting

LODIC realizes the per-process distributed counting by mmap-
ing a file region to the process virtual address space. By doing
so, LODIC allocates the local counters for the virtual pages
in the mapped file region. When a program accesses the file
block of the mapped file, instead of updating the global refer-
ence counter (_refcount) in the page frame (struct page),
LODIC updates the local counters defined for the associated
virtual page. The local counter is defined at the process vir-
tual address space. The number of local counters for a given
physical page corresponds to the number of virtual pages that
map the given physical page frame. This approach deploys
the distributed counters for the mapped file regions and for
the processes that map a given file.

When a page frame is accessed (1 2 in Figure 5), LODIC
kernel first checks if the given physical page is mmap-ed page
or not. If the page is a mmap-ed one, the kernel performs reverse
mapping to find a virtual address of the page (3 in Figure 5)
then updates the local counter embedded in the associated
page table entry (4 5 in Figure 5). If the page is not mmap-
ed (i.e., _mapcount == 0) or the contention is low, the kernel
falls back to updating the global reference counter in the page

frame. Currently, LODIC determines that the contention on
the page is low when the page is shared by less than four
processes (i.e., _mapcount < 4).

4.3 Local Counter Embedding to PTE

PFN Flags

0811525863

Local counter

Figure 6: LODIC embeds a local counter to unused bits (colored in
gray). In x86-64 architecture, a counter is embedded in bit [58:52].

In allocating the per-process local counter, we propose a
Counter Embedding technique. With Counter Embedding,
LODIC defines the local counter without allocating the sepa-
rate memory. In Counter Embedding, we represent the per-
process local counter using the unused (ignored) bits in the
page table entry (PTE). Modern processor architectures leave
a few bit in the PTE for software use. For example, x86-
64 [12], ARM64 [15], and MIPS64 [53] have 11, 4, and 8 un-
used bits for software use, respectively. In Figure 6, LODIC in
64 bit x86 architecture is using 7-bit embedded local counter
at bits [58:52]. Other CPU technologies also utilize the un-
used PTE bits (ARM ASID [9], Intel MKTME [39], and AMD
SEV [13]). CPU’s with these technologies may leave a fewer
bits available for the embedded counter. Regardless of the
number of unused bits left in PTE, the design of LODIC re-
mains unchanged. As the local counter embedded at PTE con-
sists of a fewer bits, LODIC will more frequently access the
global counter since the embedded counter tends to overflow
more frequently. However, in our experimental experience,
LODIC rarely accesses the global counter because the local
counter overflows infrequently.

The counter embedding has two advantages: First, it does
not require any additional memory for the local counter. With
counter embedding, LODIC’s space overhead is O(N) as pre-
sented in Table 1. In addition, it minimizes the kernel code

912 2021 USENIX Annual Technical Conference USENIX Association

changes in implementing the local counter. It does not bring
any new data structures nor does it modify any for local
counter implementation.

LODIC updates the embedded local counter using an atomic
compare-and-swap (CAS) instruction. We decided to use the
atomic instruction on purpose. We can simply guarantee
the correctness of the local counter update even when the
reference split happens without relying on any additional
mechanisms such as epoch based counter management in
RefCache [23] and anchor counter in PayGo [40]. More im-
portantly, using the atomic instruction does not slow down
the common case operation because non-contending atomic
operations are as cheap as non-atomic operations in mod-
ern processor architectures [63]. It is often used in designing
the highly optimized lock-free data structures [54]. With 7-
bit embedded counter, the embedded local counter overflows
when the number of concurrent threads accessing a page is
greater than 27, which is extremely rare. To handle the over-
flow, LODIC falls back to using the global counter to represent
the total number of references [61, 65].

4.4 Reverse Mapping from a Physical Page
Frame to PTE

The performance and scalability of LODIC critically relies
upon the efficiency of the reverse mapping (steps between
2 and 4 in Figure 5). If the reverse mapping is slow or
becomes a scalability bottleneck in concurrent accesses, it
degrades performance significantly. Our evaluation results
in §5.2.3 show that the legacy reverse mapping which is used
in rmap() [24] can degrade the performance by 3 times. We
first describe how the existing kernel handles the reverse
mapping from a page cache to process virtual address space
(§4.4.1) then propose our approach to accelerate the reverse
mapping for LODIC (§4.4.2).

4.4.1 Process Space vs. File Space

Process Space: Virtual Address Space. A virtual address
space of a process is composed of a set of virtual memory
segments. We call this abstraction as process space. A virtual
memory segment is a virtually contiguous memory region of a
process having the same permission and file backend. It is rep-
resented by a start virtual address, the size, and backed file and
offset (see Figure 5f). A virtual memory segment corresponds
to struct vm_area_struct in Linux and struct vm_space
in FreeBSD, respectively. In this paper, we use the segment
and the virtual memory area (or VMA), interchangeably. OS
kernel uses the process-space structure to check if a given vir-
tual memory access is legal. For example, upon a page fault,
OS first checks if the faulting address is legitimate in the
process space then handles the fault (e.g., allocating physical
page or copy-on-write, etc).

Existing OSes adopt difference data structures for pro-
cess address space: e.g., red-black tree (Linux) [2], splay
tree (FreeBSD) [36], and AVL tree (Windows) [62]. The leaf
nodes correspond to the segments. The leaf nodes form a
linked list. These data structures have pros and cons. Red-
black tree and AVL tree guarantee the worst-case time com-
plexity to O(logn) for search and update (insert and delete).
Splay tree provides amortized time complexity to O(logn),
i.e., the time complexity for k operations is O(k logn), but the
worst-case time complexity of a single operation is worse than
the red-black tree or AVL tree. All three OSes rely only on a
single lock to protect the process-space structure from race
conditions. A number of techniques have been proposed to
make the process-space data structures friendly to the concur-
rent updates [23, 32, 66] to improve the scalability of virtual
memory subsystem.

File Space: Page Cache and Reverse Map For each file,
the kernel maintains the information associated with a set
of the physical pages that cache its file blocks and a set of
virtual memory segments that map its file regions if the file
(or region of it) is memory mapped. We call this abstrac-
tion a file space. It corresponds to struct address_space1

in Linux. File space encapsulates two mapping information
in it; (i) a mapping from a tuple of (inode, file offset) to a
physical page which caches the file block (Figure 5d) and
(ii) a mapping from the physical page to the associated page
table if the file block is memory mapped. The latter mapping
is called reverse mapping since it is used to map the phys-
ical page to the associated virtual address or the associated
page table equivalently. Linux uses a radix tree to organize
the set of physical pages in a file space. When the kernel
needs to locate the physical page for the given file block (e.g.,
read() and write() system calls Figure 5b), the kernel looks
up the radix tree of the file space with the given file offset (i.e.,
struct address_space in Figure 5d). In addition, a file can
be memory mapped to one or more processes. If the multiple
processes map a given file region, the physical page that holds
the memory mapped file block can be associated with the mul-
tiple process address spaces. To maintain the mappings from
the physical page to multiple process address spaces, the ker-
nel maintains the reverse mapping in per-file basis (Figure 5d)
in the file space. One example of using the reverse mapping
is for page reclamation (Figure 5b). Before the eviction, the
kernel should make sure that the page is not being referenced
by any threads. The associated page table entries should be
invalidated after the page is reclaimed. To quickly invalidate
the page table entries of the physical page, the kernel scans
the reverse mapping in the file space.

When we map a file region to the process address space,
we associate the page frames in a given file region not only to
the file space but also to the process space.

1The name struct address_space is, we believe, deeply mis-named.

USENIX Association 2021 USENIX Annual Technical Conference 913

4.4.2 Accelerating the Reverse Mapping for LODIC

The reverse mapping is the linkage between two spaces: pro-
cess space and file space. As illustrated in Figure 5c, a reverse
mapping (in Linux) maintains a mapping from a file offset to
a list of virtual memory segments, which maps the file region.
The main usage of the reverse mapping is page reclamation,
which happens in every ten of seconds. When a file region is
mapped by multiple processes, the kernel needs to examine
all segments that map a given file region each of which is
associated with different process (3 in Figure 5c) and then to
look up the process space to locate the proper virtual memory
segment (3 in Figure 5e). Unlike the page reclamation, where
the reverse mapping is not in the critical path, LODIC needs
to perform the reverse mapping in the critical path at every
page cache access to locate the local counter. The existing
reverse mapping relying on the file-space data structure does
not meet the required level of performance and scalability for
LODIC.

LODIC’s approach of mapping a file region to the process
address enables a new optimization for fast look up of the
reverse mapping, which is impossible without mapping the file
region. Since the page cache access (i.e., processing read()
and write() system calls) is executed in the context of a
calling user-space process context, LODIC can directly exploit
the process-space data structure (i.e., current→mm in Linux)
for efficient look up of the reverse mapping (3 in Figure 5f).

Leveraging the process-space data structure for the reverse
mapping has two important advantages: First, the number of
segment to examine is independent of the degree of sharing.
Without mapping the file region and leveraging the process-
space data structure, LODIC has to traverse the list of the
virtual memory segments in the file-space to find out the
corresponding virtual address argument. Hence the reverse
mapping look up cost linearly increases as the file region is
shared by more processes. Next, we can further optimize the
reverse mapping look up operation by leveraging the OS’s
virtual memory layout, which we explain next.

Application FxMark RocksDB NGINX
Number of segments 20 85 62

Position in the segment list 5 4 5

Table 2: Total number of segments in the applications and the posi-
tion of a memory-mapped file segment in the segment list.

A process virtual address can have tens or hundreds of
virtual memory segments. Table 2 illustrates the number
of segments in a few popular applications. In reverse map-
ping, i.e. in locating the page table entry for a given phys-
ical page, LODIC exploits the way in which the Linux ker-
nel maps the region of the file onto the process virtual ad-
dress space (arch_get_unmapped_area_topdown()). Exploit-
ing the very nature of kernel’s memory mapping, LODIC can
quickly locate the target virtual memory segment regardless
of the total number of segments in the process virtual ad-

dress space. Linux maps the shared libraries and the memory-
mapped files to the virtual address space as follows; when
the process starts, the kernel defines the base address in the
process virtual address space where the memory mapping
starts, mmap_base. Starting from the base address, the kernel
scans the process virtual address space towards the low end
of the virtual address space and looks for the free virtual ad-
dress region that can accommodate the given size of the file
segment (or the shared library). When it finds the free virtual
address region that can accommodate the given file segment,
it reserves the region of the virtual address space, creates
the virtual memory segment object (struct vma), and maps
the created virtual memory segment to the allocated virtual
address region. Due to this mapping mechanism, the virtual
memory segment of the memory mapped file is likely to be
located just below the stack and the vDSO [8]. Table 2 shows
the position of the segment for the memory mapped file in
the virtual segment list of FxMark, RocksDB and NGINX,
respectively. FxMark has twenty virtual memory segments in
its virtual address space. From mmap_base, the segment for
the memory mapped file corresponds to the fifth one in the
list of the virtual memory segments.

To leverage such layout property of memory mapped file
regions, LODIC scans the segment list of process-space start-
ing from mmap_base in reverse direction. By scanning the
virtual memory segments in reverse direction (i.e., from high
to low virtual addresses), LODIC can quickly find the segment
associated with a given page frame (3 in Figure 5). Specif-
ically, LODIC iterates the list of virtual memory segments
(mm_struct→mmap) in a reverse direction. It searches a seg-
ment that harbors a given page frame. For each segment, the
kernel checks if the segment is associated with the same file
as the given physical page. If they match, LODIC compares
the file offset of the physical page and the file offset of the
segment, and check if the page frame belongs to the segment.
If we find the associated segment, then we obtain the virtual
page number of the given physical page based upon the start
virtual address of the segment and the offset of the given page
frame within the segment. Once the segment is located and
LODIC gets the virtual address of the mapped page, LODIC
then walks the page table to locate the embedded local counter
(4 5 in in Figure 5). In summary, LODIC can locate the page
table entry within nearly constant amount of time independent
of the degree of sharing and independent of the number of
segments in the virtual address space.

4.5 LODIC Operations

We summarize how LODIC performs each operation with the
examples in Figure 5.

Reference Operation. When a page frame in a page cache
is accessed (1 2 in Figure 5), the kernel first performs a
reference operation, increasing its reference counter. If the
page is memory mapped and it is shared by more than four

914 2021 USENIX Annual Technical Conference USENIX Association

processes (i.e., _mapcount >=4), LODIC first looks up the cor-
responding segment by scanning process’s list of virtual mem-
ory segments in a reverse order using the file and offset as
a key (3). After finding the segment, LODIC calculates the
virtual address of the page using the start virtual address of
the segment and offset of the mapping. With the virtual ad-
dress, LODIC walks the page table to spot the page’s local
counter (4 5) and increases the local counter. LODIC relies
on atomic CAS to update the page table entry to increase local
counter value. If the page is not shared or it is shared by less
than four processes, LODIC falls back to increasing page’s
global counter (_refcounter in struct page).

Unreference Operation. After finishing the access of the
page, the kernel performs an unreference operation, decreas-
ing the page’s reference counter. The procedure is similar to
the reference operation but LODIC handles the situation when
the counter changes between the reference and unreference
operations. LODIC first tries to decrements the page’s local
counter if the page is memory mapped. The local counter can
be zero if the number of sharing processes is increased be-
yond four after the reference operation. To handle such cases,
LODIC decrements the global counter when the local counter
is zero. Like the reference operation, LODIC relies on atomic
CAS to decrement the counter. Since LODIC relies on atomic
operation in updating the counter, LODIC does not need any
other special mechanism to handle the reference split.

Query Operation. When the kernel reclaims the clean pages
in the page cache to secure more free memory, it first performs
a query on the page to check if the page is being accessed or
not (1 in Figure 5). LODIC first looks up the reverse mapping
of a file with the file-backed page’s offset and gets the list of
virtual memory segments associated with the page (2). For
each virtual memory segment (3), LODIC calculates page’s
virtual address (4). With the page’s virtual address, LODIC lo-
cates the page’s local counter embedded at the PTE (5 6). If
any of the page’s global counter and one of the local counters
are not zero, LODIC returns the results as non-zero. Other-
wise, it return zero so that the kernel can safely reclaim the
page. For correctness of a query operation, the local counters
and the global counter should remain unchanged while the
query is in-flight. To ensure this, we use the same mechanism
proposed in [40]; we define a flag for each physical page to
denote if there is a query in-flight. Before the query starts,
the kernel sets this flag. If this flag is set, the counter update
operation blocks. We use atomic_write to set and to reset the
flag [50].

Latency Analysis of Query Operation. LODIC can return
the query operation as soon as it encounters the non-zero local
or the global counters since all local counters are guaranteed
to be non-negative. This is not possible in some distributed ref-
erence counting schemes, such as sloppy counter [17] and Re-
fCache [23]. In these schemes, the local counter can become
negative and the positive local counter does not guarantee that

the counter’s true value is positive.
To quantify the performance benefit, we analyze the num-

ber of local counter iterations for a query operation. Suppose
that there are N counters. We denote the probability that the
i-th counter is zero as P(ci = 0), where ci is i-th counter value.
When X is the number of local counters that the kernel has
to examine until encountering a non-zero logical counter,
P(X = k) = pk−1(1− p), where p is P(ci = 0). Therefore,
the expected number of local counter traversal is as follows:

E(XN) =
N

∑
i=1

i · pi−1(1− p) =
1− pN

1− p
(1)

E(XN) grows slowly with N. When N = 120 and p = 0.5, we
obtain E(XN)≈ 2; the kernel examines less than two counters
on the average until it encounters a non-zero counter.

5 Evaluation

We implemented LODIC on Linux v4.11.6. We examine
the query latency, the memory pressure, and the application
performance in five different reference counting schemes:
Global Counter (Vanilla Linux), No Counter (NCount), Ref-
Cache [23], PayGo [40] and LODIC. We use the microbench-
mark FxMark [51] and two data intensive applications –
RocksDB key-value store [34] and NGINIX web server [60].
Scalable file block read plays an important role in these appli-
cations. We choose RocksDB and NGINX in our evaluation
because the multi-core servers are widely used in cloud en-
vironments, and a key-value store and a web server are the
two most popular workloads in the cloud environment. No
Counter (NCount) is a null counter that actually does not per-
form reference counting. This is to simulate the ideal scalable
counter. The server has 120 CPU-cores (Intel Xeon E7-8870
v2 processors, 8 sockets and 15 cores per socket) and 780GB
DDR3 DRAM. In the rest of this section, we first present
how LODIC affects the performance of real-world applica-
tions (§5.1) then analyze how our design decisions affect the
performance (§5.2).

5.1 Real World Applications

RocksDB. In key-value store, a number of processes can
read the same database file, simultaneously. Especially in
LSM-tree based key-value store, the run at level 0 can be read
by a large number of users simultaneously and the efficiency
of the distributed counting scheme can play a vital role in
its performance behavior. We use modified db_bench [33] so
that the multiple processes access the shared database. We
perform sequential scan and search on the random key with a
key size of 16 byte and a value size of 100 bytes on a work-
ing set of 1,000 records. With LODIC, the performance of
RocksDB is as good as NCount, RefCache and PayGo (Fig-
ure 7). LODIC brings 23% performance improvement against
the global counter under 100 processes.

USENIX Association 2021 USENIX Annual Technical Conference 915

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

of processes

Vanilla
LODIC

NCount
PayGo

RefCache

(a) Sequential Read

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

of processes

Vanilla
LODIC

NCount
PayGo

RefCache

(b) Random Read

Figure 7: Performance of RocksDB key-value store.

NGINX. We examine the web server performance under the
different distributed counting schemes. We vary the number
of clients accessing the same web page using wrk bench-
mark [69]. We vary the number of clients from one to fifty.
All clients access index.html (612 byte). Figure 8 illustrates
the results. The LODIC, NCount, RefCache and PayGo yield
the similar performance, showing 2.5× performance improve-
ment against vanilla Linux. Our evaluation results confirm
that LODIC performs nearly as good as the ideal contention-
less counting scheme (NCount) does.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

of processes

Vanilla

LODIC

NCount

PayGo

RefCache

Figure 8: Performance of NGINX web server.

5.2 Analysis on LODIC Design
5.2.1 Memory Pressure

We compute the memory pressure for the RefCache, PayGo
and LODIC (Figure 9). In RefCache and PayGo, the mem-
ory for distributed counting consists of the memory for the
per-core hash tables and the memory for the per-page meta-
data (Table 1). Refcache and PayGo allocate 64 KB and 256
KB for per-core hash table (4096 entries), respectively. Ref-
Cache and PayGo need 16 bytes for each page frame to store
the additional information, e.g., lock, pointer, and epoch num-
ber. For our server with 780 GB memory (195 M page frames),
the additional memory required for all physical page frames
corresponds 3.1 GB (195 M×16 byte). Total amount of mem-
ory required for the distributed counting in RefCache and in
PayGo correspond to 3.12 GB and 3.3 GB, respectively.

In LODIC, the total amount of memory for all local coun-
ters corresponds to only the page table pages that are required
to map the file (or part of the file). For 4KB, 100MB and 1GB

files, the total amount of memory required for LODIC corre-
sponds to 480KB, 24MB, and 240MB, respectively, when the
file is shared by 120 processes. Unlike PayGO and RefCache,
LODIC does not have the overhead of handling the hash colli-
sion and the cache miss that arise in the counter cache based
distributed counting scheme. According to our experiment, as
the hash collision increases, the performance of these schemes
can drop by 40% from 186 Mops to 70 Mops for 4 KB read.

0

1

2

3

4

RefCache PayGo

4KB 100MB 1GBM
e
m

o
ry

 P
re

s
s
u
re

 (
G

B
)

3.1
3.3

24 MB
480 KB

240 MB

LODIC

Figure 9: Memory consumption for RefCache, PayGo, and LODIC

on a 120-core machine (the degree of sharing in LODIC is 120-core).

5.2.2 Query Overhead

We measure the latency of counter query under two scenarios:
(1) the latency to reclaim all page cache entries for a given
file (Figure 10) and (2) the latency to check if a given page
frame can be reclaimed (Figure 11).

We examine the latency to reclaim all page cache entries of
the 1 GB file under vanilla Linux (Vanilla), RefCache, PayGo,
and LODIC. We use fadvise to trigger the page reclamation.
In LODIC, we vary the fraction of the mapped pages (i.e.,
hot page ratio) in the file; 10%, 20% and 100%. Figure 10
illustrates the results. ‘Vanilla’ renders the best case. Here,
the kernel examines only the single global counter for each
page frame to see if it can be reclaimed. The kernel repeats
this process for all page frames for the given file. In per-core
distributed counting schemes, the latency of reclaiming all
page frames is problematic. It examines all per-core local
counters for all pages in the file. The latency of fadvise
corresponds to over 500 msec regardless of the number of
processes that share the file. For the page reclamation, the
LODIC uses the red-black tree (3 in Figure 5c) stored in
i_mmap field of struct address_space like the Vanilla. In
LODIC, the number of the local counters for a page frame
is proportional to the number of the processes that map the
file. For unmapped page, there is no local counter. The query
latency of LODIC is longer than the vanilla Linux. However,
LODIC successfully reduces the query latency properly incor-
porating the actual degree of sharing. When 10% of the entire
file is hot region (100 MB is mapped), LODIC renders less
than 1/4 of the fadvise latency of the per-core distributed
counter when the file is shared by 45 processes. However, in
the worst case (i.e., the entire file is hot), which we believe
unrealistic, the query latency of LODIC exceeds the query
latency of the per-core distributed counting scheme when the
number of processes is greater than 40. This is due to the
overhead of reverse mapping in LODIC.

916 2021 USENIX Annual Technical Conference USENIX Association

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35 40 45

L
a
te

n
c
y
 (

m
s
e
c
)

Number of Processes

Vanilla

PayGo

RefCache

LODIC(100%)

LODIC(10%)

LODIC(20%)

Figure 10: Query latency: reclaiming all page frames (fadvise).

 0

 20

 40

 60

 80

 100

30 60 90 120

L
a
te

n
cy

 (
u
se

c)

of Processes

None-zero detection
Worst case

0.5 4.6 1.1

19.0

1.7

48.8

1.7

87.1

Figure 11: Query latency: reclaiming a page frame.

For counter query, we also measure the latency to determine
if a given page is reclaimable. In LODIC, the kernel returns as
soon as it encounters the non-zero local counter. As Figure 11
shows, LODIC examines only one or two local counters in
most cases until it encounters non-zero local counter. The
result well matches Equation 1. In the worst case, LODIC
needs to scan all logical counters till it finds the non-zero
local counter. In this case, the latency linearly increases with
the degree of sharing.

5.2.3 Reverse Mapping Overhead

Performance and Scalability. We first examine the effi-
ciency of the file-space based reverse mapping (3 in Fig-
ure 5) and the process-space based reverse mapping (3 in
Figure 5). Figure 12 shows the time to perform the reverse
mapping under two different reverse mapping schemes. The
reverse mapping latency reduces to 1/20 when we use the
process-space based reverse mapping instead of the file-space
based reverse mapping.

Next, we examine the performance impact of the reverse
mapping. We compare the latency to read 4 KB block from the
different regions of a file: (1) from plain file in Vanilla Linux,
(2) from the unmapped region of a file in LODIC-enabled
Linux, and (3) from the memory-mapped region of the file

0

0.5

1

1.5

2

File-Space Process-Space

L
a
te

n
c
y
 (

u
s
e
c
)

Phase1
Phase2

Figure 12: Latency break-down: file-space based reverse mapping
vs. process-space based reverse mapping

 0

 0.4

 0.8

 1.2

 1.6

Vanilla Unmapped Mapped

L
a
te

n
c
y
 (

u
s
e
c
)

0.86 0.89

1.16

Figure 13: Read latency with various reverse mapping schemes.

in LODIC-enabled Linux. Figure 13 illustrates the result. In
LODIC-enabled Linux, reading the memory-mapped file block
renders 20% longer latency than reading the unmapped file
block. In LODIC, the filesystem checks the map count of the
file block before it performs reverse mapping. It performs the
reverse mapping only when the map count is non-zero.

Lastly, we examine the performance of reading a shared
file block under different reference counting schemes: (1)
process-space based reverse mapping (LODIC), (2) file-space
based reverse mapping (LODIC) and (3) vanilla Linux. We use
DRBH workload of FxMark [51]. Figure 14 presents the re-
sults. Using the process-space based reverse mapping, LODIC
achieves 65× performance against vanilla Linux under 120
CPU cores. The benchmark performance successfully scales
linearly with respect to the increase in the number of pro-
cesses (i.e., the number of active cores). On the other hand,
the file-space based reverse mapping fails to scale due to its
inefficient access path shown at 3 in Figure 5.

Different from the rests, XFS barely yields any perfor-
mance gain under LODIC. We find that reference counter
in per-inode rw-semaphore in XFS is the root cause of the
scalability bottleneck here (Figure 14d). The performance
bottleneck caused by this problematic inode reference counter
has been out-shadowed by the severe scalability overhead
of the reference counter for physical page. As LODIC effec-
tively resolves the scalability issue in the reference counter of
the physical page, the inefficiency of inode reference counter
in XFS comes to the surface and prohibits XFS from scal-
ing well. LODIC, however, is not entirely ineffective; LODIC
brings as much as 2× performance in XFS (Figure 14d).

Interference with mmap. The mmap and munmap operation
establish an exclusive lock on the process-space and the file-
space structure to insert and delete the virtual memory seg-
ment. We examine how the mmap and munmap operations inter-
fere with the performance of LODIC. There are 60 processes
that read the shared file block. We create a background pro-
cess that calls mmap, sleeps for one second and does munmap.
We measure the performance of the shared file read with and
without the background processes, respectively, and compute
the performance ratio between the two.

Figure 15 shows the performance degradation varying
the number of background processes. The performance of
process-space based reverse mapping is barely affected by the
background mmap/munmap. On the other hand, the performance
of the file-space based reverse-mapping collapses to 1/100
when there are five or more background processes.

USENIX Association 2021 USENIX Annual Technical Conference 917

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

of cores

B-EXT4
F-EXT4
P-EXT4

(a) EXT4

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

of cores

B-BTRFS

F-BTRFS

P-BTRFS

(b) BTRFS

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

of cores

B-F2FS

F-F2FS

P-F2FS

(c) F2FS

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

of cores

B-XFS

F-XFS

P-XFS

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

(d) XFS

Figure 14: FxMark (DRBH): Baseline (‘B’), File-based reverse mapping (‘F’), Process-based reverse mapping (‘P’).

 0

 0.5

 1

 1.5

5 10 15 20 25 30 35 40 45 50 55 60N
o
m

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

 (
w

it
h
 b

g
/w

it
h
o
u
t
b
g
)

of processes

LODIC (Process) LODIC (File)

0.94

0.01

0.94

0.02

0.93

0.01

0.95

0.01

0.93

0.01

0.94

0.01

0.94

0.01

0.95

0.02

0.94

0.01

0.95

0.02

0.95

0.01

0.93

0.01

Figure 15: mmap() interference on the reverse mapping.

5.2.4 Counter Contention on the Local Counter

We examine the theoretical worst-case performance of
LODIC; when the threads compete for updating the local
counter. We create multiple threads in a process and have
them access the same file block. We vary the number of
threads per process to vary the contention on the local coun-
ters. We maintain the total number of threads in the system
to be 120. Table 3 illustrates the performance. As the number
of threads per process increases, the performance decreases.
This is because PTE contention occurs when many threads of
a process access the same file page at the same time. How-
ever, compared to the case using the global counter, LODIC is
meaningful in that the contention is localized within a process
because a PTE is shared by threads only within a process. We
believe that in practice this situation can be avoided via prop-
erly limiting the number of threads per process. For example,
it is common for server programs to provide tuning knobs to
change the number of threads per process [56–58].

of Threads 1 2 4 8 16
Throughput

164.16 58.87 32.54 19.61 8.79(M ops/sec)

Table 3: Effect of the contention on the local counters

6 Related Work

There were a number of sophisticated designs for the scal-
able reader-write lock. For the scalability, a few works ex-
ploit the memory barrier and the atomic instruction in the
reader [44, 64]. Big-reader lock (brlock) uses an array of
reader flags to avoid using the memory barrier [4]. Pas-
sive reader-write lock (prwlock) uses version-based con-

census protocol instead of the expensive mutex protected
flags to avoid using the memory barrier [46]. A new reader-
writer lock called percpu-rwlock in Linux [6] is known to
work when the writers are rare. Bravo [30] uses the global
hash table to address the memory pressure issue of the per-
core reference counters [6, 17, 26, 27, 31] for rw-semaphore.
SHFLLOCK [42] leverages a waiting thread to achieve high
scalability in NUMA machines without introducing the addi-
tional memory consumption for NUMA-local locks. Hydralist
separates the search layer and the data node for the manycore
scalability of the index structure [49].

A few works adopt the actual degree of sharing to ease the
contention [11,29,55]. Nerula et al. [55] detect the access con-
flict at run-time and distribute the conflict records to per-core
basis. It cannot be applied to the generic workload. Dashti
et al. [29] use the hardware profiling to detect the degree of
sharing. It fails to scale when the sharing degree is high.

7 Conclusion

The per-core based distributed counting scheme has reached
its limit due to the increase in the number of cores and the
memory size in the recent computing system. In this work, we
view that the counter contention is driven by the contention
among the processes. This process-centric view enables us to
devise a new counting scheme that can naturally incorporate
the degree of sharing, the population and the reference brevity
characteristics of the physical page frame. Via defining the
local counter in per-process basis, LODIC is successful in
striking the balance among the three factors of the reference
counter: memory pressure, the counter query latency, and
counter update performance. We show that software overhead
of the proposed logical distributed counting is insignificant
and hardly visible from outside.

Acknowledgements We would like to thank our shepherd
James Bottomley and the anonymous reviewers for their valu-
able feedback. We also would like to thank Yeonjin Noh
and Hyeongjun Kim for their help on the earlier draft of
this work. This work was supported by IITP, Korea (grant
No. 2018-0-00549 and No. 2014-3-00035) and NRF, Korea
(grant No. NRF-2020R1A2C3008525).

918 2021 USENIX Annual Technical Conference USENIX Association

References

[1] 10M Concurrent Websockets. http://goroutines.
com/10m.

[2] Linux rbtree. https://www.kernel.org/doc/
Documentation/rbtree.txt.

[3] Number of dentry objects. https://
serverfault.com/questions/561350/
unusually-high-dentry-cache-usage.

[4] Big reader locks. https://lwn.net/Articles/
378911/, 2010.

[5] The search for fast, scalable counters. http://lwn.
net/Articles/170003/, 2010.

[6] percpu_rwlock: Implement the core design of per-cpu
reader-writer locks. https://lore.kernel.org/
patchwork/patch/360375/, 2013.

[7] Dell poweredge specification. http://media.zones.
com/images/pdf/Dell_PowerEdge_R920.pdf,
2014.

[8] vdso. https://https://lwn.net/Articles/
615809/, 2014.

[9] Address space identifier. https://lwn.net/
Articles/699820/, 2016.

[10] Sgi ultraviolet 3000. https://www.sgi.com/
products/servers/uv/uv_3000_30.html, 2016.

[11] Umut A Acar, Naama Ben-David, and Mike Rainey.
Contention in structured concurrency: Provably effi-
cient dynamic non-zero indicators for nested parallelism.
ACM SIGPLAN Notices, 52(8):75–88, 2017.

[12] AMD. Amd64 architecture programmer’s manual vol-
ume 2: System programming.

[13] AMD. Secure encrypted virtualization. https://
developer.amd.com/sev/.

[14] Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Marc
Auslander, Michal Ostrowski, Bryan Rosenburg, Amos
Waterland, Robert W Wisniewski, Jimi Xenidis, Michael
Stumm, et al. Experience distributing objects in an
smmp os. Transactions on Computer Systems (TOCS),
25(3):6, 2007.

[15] ARM. Arm® architecture reference manual armv8, for
armv8-a architecture profile.

[16] Srivatsa S Bhat, Rasha Eqbal, Austin T Clements,
M Frans Kaashoek, and Nickolai Zeldovich. Scaling
a file system to many cores using an operation log. In
Proc. of ACM SOSP, 2017.

[17] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao,
Aleksey Pesterev, M Frans Kaashoek, Robert Morris,
Nickolai Zeldovich, et al. An analysis of linux scalabil-
ity to many cores. In Proc. of USENIX OSDI, 2010.

[18] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich. Oplog: a library for scaling
update-heavy data structures. Technical Report MIT-
CSAIL-TR-2014-019, 2014.

[19] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Evi-
dence and implications. In Proc. of IEEE INFOCOM,
1999.

[20] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In Proc. of
USENIX FAST, 2020.

[21] Mei-Ling Chiang, Paul CH Lee, and Ruei-Chuan Chang.
Using data clustering to improve cleaning performance
for flash memory. Software: Practice and Experience,
29(3):267–290, 1999.

[22] Wonje Choi, Karthi Duraisamy, Ryan Gary Kim, Janard-
han Rao Doppa, Partha Pratim Pande, Radu Marculescu,
and Diana Marculescu. Hybrid network-on-chip archi-
tectures for accelerating deep learning kernels on hetero-
geneous manycore platforms. In Proc. of IEEE CASES,
2016.

[23] Austin T Clements, M Frans Kaashoek, and Nickolai
Zeldovich. Radixvm: Scalable address spaces for mul-
tithreaded applications. In Proc. of ACM EUROSYS,
2013.

[24] Corbet. The object-based reverse-mapping vm. https:
//lwn.net/Articles/23732/, Feb 2003.

[25] Corbet. Kswapd and high-order allocations. https:
//lwn.net/Articles/101230/, Sep 2004.

[26] J Corbet. Per-cpu reference counts. https://lwn.
net/Articles/557478/, 2013.

[27] J Corbet. The search for fast, scalable counters. https:
//lwn.net/Articles/170003/, 2016.

[28] Alvaro Corral, Gemma Boleda, and Ramon Ferrer-i Can-
cho. Zipf’s law for word frequencies: Word forms versus
lemmas in long texts. PLOS ONE, 10(7), 2015.

[29] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: a
holistic approach to memory placement on numa sys-
tems. ACM SIGARCH Computer Architecture News,
41(1):381–394, 2013.

USENIX Association 2021 USENIX Annual Technical Conference 919

http://goroutines.com/10m
http://goroutines.com/10m
https://www.kernel.org/doc/Documentation/rbtree.txt
https://www.kernel.org/doc/Documentation/rbtree.txt
https://serverfault.com/questions/561350/unusually-high-dentry-cache-usage
https://serverfault.com/questions/561350/unusually-high-dentry-cache-usage
https://serverfault.com/questions/561350/unusually-high-dentry-cache-usage
https://lwn.net/Articles/378911/
https://lwn.net/Articles/378911/
http://lwn.net/Articles/170003/
http://lwn.net/Articles/170003/
https://lore.kernel.org/patchwork/patch/360375/
https://lore.kernel.org/patchwork/patch/360375/
http://media.zones.com/images/pdf/Dell_PowerEdge_R920.pdf
http://media.zones.com/images/pdf/Dell_PowerEdge_R920.pdf
https://https://lwn.net/Articles/615809/
https://https://lwn.net/Articles/615809/
https://lwn.net/Articles/699820/
https://lwn.net/Articles/699820/
https://www.sgi.com/products/servers/uv/uv_3000_30.html
https://www.sgi.com/products/servers/uv/uv_3000_30.html
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://lwn.net/Articles/23732/
https://lwn.net/Articles/23732/
https://lwn.net/Articles/101230/
https://lwn.net/Articles/101230/
https://lwn.net/Articles/557478/
https://lwn.net/Articles/557478/
 https://lwn.net/Articles/170003/
 https://lwn.net/Articles/170003/

[30] Dave Dice and Alex Kogan. Bravo: Biased locking for
reader-writer locks. In Proc. of USENIX ATC, 2019.

[31] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark
Moir. Snzi: Scalable nonzero indicators. In Proc. of
ACM PODC, 2007.

[32] Jason Evans. A scalable concurrent malloc (3) imple-
mentation for freebsd. In Proc. of the BSDCan Confer-
ence, 2006.

[33] Facebook. db_bench. https://github.com/
facebook/rocksdb/wiki/Benchmarking-tools.

[34] Facebook. RocksDB. http://rocksdb.org.

[35] Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N Cal-
heiros, and Rajkumar Buyya. Virtual machine consoli-
dation in cloud data centers using aco metaheuristic. In
Proc. of EuroPar, 2014.

[36] FreeBSD. https://www.freebsd.org.

[37] HPE. Hpe integrity superdome x. https://www.hpe.
com/us/en/servers/superdome.html, 2016.

[38] HPE. Hpe the machine. http://www.labs.hpe.com/
research/themachine/, 2016.

[39] Intel. Multi-key total memory encryption.
https://software.intel.com/content/dam/
develop/external/us/en/documents-tps/
multi-key-total-memory-encryption-spec.
pdf.

[40] Seokyong Jung, Jongbin Kim, Minsoo Ryu, Sooyong
Kang, and Hyungsoo Jung. Pay migration tax to home-
land: Anchor-based scalable reference counting for mul-
ticores. In Proc. of USENIX FAST, 2019.

[41] Karim Kanoun, Martino Ruggiero, David Atienza, and
Mihaela Van Der Schaar. Low power and scalable many-
core architecture for big-data stream computing. In Proc.
of IEEE ISVLSI, 2014.

[42] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-
woo Min, and Taesoo Kim. Scalable and practical lock-
ing with shuffling. In Tim Brecht and Carey Williamson,
editors, Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, pages 586–599. ACM,
2019.

[43] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: the linux virtual machine monitor.
In Proc. of Linux Symposium, 2007.

[44] Yossi Lev, Victor Luchangco, and Marek Olszewski.
Scalable reader-writer locks. In Proc. of ACM SPAA,
2009.

[45] linux. Proper locking under a preemptible kernel: Keep-
ing kernel code preempt-safe. https://www.kernel.
org/doc/Documentation/preempt-locking.txt.

[46] Ran Liu, Heng Zhang, and Haibo Chen. Scalable
read-mostly synchronization using passive reader-writer
locks. In Proc. of USENIX ATC, 2014.

[47] lwn. Linux generic irq handling. https:
//static.lwn.net/kerneldoc/core-api/
genericirq.html.

[48] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a trillion-edge graph on a single ma-
chine. In Proc. of ACM EUROSYS, 2017.

[49] Ajit Mathew and Changwoo Min. Hydralist: A scalable
in-memory index using asynchronous updates and par-
tial replication. Proc. VLDB Endow., 13(9):1332–1345,
2020.

[50] Paul E McKenney. Overview of linux-kernel reference
counting, 2007.

[51] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In Proc. of USENIX ATC, 2016.

[52] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: random write con-
sidered harmful in solid state drives. In William J.
Bolosky and Jason Flinn, editors, Proc. of USENIX
FAST, page 12. USENIX Association, 2012.

[53] MIPS. Mips® architecture for programmers volume iii:
Mips64® / micromips64™ privileged resource architec-
ture.

[54] Adam Morrison and Yehuda Afek. Fast concurrent
queues for x86 processors. In Alex Nicolau, Xiaowei
Shen, Saman P. Amarasinghe, and Richard W. Vuduc,
editors, ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, Shen-
zhen, China, February 23-27, 2013, pages 103–112.
ACM, 2013.

[55] Neha Narula, Cody Cutler, Eddie Kohler, and Robert
Morris. Phase reconciliation for contended in-memory
transactions. In Proc. of USENIX OSDI, 2014.

[56] NGINX. Apache performance tuning: Mpm di-
rectives. https://www.liquidweb.com/kb/
apache-performance-tuning-mpm-directives/.

[57] NGINX. Thread pools in nginx boost per-
formance 9x! https://www.nginx.com/blog/
thread-pools-boost-performance-9x/.

920 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
http://rocksdb.org
https://www.freebsd.org
https://www.hpe.com/us/en/servers/superdome.html
https://www.hpe.com/us/en/servers/superdome.html
http://www.labs.hpe.com/research/themachine/
http://www.labs.hpe.com/research/themachine/
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://static.lwn.net/kerneldoc/core-api/genericirq.html
https://static.lwn.net/kerneldoc/core-api/genericirq.html
https://static.lwn.net/kerneldoc/core-api/genericirq.html
https://www.liquidweb.com/kb/apache-performance-tuning-mpm-directives/
https://www.liquidweb.com/kb/apache-performance-tuning-mpm-directives/
https://www.nginx.com/blog/thread-pools-boost-performance-9x/
https://www.nginx.com/blog/thread-pools-boost-performance-9x/

[58] NGINX. Tuning nginx for performance. https://www.
nginx.com/blog/tuning-nginx/.

[59] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 497–514, 2017.

[60] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

[61] Kenneth Russell and David Detlefs. Eliminating
synchronization-related atomic operations with biased
locking and bulk rebiasing. ACM SIGPLAN Notices,
41(10):263–272, 2006.

[62] M.E. Russinovich, D.A. Solomon, and A. Ionescu. Win-
dows Internals. Pearson Education, 2012.

[63] Hermann Schweizer, Maciej Besta, and Torsten Hoe-
fler. Evaluating the cost of atomic operations on modern
architectures. In 2015 International Conference on Par-
allel Architectures and Compilation, PACT 2015, San
Francisco, CA, USA, October 18-21, 2015, pages 445–
456. IEEE Computer Society, 2015.

[64] Michael L Scott and John M Mellor-Crummey. Syn-
chronization without contention. In Proc. of ASPLOS,
1991.

[65] Rifat Shahriyar, Stephen M Blackburn, and Daniel
Frampton. Down for the count? getting reference count-
ing back in the ring. In Proceedings of the 2012 in-
ternational symposium on Memory Management, pages
73–84, 2012.

[66] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The
continuously concurrent compacting collector. ACM
SIGPLAN Notices, 46(11):79–88, 2011.

[67] Rik Van Riel. Page replacement in linux 2.4 memory
management. In Proc. of USENIX ATC, 2001.

[68] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak,
Pradipta De, and Ravi Kothari. Server workload analysis
for power minimization using consolidation. In Proc. of
USENIX ATC, 2009.

[69] Modern http benchmarking tool, 2013. https://
github.com/wg/wrk.

USENIX Association 2021 USENIX Annual Technical Conference 921

https://www.nginx.com/blog/tuning-nginx/
https://www.nginx.com/blog/tuning-nginx/
https://github.com/wg/wrk
https://github.com/wg/wrk

	Introduction
	Background and Motivation
	Reference Counting in File Block Access
	Scalable Reference Counting

	Design Principles of Lodic
	Design of Lodic
	Design Overview
	Selective Distributed Reference Counting
	Local Counter Embedding to PTE
	Reverse Mapping from a Physical Page Frame to PTE
	Process Space vs. File Space
	Accelerating the Reverse Mapping for Lodic

	Lodic Operations

	Evaluation
	Real World Applications
	Analysis on Lodic Design
	Memory Pressure
	Query Overhead
	Reverse Mapping Overhead
	Counter Contention on the Local Counter

	Related Work
	Conclusion

