
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Proactive Energy-Aware Adaptive Video Streaming
on Mobile Devices

Jiayi Meng, Qiang Xu, and Y. Charlie Hu, Purdue University
https://www.usenix.org/conference/atc21/presentation/meng

Proactive Energy-Aware Adaptive Video Streaming on Mobile Devices

Jiayi Meng
Purdue University

Qiang Xu
Purdue University

Y. Charlie Hu
Purdue University

Abstract
Energy-aware app adaptation enables mobile apps to dy-

namically adjust data �delity such as streaming video quality
to meet a user-speci�ed goal for battery duration. Traditional
energy-aware app adaptation is reactive in nature where the
operating system monitors the app energy drain and sig-
nals the app to adapt upon detecting energy drain deviation
from the pre-speci�ed energy budget which can cause high
oscillation and poor quality-of-experience (QoE).

In this paper, we observe that modern power-hungry apps
such as video streaming and o�oading-based apps already
come with sophisticated app adaptation to deal with resource
changes such as network dynamics and propose proactive
energy-aware adaptation where the user-speci�ed energy
budget is integrated with the app adaptation logic. The po-
tential bene�t of such an approach is that app energy drain
adaptation is no longer an “after-e�ect”, and hence the ap-
proach is likely to reduce the oscillation in app adaptation
and improve the app QoE.

In this paper, we study the design, implementation and per-
formance tradeo�s of reactive and proactive energy-aware
app adaptation in the context of one of the most power-
hungry classes of mobile apps, ABR-based video streaming.
Our study shows that proactive energy-aware ABR video
streaming is easy to implement by leveraging the built-in
adaptation of modern apps and can improve the QoE of reac-
tive approach by 44.8% and 19.2% in streaming 360o videos
to Pixel 2 and Moto Z3 phones under low power budget.

1 Introduction

For enriched user experience, modern mobile apps utilize a
large number of power-hungry hardware components such
as the CPU, GPU, WiFi and 4G, and hardware decoder and
as a result draw signi�cant amount of power. As a result, the
user experience of such feature-rich apps is often limited by
the shortened battery life from increased power draw [7, 8].

Energy-aware app adaptation [31, 88] exploits a key ob-
servation that many apps can reduce their power draw by
reducing their data �delity such as the size and quality of a
video in video streaming apps or the �ltering level of a map
in navigation apps, and enables apps to dynamically adjust
their data �delity to meet a user-speci�ed goal for battery
duration, e.g., a four-hour plane ride.

There are two components in building an energy-aware
app adaptation system: energy accounting and control. First,
an energy accounting subsystem is needed to monitor the

energy drain during the app execution and detect any sig-
ni�cant deviation, e.g., exceeding a threshold, from the user-
speci�ed energy budget. Second, the app needs to implement
some adaptation logic to stay within the energy drain budget
or correct energy drain deviation.

Traditional energy-aware app adaptation schemes such as
PowerScope [31], ECOSystem [88], Cinder [68], and Neme-
sis [62] have mainly focused on system-level energy account-
ing and control, treating the app as a “black-box”. In particu-
lar, in such systems, the operating system (OS) monitors the
app energy drain during app execution, and upon detecting
energy drain deviation from the pre-speci�ed budget either
throttles the execution of the app process or threads or issues
an upcall to the app to trigger app reactive adaptation. The
bene�t of such a black-box approach is simpli�ed app im-
plementation, as real-time energy accounting is provided as
an OS service. The downside of such an approach is that the
disintegrated and reactive nature prevents jointly optimizing
the app QoE and meeting the energy drain budget. In partic-
ular, correcting energy drain deviation as an after-e�ect can
lead to app �delity oscillation and negatively a�ect the QoE.

In this paper, we make a key observation that compared to
the mobile apps studied two decades ago [31], mobile apps
today not only are more power hungry, but also often come
with sophisticated adaptation built in to optimize the user-
perceived QoE in reaction to network dynamics or other
system constraints. For example, �delity adaptation such
as adaptive bitrate (ABR) is now widely adopted in video
streaming systems [15,38,45–47,54,59,61,65,69,72–74,76,83,
85], and adaptive o�oading of computation to edge servers
has been proposed for deep learning enhanced tasks such as
video analytics [21, 37, 51, 57, 66].

We argue that the built-in QoE optimization frameworks
in such modern mobile apps naturally lend themselves to
integrated, proactive energy-aware app adaptation where the
energy drain budget is seamlessly integrated into the pre-
existing QoE adaptation as a constraint. The key bene�t of
such an integrated, proactive approach is that app energy
drain adaptation is no longer an after-e�ect and hence likely
to reduce the oscillation in app adaptation and improve the
app QoE. Compared to the reactive approach, the integrated
approach faces two design challenges: (1) the app needs to
predict the power consumption for each adaptation candidate
beforehand, and (2) the app needs to incorporate the energy
budget into its QoE optimization logic.

In this paper, we study the design, implementation, and per-
formance tradeo�s of reactive and proactive energy-aware

USENIX Association 2021 USENIX Annual Technical Conference 81

app adaptation in the context of one of the most power-
hungry classes of mobile apps, ABR-based video stream-
ing [41,79,87,89]. We focus on a state-of-the-art ABR scheme,
Robust MPC [85], that employs receding horizon control [19]
to maximize the QoE for the next few video chunks based
on the predicted network throughput in the moving horizon
of video chunk downloading intervals.

We design Energy-aware ABR, an energy-aware ABR
video streaming system to demonstrate how to address the
two challenges in designing proactive energy-aware app
adaptation. First, proactive energy-aware app adaptation re-
quires a power predictor that can predict the average power
draw of the streaming app in the next time interval in fetch-
ing a chunk of any candidate chunk quality. Traditional mo-
bile device power models [22,23,26,70,87,91] cannot be used
as they take component utilization logged as input which
are not available before app execution. We propose a novel
function-level power modeling methodology that accurately
predicts the app energy drain in the next interval.

Second, integrating an energy budget into the app adapta-
tion logic, in particular, the model predictive control (MPC)-
based QoE optimizer for MPC-based ABR, faces a unique
challenge. Unlike other constraints such as network through-
put in the QoE optimization problem, app energy drain is
cumulative and hence elastic over time. At any time interval
during a streaming session, the app may have accumulated
energy drain surplus or de�cit from past time intervals, e.g.,
from selecting low chunk formats limited by transient low
network bandwidth. We explore several design options on
how to integrate such energy surplus/de�cit with the QoE
optimization framework of MPC-based ABR controllers.

Since MPC-based controllers are notoriously hard to ana-
lyze [17, 34, 67], we evaluate the end-to-end performance of
reactive and proactive energy-aware ABR video streaming
designs using testbed experiments. We have implemented
both designs on top of Pu�er [11], an open-sourced video
streaming platform, and evaluated di�erent design options
by streaming 360o videos from a media server to a mobile
client, while varying the network condition using network
traces from two large datasets, YTrace and FCC [4].

Our evaluation results show that (1) Our function-wise
power predictor achieves low mean per-interval (2-second)
energy prediction error of 4.87% (Pixel 2) and 5.86% (Moto Z3).
(2) Under dummy power budget, i.e., using the average power
draw of the energy-oblivious ABR as the power budget, both
proactive and reactive Energy-aware ABR achieve only
slightly lower QoE than that of the energy-oblivious ABR,
with proactive Energy-aware ABR achieving slightly higher
QoE than reactive Energy-aware ABR. (3) Under low power
budget, proactive Energy-aware ABR improves the QoE by
44.8% (Pixel 2) and 19.2% (Moto Z3) over reactive Energy-
awareABR. (4) The majority of the improvement comes from
signi�cantly reduced video quality variation component of
the QoE, of 85.2% (Pixel 2) and 87.4% (Moto Z3), showing that

proactive Energy-aware ABR can e�ectively mitigate the
oscillation drawback of reactive energy-aware adaptation.

In summary, this paper makes the following contributions:

• We show prior reactive energy-aware app adaptation
can lead to app �delity oscillation which can negatively
a�ect user-perceived QoE.

• We propose to our knowledge the �rst proactive energy-
aware app adaptation and show that it can be easily
implemented by integrating user-speci�ed energy budget
with the built-in app adaptation logic of modern apps
such as MPC-based ABR systems for video streaming.

• We present a novel function-wise power predictor that
can be used for what-if power draw analysis needed in
proactive energy-aware app adaptation, e.g., Energy-
aware ABR.

• We experimentally compare the end-to-end performance
of reactive and proactive energy-aware adaptive stream-
ing of 360o videos on Pixel 2 and Moto Z3 phones.

• Our results show proactive energy-aware video stream-
ing improves the QoE by 44.8% (Pixel 2) and 19.2% (Moto
Z3) over the reactive approach under low power budget.

To further the research on energy-aware app adaptation,
we have open-sourced Energy-aware ABR implementa-
tion.1

2 Motivation
To motivate how energy-aware adaptation can help to re-
duce app power draw and elongate battery duration, we
performed a measurement study of one of the most power-
hungry classes of apps, video streaming, with example apps
such as Youtube and Net�ix consistently ranked among the
top 10 battery draining apps [8, 12, 13].
Experimental Setup. We streamed 6 popular panoramic
videos in full screen mode in the Youtube app on a Pixel 2
phone, which was connected to a Monsoon power monitor to
measure the total phone power draw during video streaming.
The videos were categorized into 3 groups, slow, medium
and high, based on the moving speed of the camera. Each
video was encoded into di�erent resolutions and frame rates,
including (4K, 60FPS), (1440p, 60FPS), (1080p, 60FPS), (720p,
60FPS), (480p, 30FPS) and (360p, 30FPS). Table 1 shows the
bitrates of the videos at di�erent quality settings.

We streamed each video in Youtube at di�erent qualities
with and without screen on, respectively. When the screen
was on, the brightness level was set at 60%. To prevent the
app from directly retrieving video frames from the cache
rather than through the Internet, we cleared the cache of
Youtube app on the phone before each experiment.

To understand the power breakdown of 360o video stream-
ing, we built component-wise power models [22, 26, 44, 75,

1https://github.com/meng72/Proactive-Energy-Aware-Adaptive-Video-
Streaming

82 2021 USENIX Annual Technical Conference USENIX Association

Table 1: Average bitrate (Mbps) of 6 panoramic videos at
di�erent resolutions and frame rates from Youtube.

Videos 4K/60 1440p/60 1080p/60 720p/60 480p/30 360p/30
Slow

Planets [1] 18.10 6.20 2.06 1.01 0.35 0.19
Solar [6] 22.10 5.38 1.70 0.76 0.22 0.10

Medium
Orleans [5] 25.70 12.00 3.72 2.13 0.61 0.33
Chicago [9] 25.60 10.60 3.41 1.93 0.58 0.31

High
Monster [2] 26.20 12.60 4.20 2.49 0.71 0.39
Optical [10] 24.40 12.60 4.16 2.47 0.71 0.39

81, 87] for major hardware components in the Pixel 2 phone,
pro�led hardware component usage while streaming 360o

videos at (4K, 60FPS) in Youtube on Pixel 2, and �nally es-
timated the corresponding power draw for each hardware
component usin the power models.
Findings. Figure 1 shows the average power consumption of
streaming the 6 panoramic videos at di�erent quality settings
over the Internet in Youtube. We derived the screen power
by subtracting the total power of video streaming when the
screen was o� from that when the screen was on. We see
that (1) 360o video streaming is power-intensive on modern
mobile devices. Streaming videos at (4K, 60FPS) consumes
the highest total power of 579.73mA.2 At this rate, a fully
charged Pixel 2 phone (with a 2700 mAh battery) will drop
to 15% in 3 hours and 40 minutes when the Battery Saver
mode will turn on. (2) Thanks to the OLED technology, the
power consumption of the display is relatively small, only
41.66−50.36mA, or 7.0%−12.0% of the total power across
di�erent settings. (3) Reducing the data �delity, i.e., the video
resolution and frame rate, can signi�cantly lower the total
app power draw. For example, the total power draw decreases
by 33.1% from 579.73mA to 387.79mA when the video quality
changes from (4K, 60FPS) to (360p, 30FPS).

Figure 2 shows the power breakdown of streaming 360o

videos at (4K, 60FPS). We see that (1) the CPU, GPU and
screen consume relatively low power, of 82.11mA (14.0%),
74.49mA (12.7%) and 46.92mA (8.0%), respectively; (2) in con-
trast, the NIC (network interface card) and hardware de-
coder, two primary hardware components involved in video
streaming, dominate the total power draw of streaming, i.e.,
220.53mA (37.6%) and 162.47mA (27.7%), respectively. These
results suggest that adapting the data �delity of video chunks
to control the power draw of networking and decoding will
be e�ective in controlling the total power draw of the app.

3 PriorWork on Energy-awareAppAdapta-
tion

The large body of research on managing the energy drain
of applications on mobile systems has mainly focused on

2 In this paper, for power measurement we directly report the current
drawn in milli-Amperes (mA); the actual power consumed would be the
current drawn multiplied by 3.7V, the voltage supply of the battery. The
smartphone batteries are rated using these metrics and hence are easy to
cross reference.

4K/601440p/60
1080p/60

720p/60
480p/30

360p/30
0

100

200

300

400

500

600

Po
we

r (
m

A)

Screen
Non-screen

Figure 1: Average power consumption of streaming 360o

videos with di�erent qualities in Youtube on Pixel 2.

82.11mA
(14.0%)

74.49mA
(12.7%)

220.53mA
(37.6%)

162.47mA
(27.7%)

46.92mA
(8.0%)

CPU
GPU
Network
Decoder
Screen

Figure 2: Power breakdown of streaming 360o videos at
4K/60FPS on Pixel 2.

system-level energy accounting and control, treating the app
as a “black-box”.

Since managing the energy drain of apps requires accu-
rately monitoring the energy drain during application exe-
cution, a large body of work proposed solutions to the re-
source container-level, process-level, or thread-level energy
accounting problem in the OS, such as PowerScope [32],
ECOSystem [88], Cinder [68], and Nemesis [62]. In a nut-
shell, energy accounting in these systems is achieved via
either aligning external power measurement with interrupt-
triggered program sampling as in early systems such as Pow-
erScope [32] and Quanto [33], or using a pre-trained power
model that captures the correlation between utilization of
each hardware component in each of its power states and
the resulting power draw and feeding the power model with
hardware component usage logged during app execution to
estimate the app energy drain, e.g., in ECOSystem [88] and
Cinder [68].

Upon detecting that an app’s energy drain has exceeded a
predetermined budget, the system needs a way to throttle
the app’s energy drain. In ECOsystem [88], Currentcy [88],
and Cinder [68], the kernel would enforce energy budget
by halting or throttling app threads, processes, or resource
containers from execution. The Odyssey extension [31] and
Nemesis [62] do not throttle applications, but issue upcalls
or provide feedbacks to the applications to trigger �delity
adaptation to adjust their energy drain rate.

4 Reactive vs. Proactive Energy-aware App
Adaptation

We discuss the drawbacks of prior reactive energy-aware
app adaptation and propose proactive energy-aware app

USENIX Association 2021 USENIX Annual Technical Conference 83

Po
w
er

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 3: Reactive approach causes power oscillation.

adaptation.
Reactive energy-aware app adaptation. The prior
system-level app energy control solutions are reactive and dis-
integrated. They are reactive because they treat applications
as black-boxes and passively monitor their energy drain, and
inform apps of the need to perform adaptation reactively
upon detecting any deviation of the app energy drain from
the pre-speci�ed budget. They are disintegrated because the
two tasks are performed in isolation: the OS monitors the
app energy drain while the app performs adaptation.

The bene�t of such a reactive approach is simpli�ed app
implementation, as real-time energy accounting can be pro-
vided as an OS service and the apps can focus on reactive
adaptation, although �ne-grained model-based energy moni-
toring relies on collecting �ne-grained hardware component
usage which can incur high runtime overhead.

The downside of a reactive approach is that the disinte-
grated and reactive nature deprives the opportunity of jointly
optimizing the app QoE and meeting the energy drain budget
at each time interval. In particular, the app not only performs
adaptation after deviating from the energy drain target, but
also typically does not have speci�c guidance on how much
app �delity to adapt in the next time interval, which can
result in power draw and app �delity oscillation.

Figure 3 shows an example of how the power draw of
a disintegrated, reactive app adaptation scheme can cause
oscillation in app power draw. Assume an app has three
�delities, high, medium, and low, drawing correspondingly
high, medium, and low power. An energy-aware OS like
Odyssey [31] tries to steer the app towards a target power
budget speci�ed in the dashed line to ensure a target battery
duration. The app starts running in high �delity, drawing
high power. At t1, the OS performs an upcall informing the
app of an energy drain de�cit, and the app lowers the �delity
to medium. At t2, the OS informs the app of energy drain
de�cit again as the average power is still above the budget,
and the app lowers the �delity to low. The trend reverses in
the next three intervals, and the oscillation would continue as
a result of the reactive correction without concrete guidance
on app adaptation due to the disintegrated approach.
Proactive energy-aware app adaptation. Our proposal of
proactive energy-aware app adaptation is motivated by the
above drawbacks of the reactive approach and an observation
about modern mobile apps. Compared to the mobile apps
studied two decades ago (e.g., [31]), mobile apps today are
more power hungry, but also often come with sophisticated
proactive adaptation built in to optimize the user-perceived

QoE under network dynamics or other system constraints.
For example, proactive �delity adaptation such as adaptive
bitrate (ABR) (e.g.,DASH) is now a standard feature in regular
video streaming systems [15,45, 46, 54, 59, 61, 72, 73, 76, 83, 85]
as well as 360o video streaming systems [38, 47, 65, 69, 74].
Similarly, adaptive o�oading of computation to an edge
server according to the network dynamics has been proposed
in many systems [21, 37, 51, 57, 66]. More recently, adaptive
o�oading of machine learning inference has been proposed
to adaptively o�oad a subset of DNN layers from the mobile
device to the edge server [30, 49, 52, 92].

Motivated by the above two observations, we argue that
the built-in QoE optimization frameworks in many mod-
ern mobile apps lend themselves to integrated, proactive
energy-aware app adaptation that potentially overcomes the
oscillation drawback of reactive approaches. In such an ap-
proach, at every step of the QoE optimization for selecting
the quality of the chunk to be fetched in the next time inter-
val, the power budget is explicitly taken into consideration
so that the QoE optimization will directly output the optimal
chunk format that maximizes the QoE for the next chunk
and satis�es the energy budget in the next interval.

The key bene�t of such an integrated, proactive approach
is that app energy drain adaptation is no longer an after-
e�ect correction and hence likely to reduce the oscillation
in app adaptation. The challenge of such an approach is that
each app needs to (1) predict the power consumption for
each adaptation candidate beforehand, and (2) incorporate
the energy budget in its QoE optimization logic.

In this paper, we investigate the design and performance
tradeo�s of reactive and proactice energy-aware app adapta-
tion in the context of one of the most power-hungry classes
of mobile apps – ABR-based video streaming.

5 Energy-aware ABR

We brie�y review state-of-the-art ABR algorithms and state
the energy-aware QoE maximization problem.
Background on ABR. Adaptive bitrate (ABR) algorithms
embody a primary technique of streaming videos over the
Internet [71], where each video is encoded into multiple
"tracks" with di�erent quality bitrates and each track is seg-
mented into "chunks" (e.g., 2-second each). These algorithms
aim at optimizing the video QoE by dynamically selecting
which chunk to fetch based on network conditions. Earlier
ABR schemes were either “bu�er-based" [45, 73], or "rate-
based" which pivot on estimating available network through-
put and �nding a matching video bitrate [46, 76]. MPC [85]
uni�es the QoE objective of chunk k as a weighted sum of
three key elements, (1) video quality, (2) video quality varia-
tion, and (3) stall time:

QoEk = Qk−λ|Qk−Qk−1|−µTk (1)

84 2021 USENIX Annual Technical Conference USENIX Association

Power
BudgetNext Video ChunkEnergy Profiler

(of past intervals)

Energy-aware ABR Controller

X-put
Predictor

Feedback Control Loop

Power
Predictor

Playback
Buffer

Video Chunks

Figure 4: Architecture of energy-aware ABR. Lightly shaded
components are new to both reactive and proactive designs,
and the dark shaded one is new to the proactive design.

where Qk represents the quality of video chunk k, Tk rep-
resents the stall time experienced by fetching chunk k and
λ, and µ are weighting parameters for quality variation and
rebu�ering, respectively. Some papers (e.g., [85]) quantify
Qk as the bitrate of chunk k, while others (e.g., [83]) use per-
ceptual quality metrics, e.g., SSIM [77]. The ABR problem is
then formulated as maximizing the QoE of all the chunks of
a video downloaded in a streaming session:

maximize∑
k

QoEi , subject to bu�er and network dynamics

(2)
Since future throughput is unknown, practical algorithms
like Robust MPC [85] employ receding horizon control [19]
to maximize the QoE for the next few chunks (e.g., 5 future
chunks). Such algorithms take estimated network through-
put for the next few intervals and client playback bu�er
occupancy as input and output the quality format for the
next video chunk to be downloaded from the server while
maximizing the QoE of next few chunks.
Energy-awareQoEmaximization problem.We consider
the canonical energy-aware app adaptation scenario in previ-
ous work [31,68,88], where the phone user speci�es the total
energy budget Eb (e.g., 50% of batter level drop) over a �xed
amount of time Td (e.g., duration of a train ride) and hence
an average power target Pb = Eb/Td . The energy-aware ABR
problem is then formulated as maximizing the QoE of all the
chunks of a video downloaded in a streaming session:

maximize∑
k

QoEi, subject to bu�er and network dynamics

and total energy constraint (3)

Energy drain is elastic. We note that in the above problem
statement, the energy constraint is di�erent from other con-
straints like network throughput in that app energy drain
is cumulative and elastic over time. Since the user-speci�ed
energy budget is the total energy drain over a streaming du-
ration, the streaming app may accumulate some surplus or
de�cit based on the energy drain so far during the streaming
session. For example, due to network bandwidth �uctuation,
there can be intervals during which the network bandwidth
is low and the ABR algorithm is forced to pick low video

Algorithm 1: Reactive Energy-Aware ABR – RA
Input :Power budget Pb; Energy draw Eactual over stream-

ing time so far T ; Selected format Fk−1 for interval
k−1; Average interval duration t

Output :Format Fk for next interval k

// if energy de�cit, downgrade format
if Eactual −PbT > γPbt then

Fk = min(Fk−1−1, predicted format by ABR);
else Fk = predicted format by ABR ;

quality formats which result in low power draw and hence
low energy drain during those intervals. In such intervals,
the app e�ectively accumulates an energy surplus, which can
be spent in later intervals, i.e., when the network bandwidth
is high and high quality video chunks can be downloaded
and played, to improve the total QoE.

6 Reactive Energy-Aware ABR Design

A reactive energy-aware ABR can be easily implemented by
adding an energy pro�ler and adding reactive adjustment to
the QoE optimizer output of the ABR controller, as shown
in Figure 4. The energy pro�ler monitors the app energy
drain and is decoupled from the ABR controller, either im-
plemented in the OS as in [36, 63, 86] or in an app-agnostic
library linked with the app. It sends an upcall to the ABR
player either reactively upon detecting signi�cant deviation
of the predetermined energy budget or periodically to inform
the app of its energy drain so far which is used by the ABR
controller to monitor the energy surplus or de�cit and to de-
cide when and how to adapt. We assume the later approach
which gives the ABR controller more �exibility.

In particular, the ABR controller accumulates a running
energy drain balance as the di�erence between the expected
energy drain so far Pb ·T and the actual energy drain Eactual
so far which is monitored by the energy pro�ler.

The goal of the reactive adjustment is to adjust the chunk
format selected by the ABR QoE optimizer to try to correct
the energy drain deviation from that according to the pre-
speci�ed average power budget. To achieve this, the �nal
chunk quality format is adjusted as no higher than the pre-
vious chunk format if there is an energy de�cit greater than
a threshold, as shown in Algorithm 1. We experimentally
found a threshold of 10% of the energy budget to work well.

7 Proactive Energy-aware ABR Design
7.1 Integrated Energy-aware MPC Algorithm
Since an MPC-based ABR algorithm is proactive by nature,
i.e., it calculates the video chunk quality to be fetched next
based on the predicted network throughput in the next time
interval, a proactive energy-aware ABR can be naturally
realized by integrating the energy constraint with a practical

USENIX Association 2021 USENIX Annual Technical Conference 85

MPC algorithm such as Robust MPC [85]. In particular, the
new energy-aware MPC algorithm optimizes the worst-case
QoE assuming that the throughput in the future can take any
value in range [Ĉt ,Ĉt

′
], by solving the following optimization

problem at time tk to derive the quality format for fetching
the next chunk Fk = feampc(Fk−1,Bk−1,Ĉt):

maxFk,...,Fk+N−1 minĈt∈[Ĉt ,Ĉ′t]

k+N−1

∑
k

QoEi

subject to bu�er and throughput dynamics and
Ek + ...+Ek+N−1 < N ·Pb ·δt (4)

where Ĉt is the low bound in the predicted throughput range
[Ĉt ,Ĉt

′
], Bk−1 is the bu�er occupancy after downloading

chunk k−1 and δt is the interval duration, e.g., 2 seconds.
We note that since app energy drain is cumulative, con-

verting the total energy constraint into a constant energy
constraint per time interval can be conservative. As with
MPC [85], we do not claim this energy-constrained MPC
is necessarily the optimal control algorithm for the energy-
constrained bitrate adaptation problem, but one that is practi-
cal and can leverage accurate network throughput prediction
and power draw prediction in the near horizon.

7.2 Architecture Overview
Figure 4 (adding the power predictor) shows the architec-
ture of our proposed integrated, proactive Energy-aware
ABR. As with the original ABR, Energy-aware ABR de-
rives the client-side playback bu�er status and estimated
network throughput from two generic modules of ABR, the
playback bu�er module and throughput predictor module,
respectively. The energy pro�ler module estimates the en-
ergy drain in past intervals which is used to maintain the
energy surplus/de�cit.

To select the video format for the next video chunk,
Energy-aware ABR uses a new power predictor to predict
the average power draw of the next video chunk of each
candidate format. Its controller then �lters out the formats
whose predicted energy drain exceeds the energy budget
adjusted for energy surplus or de�cit so far and chooses the
one that maximizes the QoE stated in Equation 1.

The proactive Energy-aware ABR system design faces
two challenges: (1) how to predict the power consumption in
fetching future video chunks of di�erent candidate formats
in the power predictor? (2) how to incorporate the energy
constraint into the MPC algorithm in the Energy-aware
ABR controller to facilitate maximizing the QoE for the future
chunks? We start with discussing our solution to (2).

7.3 Energy-aware QoE Maximization
The basic design for incorporating the expected energy drain
for the N future intervals in Eqn. 4 is straight-forward. To
exploit dynamic energy surplus/de�cit, the Energy-aware

Algorithm 2: Design option 3 – LA(N)+LB
Input :Power budget Pb; Energy draw Eactual over stream-

ing time so far T ; Energy surplus/de�cit Es = PbT−
Eactual ; Current bu�er level Bk−1; Predicted power
array Pk[f][N] for all the formats from next interval
k to interval k+N−1; Interval duration δt

Output :Format Fk for next interval k
Call recursiveABR(0, 0, Bk−1, 0) to derive Fk;
Function recursiveABR(n, Fk+n−1, Bk+n−1, E):

if n == N then
if E > N ·Pb ·δt +Es then return −∞ ;
else return Quality of Fk+n−1 ;

end
max_QoE =−∞;
for i = 0 to f do

q = QoE between chunk n and n+1;
B = Bu�er level after downloading chunk n+1;
E ′ = E +Pk[i][n] ·δt;
Q = q+ recursiveABR(n+1, i, B, E ′).QoE ;
if Q > max_QoE then

Fk+n = i; max_QoE = Q;
end

end
return < max_QoE, Fk+n >

ABR controller accumulates the energy surplus/de�cit as in
the reactive approach, which is then exploited by the QoE
maximization module to maximize the QoE of future video
chunks. We explore three design options for incorporating
energy surplus/de�cit into the QoE maximization.

(1) Look ahead 1 (LA(1)). The strawman design is to
ignore energy surplus/de�cit, and choose among all the can-
didate chunk formats with which the predicted app power
draw in the next interval will not exceed the average power
budget Pb, the one that maximizes the total QoE for the hori-
zon (e.g., 5 intervals). Such a design can be conservative in
terms of QoE from not exploiting potential energy drain sur-
plus accumulated in the past intervals when the network
bandwidth �uctuates up and down.

(2) Look ahead 1 and look back (LA(1)+LB). Design
option 2 extends LA(1) by exploiting the amount of energy
surplus/de�cit during past intervals. In selecting the video
format for the new video chunk to fetch, the controller in-
creases the energy budget for the next interval to Pb ·δt +Es
(energy surplus/de�cit). However, such a design may sac-
ri�ce video smoothness, as the energy surplus from past
intervals may be large and allow some high quality chunk
to be fetched in the next interval, followed by video chunks
that go back to some low format.

(3) Look ahead N and look back (LA(N)+LB). To over-
come the potential smoothness problem of LA(1)+LB, we
extend it by allowing the energy surplus/de�cit and the N-
chunk energy budget to be spread over the next N chunks.
Since the basic MPC already looks ahead N chunks in pick-

86 2021 USENIX Annual Technical Conference USENIX Association

0
5
10
15
20
25
30

Th
ro

ug
hp

ut
 (M

bp
s)

0 25 50 75 100 125 150 175 200
Time (s)

0

1

2

3

4

5

Qu
al

ity
 S

et
tin

g
Id

Format
Throughput

(a) Format selection

0
5
10
15
20
25
30

Th
ro

ug
hp

ut
 (M

bp
s)

0 25 50 75 100 125 150 175 200
Time (s)

0
100
200
300
400
500
600
700
800

Po
we

r (
m

A)

Total
Throughput

(b) Total power

0
5
10
15
20
25
30

Th
ro

ug
hp

ut
 (M

bp
s)

0 25 50 75 100 125 150 175 200
Time (s)

0
50

100
150
200
250
300
350

Po
we

r (
m

A)

Network
Throughput

(c) Network power

0
5
10
15
20
25
30

Th
ro

ug
hp

ut
 (M

bp
s)

0 25 50 75 100 125 150 175 200
Time (s)

0
50

100
150
200
250
300
350

Po
we

r (
m

A)

Decoder
Throughput

(d) Decoder power
Figure 5: Network throughput, ABR decision, total and individual hardware component power in di�erent network states (H:
blue; L: white; H-L: orange; L-H: gray). Quality setting: 5: (4K, 60 FPS); 4: (1440p, 60 FPS); 3: (1080p, 60 FPS); 2: (720p, 60 FPS);
1: (480p, 30 FPS); 0: (360p, 30 FPS). The client bu�er size is 7s, the same as 4K streaming on Youtube mobile app stated in §9.

ing the next chunk k to optimize the total QoE for them,
allowing spreading the energy surplus over the N chunks
can be easily incorporated in the modi�ed MPC. In particu-
lar, Algorithm 2 adds the total energy N ·Pb ·δt +Es as the
total energy constraint to the dynamic programming which
will search among all possible ways to spread the energy
surplus among the N intervals to �nd the one that gives the
maximal total QoE for the N intervals. As in the basic MPC,
optimizing the total QoE for the next N intervals will take
smoothness in the next N chunks into consideration.

7.4 Function-wise Power Prediction

We next describe a practical and accurate function-wise
power prediction methodology for use with any proactive
energy-aware ABR adaptation such as Energy-aware ABR.

7.4.1 Why Function-wise Power Prediction?

The obvious choice of using traditional component-wise
power models for mobile devices which have been well stud-
ied [22,23,26,29,44,64,70,75,81,87,91] does not work. Such a
model derives the correlation between the utilization of each
phone component in each of its power states, e.g., utiliza-
tion and operating frequency, and the resulting power draw
using carefully designed microbenchmarks. To use such a
model, the hardware component usage is logged during app
execution and afterwards fed into the power model as input
to estimate the component-wise power draw that happened
during the app execution. Thus such traditional power mod-
els are postmortem; they are suitable for post-processing, e.g.,
monitoring the actual energy drain of a past interval (or cal-
culating the energy surplus/de�cit) in reactive or proactive
energy-aware app adaptation, but not for predicting the app
energy drain in future intervals.

The other design choice is to treat the video streaming app
as a black-box and measure and tabulate its average power
draw o�ine when streaming all possible video bitrates under
all possible network bandwidth. However, this is not practical
as there are potentially in�nite number of such combinations.
More importantly, such an approach cannot easily model the
power draw of asynchronous component behavior discussed
below where di�erent phone components, e.g., the decoder
and the network interface, can be processing di�erent video

chunks (of di�erent bitrates) in a time interval, due to the
playback bu�er delay e�ect explained below.

Asynchronous Component Behavior. To illustrate the
asynchronous component power behavior in video stream-
ing, we pro�le the component power draw in an ABR-based
360o video streaming session.

Our experimental setup is the same as in §2 except two dif-
ferences for enabling power pro�ling of phone components.
First, we build our own ABR server for 360o video stream-
ing with Robust MPC [85] as the default ABR algorithm,
and implement our own mobile client using ExoPlayer [3].
Second, we derive the traditional component-wise power
model for our experimental phone, Pixel 2, by running mi-
crobenchmarks and measuring the phone power draw using
an external high-resolution Monsoon power monitor.

Figure 5 shows the pro�ling result. We see that the net-
work bandwidth went through �ve stages: high (the H stage),
high transitioning to low (the H-L stage), low (the L stage),
low transitioning to high (the L-H stage), and �nally high
again. Figure 5a shows that the network bandwidth change
causes the chunk format selected to change almost imme-
diately, e.g., from format 5 during the H stage dropping to
format 1 during the H-L stage. However, Figure 5b shows
that there is a lag of the total power draw change in fol-
lowing the network bandwidth change, mostly notably at
25-40s and 130-150s. To understand this lag, we zoom into
the per-component power draw timeline.

The lag cannot be explained by the CPU and GPU power,
both staying almost constant during the session (not shown
due to page limit) regardless of the chunk format because
of their constant load. The lag also cannot be explained by
the network interface (NIC) power which, as shown in Fig-
ure 5c, is directly a�ected by the chunk format and closely
follows the format change, e.g., during the H stage and the
L stage. In the L-H stage, the NIC power �rst goes up due
to chunk size increase but then goes down as it spends an
increasing fraction of the 2-second interval in the idle state
as the network bandwidth goes up sharply.

Finally, Figure 5d shows that although in general the hard-
ware decoder power in the H stage is higher than in the L
stage because the chunk format and hence decoding load
are higher in the H stage, the change of the decoder power

USENIX Association 2021 USENIX Annual Technical Conference 87

shows a prominent delay behind the network bandwidth
change, e.g., when the network bandwidth drops sharply
around 24-40s and increases sharply around 130-150s. This
explains the lag of the total power draw curve behind the
network bandwidth curve. This happens due to the bu�er
delay e�ect which results in asynchronous power behavior
of phone components: while the NIC is downloading the
next chunk (e.g., in a low format), the decoder decodes the
video chunk at the head of the playback bu�er (e.g., in a high
format) which was downloaded several intervals ago. The
extent of the delay depends on the occupancy of the client
bu�er as well as network throughput.

7.4.2 Function-wise Power Prediction
The above asynchronous hardware component power be-
havior suggests that if we cluster the hardware components
according to the common video chunk they process at each
time interval, the components within each cluster will have
synchronous power behavior, i.e., which only depends on
the properties of the chunk they process, and such power
behavior can be modeled using a power predictor that only
uses chunk properties as input. Semantically, each cluster
typically corresponds to a high-level app function. We thus
propose function-wise power prediction that models the power
draw of each high-level app function.

In 360o video streaming, there are two primary tasks: (1)
video decoding and displaying which employs the CPU, GPU,
hardware decoder, screen and game rotation vector sensor
to process the same chunk in each time interval; (2) network
transmission for fetching video chunks which involves the
CPU and the network interface to process the same chunk
(which is di�erent from in task 1) in each interval. In function-
wise power prediction, we build the power predictors for
these two functions separately.

For the video decoding and displaying function, we make
a key observation that the primary hardware components
involved are the GPU and hardware decoder, and their power
only depend on video properties such as resolution and
frame rate but barely depend on video content (based on
our measurements). Thus we should be able to develop a
power prediction model using these video properties as in-
put. We model the display power separately as a function of
the brightness.3 In particular, we measure the total power
draw in playing pre-downloaded 360o videos with the same
six quality settings as in §2 using the Monsoon power moni-
tor. In o�ine processing, the video decoding and displaying
function power draw is modeled as a piecewise linear func-
tion,4 Pvid = P(b,res, f ps), where b, res and f ps represent
the screen brightness level, video resolution and video frame
rate, respectively.

3We did not use possibly more accurate, content-aware OLED power
models [25, 28] as OLED display only draws a small amount of energy (§2).

4The hardware decoder power draw behaves as a step function of the
resolution and FPS.

Algorithm 3: Smoothing in Energy-aware ABR
Input :Selected format FSk−1 for interval k−1;

Format Fk for next interval k selected by reactive or
proactive energy-aware ABR;

Output :Final format FSk for next interval k

if Fk > FSk−1 then FSk = FSk−1 +1 ;
else FSk = Fk ;

For the network transmission function, we develop a linear
model that models the power draw as a function of the down-
link throughput and chunk size. We experimentally found
that running network microbenchmarks does not capture
well the share of CPU usage due to downloading when the
whole streaming app is running. Instead, we directly stream
360o videos over the Internet, while logging the inputs to
both function-wise prediction models, i.e., application events
for each 2-second video chunk, including three video prop-
erties (resolution, frame rate, and size), start and end time of
network transmission, and start and end time of decoding
and displaying. We measure the total phone power draw us-
ing the power monitor, and then subtract from it the power
consumed by the video decoding and displaying function
(estimated using its power prediction model built above) as
the power for the network transmission function. Finally,
the network transmission function power draw is modeled
as Pnet = P4,net × γ+Pbase,net , where γ is the throughput of
fetching the video chunk and P4,net and Pbase,net are derived
from linear regression. 5

8 Adaptation Smoothing

The baseline reactive adaptation Algorithm 1 can result in
signi�cant oscillation in selecting the next chunk format, e.g.,
under high network bandwidth which allows some high for-
mat that exceeds the power budget, followed by switching
to some low format to compensate for temporary energy
de�cit (see Figure 3). A proactive adaptation algorithm like
Algorithm 2 will not pick arbitrarily high format due to the
�xed per-interval energy budget, but exploiting energy sur-
plus from past low-bandwidth intervals can also result in the
controller picking some high format transiently since it can
only look ahead N chunks. In both cases, the sudden change
in format can reduce the smoothness component of the QoE
over time (e.g., beyond the N chunk horizon).

To mitigate this potential e�ect, we propose a smoothing
step that can be applied to both reactive and proactive algo-
rithms: it imposes an incremental increase when the chosen
format for the next chunk is much higher than the previous
one, as shown in Algorithm 3. Note we cannot impose an
incremental decrease when newly chosen format is much
lower than the previous one, since such a choice is limited
by the network bandwidth.

5 Network conditions, e.g., signal strength, are re�ected in throughput
which is one of the model predictors.

88 2021 USENIX Annual Technical Conference USENIX Association

0 10 20 30 40 50 60
Bandwidth (Mbps)

0

20

40

60

80

100

CD
F

(%
)

Ytrace
FCC

Figure 6: Distribution of net-
work throughput over the
traces of two datasets.

YTrace/
Average

YTrace/
20%

FCC/
Average

FCC/
20%

1.2

1.4

1.6

1.8

2.0

2.2

Av
g.

 P
ow

er
 D

ra
w

(W
) Pixel 2 (left)

Moto Z3 (right)

Figure 7: Distribution of aver-
age and 20th-percentile per-
interval power draw over the
traces of two datasets.

9 Implementation

We implemented the Energy-aware ABR server on top of
Pu�er, an open-sourced platform for video streaming [11]
in about 1800 lines of C++ code, and built a simple Energy-
aware ABR client that enables 360o video streaming on top
of Exoplayer [3] by adding 1.2 KLOC in Java. To save energy
on mobile client devices, we implemented both reactive and
proactive Energy-aware ABR on the server side (follow-
ing [11]). For convenience, we used function-wise power
prediction to implement the energy pro�ler module (using
actual throughput) in both types of adaptation schemes and
the power predictor module (using predicted throughput) in
proactive schemes.

In proactive schemes, the Energy-aware ABR client
checks its bu�er occupancy every 0.25 seconds. If it is below
the bu�er threshold, it reports the current bu�er occupancy
back to the server. The server then runs the Energy-aware
ABR algorithm to predict the format for the next video chunk,
and transmits the video chunk with the selected format to
the client. We choose the bu�er threshold of 7 seconds based
on the observation (using the Youtube built-in tool stats-for-
nerds [14]) that the Youtube mobile app on the Pixel 2 phone,
when streaming 4K 360o videos, requests for the next video
chunk when the client-side bu�er size is below 7 seconds.

10 Evaluation

In this section, we evaluate the end-to-end performance of
reactive and proactive energy-aware ABR streaming play-
ers for 360o videos. Our evaluation seeks to answer the fol-
lowing questions: (1) How e�ective is incorporating energy
surplus/de�cit in proactive app adaptation? (2) How much
does proactive energy-aware adaptatin mitigate oscillation
and improve QoE compared to reactive approaches? (3) How
e�ective is adaptation smoothing?

10.1 Experimental Setup
We evaluate Energy-aware ABR performance by streaming
videos from a media server to a mobile client, while vary-
ing the network condition using network traces from two
datasets, YTrace and FCC. We collected YTrace by logging
the 2-second average throughput of real users watching 360o

0 10 20 30 40 50
Error rate (%)

0

20

40

60

80

100

CD
F

(%
) Network Transmission

(Pixel 2)
Video Decoding and
Displaying (Pixel 2)
Network Transmission
(Moto Z3)
Video Decoding and
Displaying (Moto Z3)

Figure 8: CDF of training
accuracy of function-wise
power modeling.

0 10 20 30 40 50
Error rate (%)

0

20

40

60

80

100

CD
F

(%
)

Pixel 2
Moto Z3

Figure 9: CDF of actual pre-
diction accuracy on Pixel 2
and Moto Z3.

Default LA(1) LA(1)+LB
LA(N)+LB

−20

−10

0

10

20

30

40

Pe
rc

en
t o

f P
ow

er
 D

iff
 (%

)

(a) Low power budget

Default LA(1) LA(1)+LB
LA(N)+LB

−25

−20

−15

−10

−5

0

5

Pe
rc

en
t o

f P
ow

er
 D

iff
 (%

)

(b) High power budget
Figure 10: Percentage di�erence between the average power
consumption of each streaming session and corresponding
power budget for proactive approaches on Pixel 2.

videos on Youtube on mobile devices over around 43200 sec-
onds. FCC [4] is a broadband dataset that has been used in
many recent ABR work [15, 59]. Figure 6 shows the distri-
bution of the network throughput of the traces in the two
datasets; the average throughput across the traces in the two
datasets are 22.89 Mbps and 3.24 Mbps, respectively.

To compare the performance of di�erent Energy-aware
ABR designs under the same network condition, we use the
Linux tc tool to throttle the throughtput along with an 80ms
RTT between the server and the client. The video hosting
server runs on an Intel i5 2.5GHz processor and runs Ubuntu
18.04. The mobile client streams videos over 802.11n on the
Pixel 2/Moto Z3 phones which are connected to a Monsoon
power monitor to measure the total phone power draw as
the ground truth. Each streaming session lasts for 5 minutes.

The 360o videos chosen from Youtube are characterized
into the same three groups as in §2. Each video is segmented
into 2-second chunks and encoded into the same six quality
settings as in §2. We calculate each encoded video chunk’s
SSIM [77] relative to the canonical source as the quality Qk
of the chunk used in the QoE function (Eqn. 1). As the default
QoE function, we use the weights λ = 5, µ = 20. We also run
sensitivity experiments that vary the QoE weights.

We evaluate various streaming approaches under two av-
erage power budgets selected as follows. We �rst stream the
360o videos with the default ABR algorithm without any
power constraint, and measure the average power draw of
each streaming session and the per-interval average power
draw within the same streaming session. Then, for each net-
work trace, we select the 20th-percentile per-interval average
power draw as its low power budget and the average power
draw over the streaming session as its high power budget in
all our experiments. Figure 7 shows the distribution of the

USENIX Association 2021 USENIX Annual Technical Conference 89

Default LA(1) LA(1)+LB
LA(N)+LB

0

2

4

6

8

10

12

Qo
E

(a) QoE
Default LA(1) LA(1)+LB

LA(N)+LB
9

10
11
12
13
14
15
16

SS
IM

 (d
B)

(b) Quality
Default LA(1) LA(1)+LB

LA(N)+LB

0.0

0.5

1.0

1.5

2.0

2.5

SS
IM

 (d
B)

(c) Smoothness
Default LA(1) LA(1)+LB

LA(N)+LB

0

1

2

3

4

5

Re
bu

ffe
rin

g
Ra

tio
 (%

)

(d) Rebu�ering
Figure 11: QoE and breakdowns of proactive Energy-aware ABR under the low power budget on Pixel 2.

Default LA(1) LA(1)+LB
LA(N)+LB

0

2

4

6

8

10

12

Qo
E

(a) QoE
Default LA(1) LA(1)+LB

LA(N)+LB
9

10
11
12
13
14
15
16

SS
IM

 (d
B)

(b) Quality
Default LA(1) LA(1)+LB

LA(N)+LB

0.0

0.5

1.0

1.5

2.0

2.5

SS
IM

 (d
B)

(c) Smoothness
Default LA(1) LA(1)+LB

LA(N)+LB

0

1

2

3

4

5

Re
bu

ffe
rin

g
Ra

tio
 (%

)

(d) Rebu�ering
Figure 12: QoE and breakdowns of proactive Energy-aware ABR under the high power budget on Pixel 2.

two power budgets chosen this way; they vary across the
traces of the two data sets. We choose the high power budget
in this way to assess the potential penalty of being energy-
aware by calculating the performance di�erence between
Energy-aware ABR and the default ABR.

10.2 Accuracy of Function-wise Power Modeling
We �rst evaluate the training accuracy of function-wise
power modeling for the two functions seperately. To train
the model for the video decoding and displaying function, we
randomly select one video from every video group and play
it locally on the Pixel 2 and Moto Z3 phones, respectively.
To train the model for the network transmission function,
we randomly select 10% network traces from each network
dataset and we stream one 360o video for 1.2 hours in total.
Figure 8 shows that the average error rate of per-interval
power draw in training for the two functions are 4.21% and
1.16% on Pixel 2 and 6.11% and 1.65% on Moto Z3, respec-
tively.

We next validate our power model by comparing the esti-
mated average per-interval power consumption of 360o video
streaming against the power monitor readings over 50% of
the remaining network traces. Figure 9 shows that function-
wise power predictor achieves mean estimation accuracy of
4.87% and 5.86% in estimating the per-interval average power
consumption on Pixel 2 and Moto Z3 phones, respectively.

10.3 Proactive Energy-aware ABR
We �rst evaluate the three designs of proactive Energy-
aware ABR. We focus on Pixel 2; the results for Moto Z3 are
very similar and are omitted due to page limit.
Power consumption. Figure 10a shows that for the low
power budget, all three proactive designs consume less power
than the power budget. The average power consumption for
LA(1)+LB and LA(N)+LB are only 4.09% and 4.80% below the
given power budget, respectively, suggesting both designs

Table 2: Comparison between reactive and proactive Energy-
aware ABR without and with smoothing under low power
budget on Pixel 2 and Moto Z3 (average/standard deviation).

RA RA+S LA(N)+LB LA(N)+LB+S
Pixel 2

Power Di� (%) -3.50/0.96 -3.40/1.43 -4.80/1.90 -3.78/1.61
QoE 4.02/1.31 4.91/0.39 6.74/0.65 7.11/0.60

Quality (dB) 11.19/1.05 11.33/1.09 11.57/1.23 11.59/1.23
Smoothness (dB) 1.43/0.27 1.27/0.20 0.96/0.30 0.90/0.25
Rebu�ering (%) 0.00/0.00 0.12/0.29 0.02/0.05 0.00/0.00

Moto Z3
Power Di� (%) 0.42/1.53 0.24/1.94 -1.73/1.83 -0.59/1.56

QoE 4.27/1.03 5.36/0.81 5.79/0.97 6.39/0.81
Quality (dB) 11.46/0.52 11.52/0.42 11.50/0.55 11.55/0.52

Smoothness (dB) 1.47/0.28 1.21/0.22 1.13/0.27 1.03/0.18
Rebu�ering (%) 0.14/0.32 0.22/0.48 0.13/0.28 0.03/0.06

e�ciently exploit the energy saved during past intervals
in downloading future video chunks; the small gap to the
given power budget comes from discretized chunk formats. In
contrast, LA(1) signi�cantly under-utilizes the power budget
by 12.20% on average, from not exploiting energy surplus
accumulated from low network bandwidth intervals.

Figure 10b shows that for the high power budget, the trend
is similar; LA(1)+LB and LA(N)+LB only under-utilize the
power budget by 5.65% and 6.58%, while LA(1) under-utilizes
by 15.39%. The larger gaps compared to the low power budget
scenario are because all schemes are juggling among higher
chunk formats due to the high power budget, which have
larger discretization e�ects of video encoding.

User experience. We next compare the user experience of
the three designs under the two power budgets. Figure 11a
shows that for the low power budget, LA(N)+LB achieves the
highest average QoE of 6.61, compared with 4.75 for LA(1)
and 4.83 for LA(1)+LB.

To understand how di�erent designs a�ect the QoE for the
low power budget, we break down QoE into its three compo-
nents: video quality, smoothness and rebu�ering (Eqn. 1). (1)

90 2021 USENIX Annual Technical Conference USENIX Association

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
1
2
3
4
5

Qu
al

ity
 S

et
tin

g
Id

0 25 50 75 100 125 150 175 200
Time (s)

0
100
200
300
400
500
600
700

Po
we

r (
m

A)

Throughput
Power Budget

Format
Power

(a) RA

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
1
2
3
4
5

Qu
al

ity
 S

et
tin

g
Id

0 25 50 75 100 125 150 175 200
Time (s)

0
100
200
300
400
500
600
700

Po
we

r (
m

A)

Throughput
Power Budget

Format
Power

(b) RA+Smoothing

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
1
2
3
4
5

Qu
al

ity
 S

et
tin

g
Id

0 25 50 75 100 125 150 175 200
Time (s)

0
100
200
300
400
500
600
700

Po
we

r (
m

A)

Throughput
Power Budget

Format
Power

(c) LA(N)+LB

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
5
10
15
20
25
30

X-
pu

t (
M

bp
s)

0
1
2
3
4
5

Qu
al

ity
 S

et
tin

g
Id

0 25 50 75 100 125 150 175 200
Time (s)

0
100
200
300
400
500
600
700

Po
we

r (
m

A)

Throughput
Power Budget

Format
Power

(d) LA(N)+LB+Smoothing
Figure 13: Low power budget case study: format selection and power behavior of reactive and proactive designs with and
without smoothing under a sample network trace on Pixel 2.

Figure 11b shows that LA(1)+LB and LA(N)+LB have similar
video quality, 11.18 dB and 11.14 dB, respectively, both higher
than the quality of LA(1) of 10.57 dB. It suggests that exploit-
ing energy surplus saved during past intervals in LA(1)+LB
and LA(N)+B improves the video quality of future intervals.
(2) Figure 11c shows that LA(N)+LB has the smallest mean
quality change of 0.89 dB, compared with 1.15 dB for LA(1)
and 1.26 dB for LA(1)+LB. It is the same as that of the de-
fault ABR control. It suggests that looking ahead the power
consumption of future N intervals e�ectively smooths the
quality switching. (3) Figure 11d shows that all three energy-
aware designs have similarly low average rebu�ering ratio
of around 0.14%, since the low power budget leads to lower
chunk formats selected by the Energy-aware ABR controller
which reduce the rebu�ering time for all designs.

Figure 12 shows that the high power budget scenario has
similar user experience results as the low power budget sce-
nario, where LA(N)+LB achieves the highest average QoE
of 6.94 and the closest gap with the default ABR of only
4.1%. The slightly low QoE comes from 0.28 dB video qual-
ity reduction (2.2%) as shown in Figure 12b. This shows the
penalty of proactive energy-aware adaptation compared to
the energy-oblivious default ABR is really small.

10.4 Reactive vs. Proactive Energy-aware ABR

We next evaluate the bene�ts of proactive energy-aware app
adaptation by comparing reactive and proactive Energy-
aware ABR, with and without adaptation smoothing, under
the low power budget, on Pixel 2 and Moto Z3 phones.
Power consumption. Table 2 shows that all four designs
satisfy the power budget with a small gap of 4.80%−3.40% be-
low it on Pixel 2 and -1.73%−0.42% on Moto Z3. The small gap
can be explained by the small discretization e�ects among
the low chunk formats selected in the low budget scenario.
User experience. Table 2 shows when the power budget
is lower than the default app energy power draw, proac-
tive energy-aware app adaptation shows signi�cant bene�ts
over reactive adaptation on both phones. We next elaborate
on the results on Pixel 2. (1) Without smoothing, LA(N)+B
achieves much higher (67.7%) mean QoE than RA, 6.74 over

0 10 20 30 40 50
Avg. Prediction Error (%)

0
1
2
3
4
5
6
7
8

Qo
E

LA(N)+LB+S
RA+S

(a) Throughput prediction error

1 3 5 7 9
QoE Preference

−2
0
2
4
6
8

10
12

Qo
E

LA(N)+LB+S
RA+S

(b) QoE preferences
Figure 14: Sensitivity analysis under low power budget on
Pixel 2.
4.02. As expected, the improvement mainly comes from sig-
ni�cantly improved smoothness, 0.96 dB for LA(N)+B and
1.43 dB for RA. (2) Smoothing improves QoE for both reactive
and proactive design, by 0.89 and 0.37, respectively, primar-
ily from improved smoothness of 0.16 dB for RA and 0.06
dB for LA(N)+B. (3) With smoothing, LA(N)+B+Smoothing
achieves 44.8% higher mean QoE than RA+Smoothing, 7.11
over 4.91. The improvement mainly comes from signi�cantly
reduced quality switching (0.37 dB reduction) and signif-
icantly lower rebu�ering ratio (0.12% reduction) and to a
small extent the 0.26 dB higher quality. Table 2 also shows
LA(N)+B+Smoothing achieves 19.2% higher mean QoE than
RA+Smoothing, 6.39 over 5.36, on Moto Z3.

Case study. Figure 13 shows a case study on Pixel 2 to ex-
plain how proactive designs reduce format oscillation com-
pared to reactive designs. The streaming session was under
the low power budget, and the network bandwidth went
through 3 stages: high (H), high-to-low (H-L), and low (L).

The comparison at the H stage shows that proactive de-
signs can reduce the oscillation when the network bandwidth
is high. RA adjusts the format without knowing how much
to adapt, which leads to frequent format oscillation to correct
energy drain deviation as seen around 20-30s, 50-70s, 80-100s.
Instead of aggressively increasing the format when there is
no energy de�cit, RA+Smoothing increases the format by 1 at
each step at around 30-50s and 70-90s. In contrast, LA(N)+B
with and without smoothing do not rapidly go up and down
all formats and stay in each format longer, from incorpo-
rating the power budget in selecting chunk formats. While
LA(N)+LB occasionally jumps formats, e.g., to format 5 from
format 3 around 60-70s and 105-115s, LA(N)+LB+Smoothing

USENIX Association 2021 USENIX Annual Technical Conference 91

further improves smoothness by gradually increasing the
format when there is energy surplus, e.g., from format 3 to
format 4 around 60-70s and 90-100s,

10.5 Sensitivity Analysis

Throughput prediction accuracy. To study the impact of
network throughput prediction error on QoE, we evaluate
reactive and proactive designs with smoothing under the
low power budget by modeling the throughput prediction as
a combination of the ground truth throughput with random
noise according to the given average error level. Figure 14a
shows that the throughput prediction error in�uences both
reactive and proactive approaches, but the gaps remain simi-
lar. In parcular, LA(N)+LB+S performs better than RA+S by
41.0%~96.6% for the low power budget on Pixel 2.
User QoE preference. We compare QoE of RA+S and
LA(N)+LB+S under 5 di�erent QoE weights for smoothness,
{1, 3, 5, 7, 9}, while keeping the weights for quality and re-
bu�ering at 1 and 20, respectively. Figure 14b shows that as
users put more penalty weight of smoothness, the di�erence
between QoE of LA(N)+LB+S and RA+S increases from 0.68
(1.07X) to 3.69 (19.4X) for the low power budget on Pixel 2.

11 Discussion

Multiple apps competing for the energy budget. In this
paper, we focused on energy-aware adaptation of a single
app, e.g., one that dominates the phone energy drain in a
four-hour plane ride. In practice, the user may be switching
among multiple apps, and there could be unexpected back-
ground apps that also drain energy from the total energy
budget. In the �rst case, the integrated proactive app adap-
tation can be applied to each app while it is running, e.g.,
constrained by the average power budget for the plane ride.
If several apps run concurrently, e.g., some in background
and some in foreground, the user can potentially provide
input on how the total energy/power budget should be split
among the apps. Alternatvely, a global energy-aware con-
troller could be developed, e.g., in the OS, to jointly optimize
the QoE of concurrently running apps while satisfying the
total energy/power budget.
Leveraging hysteresis in proactive adaptation. Reac-
tive adaptation (e.g., [31]) mitigates the oscillation problem
by leveraging hysteresis, i.e., imposing a threshold that the
energy surplus/de�cit must exceed in order to trigger �delity
adaptation (§6). In contrast, our proactive adaptation design,
LA(N)+LB, already alleviates oscillation by allowing the en-
ergy surplus/de�cit and the N-chunk energy budget to be
spread over the next N chunks in maximizing the QoE. In-
corporating hysteresis into proactive adaptation designs, e.g.,
leveraging the energy surplus/de�cit (while looking ahead
N chunks) only when exceeding some threshold, may result

in further smoothness but also lower video quality because
of its conservativeness.

12 Related Work

We already discussed previous wok on reactive energy-aware
app adaptation in §3. Below, we discuss related work on
normal and 360o video streaming.
Energy measurements and optimization of video
streaming. Many works [41, 79, 89] measure the energy
consumption of commercial regular video streaming ser-
vices in WiFi and LTE networks. Recent studies focus on
power measurement of 360o video streaming [48, 87]. Many
works [16, 20, 24, 27, 35, 40, 43, 53, 55, 56, 58, 60, 78, 90] propose
techniques to minimize energy drain for video streaming
via bandwidth control, packet scheduling, screen brightness
scaling, etc. RnB [84] studies the problem of jointly adapting
video bitrate and display brightness to reduce energy con-
sumption while maintaining a quality goal. These works are
orthogonal to our work; they focus on energy drain mea-
surement or optimization, while our work focuses on energy-
aware adaptation, i.e., how to maximize QoE while satisfying
user-con�gurable power constraint.
360o video streaming. Many works study supporting 360o

video streaming on head-mounted displays or commod-
ity phones. Several works [18, 50] propose to pre-cache
panoramic frames to provide the clients the freedom of
changing orientation during playback. Other works [39,
42, 65, 69, 80, 93] exploit di�erent projection and tile-based
or viewport-based video encoding schemes to save net-
work bandwidth. They perform network-aware adaptation
rather than energy-aware adaptation. We did not evaluate
viewport-based 360o video streaming because commercial
video streaming like Youtube does not use it and viewport
prediction in the 2-second scale has been shown to be inac-
curate; the median longitude error is about 20 degrees [82].

13 Conclusion
In this paper, using 360o video streaming as a case study,
we showed that proactive energy-aware app adaptation that
integrates the user-speci�ed energy drain budget into the
QoE optimizer of modern apps can signi�cantly reduce app
�delity oscillation and improve the app QoE over traditional
reactive energy-aware app adaptation. We believe that proac-
tive energy-aware app adaptation is rather general and as fu-
ture work, we will validate its applicability and e�ectiveness
for other power-hungry modern apps with built-in adapta-
tion logic such as the class of mobile apps that adaptively
o�oad computation to edge servers.
Acknowledgement We thank our shepherd Amy Lynn
Murphy and the anonymous reviewers for their helpful com-
ments. This work was supported in part by NSF/Intel grant
1719369.

92 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Planets. https://www.youtube.com/watch?v=
qhLExhpXX0E, 2017.

[2] Monster. https://www.youtube.com/watch?v=
a9nV5JvM9Tw, 2018.

[3] Exoplayer. https://exoplayer.dev/, 2019.

[4] Federal communications commission. measuring broad-
band america. https://www.fcc.gov/general/
measuring-broadband-america, 2019.

[5] Orleans. https://www.youtube.com/watch?v=
bSV8qc2_qFs, 2019.

[6] Solar. https://www.youtube.com/watch?v=
MnmU_NwhTFU, 2019.

[7] Top mobile app development trends in 2020.
https://www.smartinsights.com/mobile-
marketing/app-marketing/top-mobile-
app-development-trends-in-2020-
infographic/, 2019.

[8] Battery draining quickly? �nd out which apps
are to blame. https://www.komando.com/
smartphones-gadgets/battery-draining-
quickly-find-out-which-apps-are-to-
blame/698674/, 2020.

[9] Chicago. https://www.youtube.com/watch?v=
Gu1D3BnIYZg, 2020.

[10] Optical. https://www.youtube.com/watch?v=
x_rN5YUXZi8, 2020.

[11] Pu�er. https://puffer.stanford.edu/, 2020.

[12] Techengage. top 10 battery draining apps to avoid
2020. https://techengage.com/top-battery-
draining-apps-to-avoid/, 2020.

[13] Techrepublic. the most battery-draining apps of 2020.
https://www.techrepublic.com/article/
the-most-battery-draining-apps-of-
2020/, 2020.

[14] Youtube stats-for-nerds. https://
support.google.com/youtube/thread/
3284269?hl=en, 2020.

[15] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen,
E. Katz-Bassett, B. Ribeiro, J. Zhan, and H. Zhang. Oboe:
auto-tuning video abr algorithms to network conditions.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 44–58,
2018.

[16] F. Albiero, J. Vehkaperä, M. Katz, and F. Fitzek. Overall
performance assessment of energy-aware cooperative
techniques exploiting multiple description and scalable
video coding schemes. In 6th Annual Communication
Networks and Services Research Conference (CNSR 2008),
pages 18–24. IEEE, 2008.

[17] A. Bemporad and M. Morari. Robust model predictive
control: A survey. In Robustness in identi�cation and
control, pages 207–226. Springer, 1999.

[18] M. Berning, T. Yonezawa, T. Riedel, J. Nakazawa,
M. Beigl, and H. Tokuda. parnorama: 360 degree in-
teractive video for augmented reality prototyping. In
Proceedings of the 2013 ACMConference on Pervasive and
Ubiquitous Computing Adjunct Publication, UbiComp
’13 Adjunct, pages 1471–1474, New York, NY, USA, 2013.
ACM.

[19] E. F. Camacho and C. B. Alba. Model predictive control.
Springer Science & Business Media, 2013.

[20] N. Chang, I. Choi, and H. Shim. Dls: dynamic backlight
luminance scaling of liquid crystal display. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
12(8):837–846, 2004.

[21] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan. Glimpse: Continuous, real-time object
recognition on mobile devices. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor
Systems, pages 155–168, 2015.

[22] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone energy drain in the wild:
Analysis and implications. ACM SIGMETRICS Perfor-
mance Evaluation Review, 43(1):151–164, 2015.

[23] X. Chen, J. Meng, Y. C. Hu, M. Gupta, R. Hasholzner, V. N.
Ekambaram, A. Singh, and S. Srikanteswara. A �ne-
grained event-based modem power model for enabling
in-depth modem energy drain analysis. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, 1(2):1–28, 2017.

[24] L. Cheng, S. Mohapatra, M. El Zarki, N. Dutt, and
N. Venkatasubramanian. Quality-based backlight opti-
mization for video playback on handheld devices. Ad-
vances in Multimedia, 2007, 2007.

[25] P. Dash and Y. C. Hu. How much battery does dark
mode save? an accurate oled display power pro�ler for
modern smartphones. In Proceedings of ACM MobiSys,
2021.

[26] N. Ding and Y. C. Hu. Gfxdoctor: A holistic graphics
energy pro�ler for mobile devices. In Proceedings of
the Twelfth European Conference on Computer Systems,
pages 359–373, 2017.

USENIX Association 2021 USENIX Annual Technical Conference 93

[27] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap:
exploiting high bandwidth wireless interfaces to save
energy for mobile devices. In Proceedings of the 8th
international conference on Mobile systems, applications,
and services, pages 107–122, 2010.

[28] M. Dong, Y.-S. K. Choi, and L. Zhong. Power modeling
of graphical user interfaces on oled displays. In Proceed-
ings of the 46th Annual Design Automation Conference,
pages 652–657. ACM, 2009.

[29] M. Dong and L. Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th international confer-
ence on Mobile systems, applications, and services, pages
335–348, 2011.

[30] A. E. Eshratifar, M. S. Abrishami, and M. Pedram.
Jointdnn: an e�cient training and inference engine
for intelligent mobile cloud computing services. IEEE
Transactions on Mobile Computing, 2019.

[31] J. Flinn and M. Satyanarayanan. Energy-aware adapta-
tion for mobile applications. ACM SIGOPS Operating
Systems Review, 33(5):48–63, 1999.

[32] J. Flinn and M. Satyanarayanan. Powerscope: A tool
for pro�ling the energy usage of mobile applications.
In Proceedings WMCSA’99. Second IEEE Workshop on
Mobile Computing Systems and Applications, pages 2–
10. IEEE, 1999.

[33] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:
Tracking energy in networked embedded systems. In
OSDI, volume 8, pages 323–338, 2008.

[34] C. E. Garcia, D. M. Prett, and M. Morari. Model predic-
tive control: theory and practice—a survey. Automatica,
25(3):335–348, 1989.

[35] Y. Go, O. C. Kwon, and H. Song. An energy-e�cient
http adaptive video streaming with networking cost
constraint over heterogeneous wireless networks. IEEE
Transactions on Multimedia, 17(9):1646–1657, 2015.

[36] L. Guo, T. Xu, M. Xu, X. Liu, and F. X. Lin. Power
sandbox: Power awareness rede�ned. In Proceedings of
the Thirteenth EuroSys Conference, pages 1–15, 2018.

[37] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan. Towards wearable cognitive assistance. In
Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, pages 68–
81. ACM, 2014.

[38] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Ru-
biks: Practical 360-degree streaming for smartphones.
In MobiSys, 2018.

[39] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Ru-
biks: Practical 360-degree streaming for smartphones.
In Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services,
MobiSys ’18, pages 482–494, New York, NY, USA, 2018.
ACM.

[40] M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Us-
ing crowd-sourced viewing statistics to save energy in
wireless video streaming. In Proceedings of the 19th
annual international conference on Mobile computing &
networking, pages 377–388, 2013.

[41] M. A. Hoque, M. Siekkinen, J. K. Nurminen, and
M. Aalto. Dissecting mobile video services: An energy
consumption perspective. In 2013 IEEE 14th Interna-
tional Symposium on" A World of Wireless, Mobile and
Multimedia Networks"(WoWMoM), pages 1–11. IEEE,
2013.

[42] M. Hosseini and V. Swaminathan. Adaptive 360
VR video streaming: Divide and conquer! CoRR,
abs/1609.08729, 2016.

[43] W. Hu and G. Cao. Energy-aware video streaming on
smartphones. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 1185–1193. IEEE,
2015.

[44] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance
and power characteristics of 4g lte networks. InMobisys,
2012.

[45] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson. A bu�er-based approach to rate adapta-
tion: Evidence from a large video streaming service. In
Proceedings of the 2014 ACM conference on SIGCOMM,
pages 187–198, 2014.

[46] J. Jiang, V. Sekar, and H. Zhang. Improving fairness,
e�ciency, and stability in http-based adaptive video
streaming with festive. In Proceedings of the 8th interna-
tional conference on Emerging networking experiments
and technologies, pages 97–108, 2012.

[47] N. Jiang, Y. Liu, T. Guo, W. Xu, V. Swaminathan, L. Xu,
and S. Wei. Qurate: power-e�cient mobile immersive
video streaming. In Proceedings of the 11th ACM Multi-
media Systems Conference, pages 99–111, 2020.

[48] N. Jiang, V. Swaminathan, and S. Wei. Power evaluation
of 360 vr video streaming on head mounted display
devices. In Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and
Video, pages 55–60, 2017.

94 2021 USENIX Annual Technical Conference USENIX Association

[49] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge,
J. Mars, and L. Tang. Neurosurgeon: Collaborative in-
telligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 45(1):615–629,
2017.

[50] E. Kuzyakov and D. Pio. Next-generation
video encoding techniques for 360 video and
vr.(2016). https://code.facebook.com/posts/
1126354007399553/nextgeneration-video-
encoding-techniques-for-360-video-and-
vr, 2016.

[51] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and
N. D. Lane. Spinn: synergistic progressive inference of
neural networks over device and cloud. In Proceedings
of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–15, 2020.

[52] E. Li, L. Zeng, Z. Zhou, and X. Chen. Edge ai: On-
demand accelerating deep neural network inference
via edge computing. IEEE Transactions on Wireless
Communications, 19(1):447–457, 2019.

[53] X. Li, M. Dong, Z. Ma, and F. C. Fernandes. Green-
tube: power optimization for mobile videostreaming
via dynamic cache management. In Proceedings of the
20th ACM international conference on Multimedia, pages
279–288, 2012.

[54] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and
D. Oran. Probe and adapt: Rate adaptation for http
video streaming at scale. IEEE Journal on Selected Areas
in Communications, 32(4):719–733, 2014.

[55] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh. Dynamic back-
light scaling optimization: A cloud-based energy-saving
service for mobile streaming applications. IEEE Trans-
actions on Computers, 63(2):335–348, 2012.

[56] J. Liu and L. Zhong. Micro power management of active
802.11 interfaces. In Proceedings of the 6th international
conference on Mobile systems, applications, and services,
pages 146–159, 2008.

[57] L. Liu, H. Li, and M. Gruteser. Edge assisted real-time ob-
ject detection for mobile augmented reality. In The 25th
Annual International Conference on Mobile Computing
and Networking, pages 1–16, 2019.

[58] Y. Liu, M. Xiao, M. Zhang, X. Li, M. Dong, Z. Ma, Z. Li,
and S. Chen. Gocad: Gpu-assisted online content-
adaptive display power saving for mobile devices in
internet streaming. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, pages 1329–1338,
2016.

[59] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive
video streaming with pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pages 197–210, 2017.

[60] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt,
R. Gupta, A. Nicolau, S. Shukla, and N. Venkatasubrama-
nian. A cross-layer approach for power-performance
optimization in distributed mobile systems. In 19th
IEEE International Parallel and Distributed Processing
Symposium, pages 8–pp. IEEE, 2005.

[61] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang. Qdash:
a qoe-aware dash system. In Proceedings of the 3rd
Multimedia Systems Conference, pages 11–22, 2012.

[62] R. Neugebauer and D. McAuley. Energy is just another
resource: Energy accounting and energy pricing in the
nemesis os. In Proceedings Eighth Workshop on Hot
Topics in Operating Systems, pages 67–72. IEEE, 2001.

[63] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app? �ne grained energy accounting
on smartphones with eprof. In Proceedings of the 7th
ACM european conference on Computer Systems, pages
29–42, 2012.

[64] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-grained power modeling for smartphones using
system call tracing. In Proceedings of the sixth conference
on Computer systems, pages 153–168, 2011.

[65] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare:
Practical viewport-adaptive 360-degree video stream-
ing for mobile devices. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Net-
working, MobiCom ’18, pages 99–114, New York, NY,
USA, 2018. ACM.

[66] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deep-
decision: A mobile deep learning framework for edge
video analytics. In IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications, pages 1421–1429.
IEEE, 2018.

[67] J. B. Rawlings and D. Q. Mayne. Model predictive control:
Theory and design. Nob Hill Pub., 2009.

[68] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Maz-
ières, and N. Zeldovich. Energy management in mobile
devices with the cinder operating system. In Proceed-
ings of the sixth conference on Computer systems, pages
139–152, 2011.

[69] S. Shi, V. Gupta, and R. Jana. Freedom: Fast recovery
enhanced vr delivery over mobile networks. In Pro-
ceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’19,
pages 130–141, New York, NY, USA, 2019. ACM.

USENIX Association 2021 USENIX Annual Technical Conference 95

[70] A. Shye, B. Scholbrock, and G. Memik. Into the wild:
studying real user activity patterns to guide power op-
timizations for mobile architectures. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 168–178, 2009.

[71] I. Sodagar. The mpeg-dash standard for multimedia
streaming over the internet. IEEE multimedia, 18(4):62–
67, 2011.

[72] K. Spiteri, R. Sitaraman, and D. Sparacio. From the-
ory to practice: Improving bitrate adaptation in the
dash reference player. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM),
15(2s):1–29, 2019.

[73] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola:
Near-optimal bitrate adaptation for online videos. In
IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9.
IEEE, 2016.

[74] L. Sun, Y. Mao, T. Zong, Y. Liu, and Y. Wang. Flocking-
based live streaming of 360-degree video. In Proceedings
of the 11th ACM Multimedia Systems Conference, pages
26–37, 2020.

[75] L. Sun, R. K. Sheshadri, W. Zheng, and D. Koutsonikolas.
Modeling wi� active power/energy consumption in
smartphones. In 2014 IEEE 34th International Conference
on Distributed Computing Systems, pages 41–51. IEEE,
2014.

[76] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu,
and B. Sinopoli. Cs2p: Improving video bitrate selection
and adaptation with data-driven throughput prediction.
In Proceedings of the 2016 ACM SIGCOMM Conference,
pages 272–285, 2016.

[77] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[78] S. Wei, V. Swaminathan, and M. Xiao. Power e�cient
mobile video streaming using http/2 server push. In
2015 IEEE 17th International Workshop on Multimedia
Signal Processing (MMSP), pages 1–6. IEEE, 2015.

[79] Y. Xiao, R. S. Kalyanaraman, and A. Yla-Jaaski. Energy
consumption of mobile youtube: Quantitative measure-
ment and analysis. In 2008 The Second International
Conference on Next Generation Mobile Applications, Ser-
vices, and Technologies, pages 61–69. IEEE, 2008.

[80] X. Xie and X. Zhang. Poi360: Panoramic mobile video
telephony over lte cellular networks. In Proceedings of

the 13th International Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’17, pages
336–349, New York, NY, USA, 2017. ACM.

[81] F. Xu, Y. Liu, Q. Li, and Y. Zhang. V-edge: Fast self-
constructive power modeling of smartphones based on
battery voltage dynamics. In Presented as part of the
10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 43–55, Lombard,
IL, 2013. USENIX.

[82] T. Xu, B. Han, and F. Qian. Analyzing viewport pre-
diction under di�erent vr interactions. In Proceedings
of the 15th International Conference on Emerging Net-
working Experiments And Technologies, pages 165–171,
2019.

[83] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang,
P. Levis, and K. Winstein. Learning in situ: a random-
ized experiment in video streaming. In 17th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 20), pages 495–511, 2020.

[84] Z. Yan and C. W. Chen. Rnb: Rate and brightness adapta-
tion for rate-distortion-energy tradeo� in http adaptive
streaming over mobile devices. In Proceedings of the
22nd Annual International Conference on Mobile Com-
puting and Networking, pages 308–319, 2016.

[85] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-
theoretic approach for dynamic adaptive video stream-
ing over http. In Proceedings of the 2015 ACMConference
on Special Interest Group on Data Communication, pages
325–338, 2015.

[86] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. App-
scope: Application energy metering framework for an-
droid smartphone using kernel activity monitoring. In
Presented as part of the 2012 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 12), pages 387–400, 2012.

[87] C. Yue, S. Sen, B. Wang, Y. Qin, and F. Qian. Energy
considerations for abr video streaming to smartphones:
measurements, models and insights. In Proceedings of
the 11th ACM Multimedia Systems Conference, pages
153–165, 2020.

[88] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosys-
tem: Managing energy as a �rst class operating sys-
tem resource. ACM SIGOPS operating systems review,
36(5):123–132, 2002.

[89] J. Zhang, G. Fang, C. Peng, M. Guo, S. Wei, and V. Swami-
nathan. Pro�ling energy consumption of dash video
streaming over 4g lte networks. In Proceedings of the
8th International Workshop on Mobile Video, pages 1–6,
2016.

96 2021 USENIX Annual Technical Conference USENIX Association

[90] J. Zhang, Z.-J. Wang, Z. Quan, J. Yin, Y. Chen, and
M. Guo. Optimizing power consumption of mobile
devices for video streaming over 4g lte networks. Peer-
to-Peer Networking and Applications, 11(5):1101–1114,
2018.

[91] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power es-
timation and automatic battery behavior based power
model generation for smartphones. In Proceedings of
the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages
105–114, 2010.

[92] Z. Zhao, K. M. Barijough, and A. Gerstlauer. Deepthings:
Distributed adaptive deep learning inference on
resource-constrained iot edge clusters. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2348–2359, 2018.

[93] C. Zhou, Z. Li, and Y. Liu. A measurement study of
Oculus 360 degree video streaming. In Proceedings of the
8th ACM on Multimedia Systems Conference, MMSys’17,
pages 27–37. ACM, 2017.

USENIX Association 2021 USENIX Annual Technical Conference 97

