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Abstract

GPUs are the workhorse in modern server infrastructure
fueling advances in a number of compute-intensive workloads
such as deep neural network (DNN) training. Several recent
works propose solutions on sharing GPU resources across
multiple concurrent DNN training jobs, but none of them
address rapidly increasing memory footprint introduced by
such job co-locations, which greatly limit the effectiveness
of sharing GPU resources. In this paper, we present Zico, the
first DNN system that aims at reducing the system-wide mem-
ory consumption for concurrent training. Zico keeps track
of the memory usage pattern of individual training job by
monitoring its progress on GPU computations and makes
memory reclaimed from the job globally sharable. Based on
this memory management scheme, Zico automatically decides
a strategy to share memory among concurrent jobs with mini-
mum delay on training while not exceeding a given memory
budget such as GPU memory capacity. Our evaluation shows
that Zico outperforms existing GPU sharing approaches and
delivers benefits over a variety of job co-location scenarios.

1 Introduction

Recent advances in deep neural networks (DNNs) have made
tremendous progress on a wide range of applications, includ-
ing object detection [24], language model [11,47], transla-
tion [40], and speech recognition [27]. As a number of new
DNN models are being explored, developers take advantage
of hardware accelerators to train the models, such as TPU [22]
and GPU, which is the most popular choice. GPUs are the
workhorse in server infrastructure and yet becoming highly
contended resources at the same time [20,43].

To utilize expensive GPU resources, efficient GPU shar-
ing mechanisms have become indispensable. Prior work
focuses on either temporally multiplexing GPU in its en-
tirety [26,43,44] or spatially sharing compute units [10]. The
temporal sharing is a software mechanism that dedicates both
compute cores and memory in GPU solely to single training
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for a time quantum (e.g., 1 minute). Despite the good flexi-
bility, this approach often cannot efficiently utilize GPU re-
sources. For example, most compute resources are left idle for
common translation models such as GNMT [42] and language
models such as RHN [47]. These training algorithms include
a number of RNN modules [28], such as LSTM [12] and
GRU [8] networks, which exhibit a small degree of data par-
allelism to GPU, causing under-utilization of GPU resources.
As a different approach, the spatial sharing can provide better
throughput than the temporal sharing as long as a single train-
ing job does not fully saturate GPU compute resources [44].
However, a limitation in applying the spatial sharing is the
working set size of concurrent jobs, which grows substantially
with the job co-location. If the working set does not fit in GPU
memory, the system has to kill a job or swap GPU memory to
the host, which overshadows the performance benefit of the
spatial sharing. Therefore, to make the spatial sharing widely
applicable, it is essential to reduce the memory footprint of
co-located training jobs.

We observe that sharing intermediate data generated during
co-located training jobs significantly reduces the total mem-
ory footprint. Training is a highly iterative procedure first
navigating layers in order (forward pass) and then the same
layers in reverse order (backward pass) for each batch of in-
put data. During the training procedure, intermediate outputs
from model layers called feature maps dominate memory foot-
print [18,32]. Feature maps are generated in each layer during
the forward pass and later consumed in the backward pass
to update the layer. Due to the regular bi-directional execu-
tion, memory consumption in a single training job commonly
exhibits a cyclic pattern — memory consumption gradually
increases in the forward pass and then decreases in the back-
ward pass. Thus, a simple yet effective strategy to save mem-
ory consumption is creating a large GPU memory pool and
elastically sharing the memory pool for concurrent training
jobs. To increase sharing opportunity, coordination of concur-
rent training jobs is needed to make them run different passes,
e.g., forward pass for job A (increasing its working set) and
backward pass for job B (decreasing its working set). This
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approach results in memory allocations of a job to happen
simultaneously with memory deallocations of the other job,
efficiently reducing the system-wide memory footprint.

Despite that the sharing idea is plausible, the way today’s
DNN frameworks execute training on GPU poses signifi-
cant challenges. Current frameworks are mainly designed for
a solo training case. Following dataflow dependency, they
allocate the memory required for each DNN kernel computa-
tion ahead of time and issue as many kernels as possible to
the GPU stream, i.e., work queue per job for its GPU com-
putations, in order to saturate the GPU’s internal compute
resources. This leads to GPU computations asynchronous
and in parallel with CPU processing. Thus, the platforms are
unaware of progress on the GPU computations and when
memory is indeed consumed by GPU. Without proper han-
dling of the asynchrony, shared memory does not guarantee
correctness such as preventing memory corruptions in shared
untapped memory of a waiting kernel by other training jobs.

In this paper, we propose Zico, a DNN platform that en-
ables efficient memory sharing for concurrent training. Zico
retrofits a widely used DNN platform, TensorFlow, to maxi-
mize the overall throughput of concurrent training. The goal
of Zico is finding the best coordinated executions of concur-
rent training to fully utilize GPU computational and memory
resources. To achieve the goal, (i) Zico accurately monitors
computational progress of training jobs. Based on that, Zico
allocates and deallocates memory for DNN kernels, inform-
ing memory usage patterns closer to GPU’s view. (ii) Zico
incorporates runtime information (e.g., iteration times, mem-
ory usage patterns, and GPU memory limit) and executes a
job scheduler, called scrooge scheduler, to efficiently steer
concurrent jobs to utilize the shared memory pool. (iii) Zico
efficiently organizes the entire GPU space as an elastic shared
memory pool to support scrooge scheduler.

To detect computational progress of asynchronous kernels,
Zico leverages a specific kernel called CUDA event, which
notifies progress of GPU kernels. Zico uses CUDA event to
identify allocation and release time of memory used by a GPU
kernel. Based on the information, Zico executes our novel
scrooge scheduler to forecast the memory consumption trend
of concurrent training at the iteration boundary and introduces
the minimum stall time on each iteration. Nevertheless, the
memory usage trend of the co-scheduled jobs varies according
to how they interfere each other in the use of GPU compute
units. To apply their dynamic behaviors, scrooge scheduler
refines decisions based on feedback collected at runtime.

Zico organizes the memory pool as a collection of chunks
called regions and separates their uses based on data char-
acteristics. DNN training generates several types of data as
tensors, categorized mainly as ephemeral tensors with high
occurrences and long-lived tensors like feature maps which
constitute the most memory footprint. By separating regions
by type, Zico ensures that memory stored with feature maps
does not interfere with other transient data while making their

demands follow the cyclic pattern of training iteration. This
design choice allows our scheduling decisions to be applied
with little disruption without losing sharing opportunity.

Being prototyped on a popular DNN framework, Tensor-
Flow, we evaluate Zico experimentally using six models rang-
ing from translation to object detection on V100 and RTX
2080 Ti GPUs. The results show that Zico enables effective
memory sharing over a wide range of memory consumption
trends. For high memory footprint, Zico is up to 8.3x and 1.6x
faster than traditional spatial sharing and temporal sharing ap-
proaches, respectively, especially when concurrently training
non-identical models. Furthermore, for low memory footprint,
where no stall on concurrent training is needed, Zico behaves
similarly to traditional spatial sharing and is up to 1.6x faster
than temporal sharing. Overall, Zico achieves speedups, re-
gardless of whether concurrent training is based on the same
or distinct models.

2 Background

2.1 Deep Neural Network Training

The training process typically relies on iterative optimization
methods like stochastic gradient descent (SGD) [13], Momen-
tum [39], and Adam [23]. In each iteration, forward pass
(FP) is followed by backward pass (BP) on a batch of training
dataset. During FP, by computing on the layer’s input, weights,
and bias, each layer outputs feature maps to be used as an
input to the next downstream layer. At the end of FP, the last
layer produces a loss representing the accuracy of the current
model on the input batch. Using the loss value, BP computes
the gradients by flowing the layers in reverse order and ag-
gregates the gradient values to update model parameters (i.e.,
layers’ weights and bias). On finishing BP, the training repeats
FP and BP on the next batch. As the batch size is usually fixed,
the computation load and the memory usage characteristic
are usually very similar across iterations [15,43].

It is widely known that model parameters occupy only a
small fraction of memory, and the majority is consumed to
store feature maps generated in the FP computation [18,32,
43]. BP needs feature maps to calculate the gradients at each
layer. Hence, unless recomputed [6, 14, 19], feature maps are
usually kept on memory for a long time until they are no
longer accessed in BP. The amount of memory consumption
is determined by several factors, such as the number of layers,
layer size and type, input batch size, etc. There is also other in-
termediate data training iteration creates, e.g., gradient maps
that represent the output of each layer during BP, local data
local in each kernel, etc. They are all ephemeral as memory
is released soon after its allocation [18, 32]. For brevity, we
assume all memory allocations in DNN training are based on
tensors.
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2.2 GPU Sharing Use Cases

Users run training either on shared GPU clusters or on ded-
icated servers. For both cases, GPU sharing is becoming a
fundamental technique to better utilize GPU resources. In this
subsection, we introduce two specific scenarios that can take
advantage of sharing GPUs.

Hyperparameter tuning (inter-job). With the increasing
popularity of applications fueled by DNN, a number of new
models are being developed by DNN practitioners every day.
A model for developing exposes many high-level properties,
e.g., learning rate and momentum, as hyperparameters that
need to be optimized. This task is known as hyperparameter
tuning [3]. As hyperparameters constitute a large search space,
there are several popular tools such as Hyperdrive [35] and
HyperOpt [4] that automate hyperparameter optimization and
construct a new model with the best (or desired) quality for
users. These tools usually generate a large number of closely
related training jobs (as much as 100s [26,43]) that explore a
different set of hyperparameters for the same reference model.
Nevertheless, spatial GPU sharing has greater performance
potential for this workload, as discussed in Section 7.
Hyperparameter tuning jobs dominate training workloads
run atop shared GPU clusters [20,26,43]. To get them timely
done on heavily contended GPUs, prior works propose several
techniques such as temporal and spatiotemporal sharing to
apportion a single GPU over multiple training jobs [43,44].

Gradient accumulation (intra-job). Gradient accumulation
is a promising method to speed up model convergence when
hyperparameters other than batch size are stabilized. It runs
a set of consecutive mini-batches and accumulates the gradi-
ents of those mini-batches before updating model parameters.
The essential goal is to give an illusion of training on a large
batch that better improves convergence without oversubscrib-
ing GPU memory by using small mini-batches. A common
practice has been to process these mini-batches sequentially.

Nonetheless, efficient spatial GPU sharing can offer sharing
incentive to concurrent training on mini-batches. One might
wonder whether spatial sharing on this training is indeed plau-
sible. Based on our observation, translation or speech recogni-
tion models (e.g., GNMT [42]) often underutilize GPU com-
pute resources, making it beneficial to share GPU computes.
On top of it, our system supports highly effective sharing of
GPU memory, enabling in concurrent training each to use a
mini-batch size slightly smaller, if not the same, than the orig-
inal mini-batch size. Altogether, our system opens up a new
opportunity to speed up training for gradient accumulation,
which we will discuss in Section 7.

2.3 Spatial GPU Sharing

NVIDIA has developed Multi-Process Service (MPS) [10],
an alternative way to share GPU among multiple CUDA pro-
cesses. With MPS, NVIDIA V100 GPU supports up to 48 pro-
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Figure 1: Cumulative distribution of NASNet tensor lifespan.

cesses to run concurrently on a single GPU, with each process
assigned with separate GPU compute resources, i.e., SMs [10].
In NVIDIA A100 [29], a newer generation, GPU sharing ar-
chitecture further partitions HW paths in the memory system,
e.g., memory controllers and address busses, to prevent the
concurrent processes from interfering with each other when
demands for memory bandwidth are high. NVIDA’s GPU
sharing mechanisms have two commonalities. First, they are
mainly designed for sharing “compute resources” spatially.
Second, they attribute GPU sharing to demands for protection
among untrusted users requiring strong isolation.

Since not all use cases require strong isolation among
training jobs, e.g., hyperparameter tuning driven by a sin-
gle user [26], recent work supports a spatial GPU sharing
similar to MPS in a single process domain [44]. Regardless of
protection level, the underlying mechanism enabling spatial
sharing within GPU is very similar, if not the same — and so
is the resulting performance.

3 Challenges for Memory Sharing

GPU has a limited amount of HW resources, requiring it to
be used in high efficiency. As GPU’s compute and memory
resources are shared to run concurrent training limiting per-
training resource capacity, it is crucial to thoroughly under-
stand the current practices in DNN frameworks and uncover
challenges for spatial GPU training. In this section, we discuss
three major challenges to address in Zico.

3.1 Memory Bloating

Major DNN frameworks [1, 5, 31] typically maintain fea-
ture maps in memory until they are no longer accessed. As
discussed earlier, feature maps have a relatively longer lifes-
pan between the first access and the last access, making the
most of in-use memory consumed to store the feature maps.
Figure | compares cumulative distributions of lifespans for
feature maps and other data in NASNet training. As the figure
shows, feature maps exhibit longer lifespans with 134ms on
average and 234ms as median value as opposed to 18ms on
average and 2ms as median value in the other data. We further
investigate cumulative distributions of tensor sizes of the two
data types, showing that feature maps are larger. In conse-
quence, as shown in Figure 2, feature maps lead to the peak

USENIX Association

2021 USENIX Annual Technical Conference 525



=)
'

>
IS )
w

N
)
JiN

Memory usage (GB)

Memory usage (GB)

Memory usage (GB)
|38

©
()
=

=)
iy
30

>
-
(=

N
3

Memory usage (GB)
Memory usage (GB)

Time

(b) NASNet

Time

(a) ResNet-50

Time

(c) GNMT

Time

(e) BERT

Time

(d) RHN

Figure 2: Memory usage patterns for different DNN models over time.

memory consumption substantially higher than the minimum
that corresponds to the model size in each iteration. We call
this issue memory bloating.

Traditional spatial GPU sharing mechanisms are vulnera-
ble to memory bloating. DNN frameworks like TensorFlow
do not tend to be designed for memory sharing with internal
memory manager maintaining a local pool of memory for
single training. Thus, no memory release to GPU happens.
This results in peak memory usages from concurrent train-
ing, all adding up and consequently saturating GPU memory
even in the modest memory footprint for individual training.
To illustrate, let us consider concurrent training of two iden-
tical models, with each demanding more than half of GPU
memory as an example. In this case, the memory demand
across the two local memory pools exceeds GPU memory
capacity, beginning to take advantage of CPU-side memory
as a swap space. To facilitate this, recent NVIDIA GPUs,
including V100, provide a feature known as Unified Virtual
Memory (UVM), which is transparent to DNN platforms.

We found that using UVM for DNN training is currently
costly and severely affects overall performance despite great
flexibility. To confirm the effect, we compare throughput
between solo training versus concurrent training for ResNet-
50 using NVIDIA V100 when a training job occupies 70%
GPU memory. To make the comparison fair, we configure a
single training job to use 50% GPU resources set by MPS.
There is a dramatic throughput degradation in concurrent
training (i.e., 8 times slower) as it suffers from GPU memory
oversubscription. Therefore, we should decrease the risk of
GPU memory being used up during concurrent training.

3.2 Workload Variability

As an additional challenge, we explain a workload character-
istic that makes memory optimization for spatial GPU sharing
fundamentally complicated. Although all models follow a
cyclic pattern in memory usage, as shown in Figure 2, mem-
ory usage patterns are inherently different across models. For
example, ResNet-50 has a beefy shape in which memory
bloating appears for a fairly large time duration. In contrast,
GNMT has a lean shape in which peak memory appears for
a short period and quickly disappears. Therefore, such vari-
ability must be taken into account in designing a scheduling
policy for concurrent training.

Nonetheless, we take advantage of an observation that a

similar memory usage pattern repeats over iterations for a
single model. DNN frameworks require that computation ker-
nels be ordered in a specific way, e.g., following topological
sort, thus keeping the corresponding memory operations or-
dered across iterations [32]. So, we believe this determinism
is prevalent in most of the training tasks.

3.3 Asynchrony with GPU Processing

CPU processing in DNN frameworks is in parallel with GPU
computations. Before issuing a kernel to a GPU stream, the
memory manager in the platform allocates tensors required
for the kernel computation. After issuing the kernel and re-
turning immediately, CPU processing brings back its control
and can do any subsequent task asynchronously with GPU
computations. Meanwhile, GPU may or may not execute the
issued kernel depending on whether earlier kernels are still
pending or not.

Driven by this GPU-specific property, DNN frameworks
produce a static schedule of DNN kernels mainly customized
for single training, in which kernel operations are ordered
based on dependencies every iteration. DNN frameworks
usually allocate the memory required for kernel operations
in sequence ahead of time while issuing as many kernels as
possible to the stream to saturate GPU. This way of exercising
GPU for single training has been common because there
is no concern regarding correctness in memory allocations.
Specifically, suppose we use a released tensor memory from a
kernel to allocate it for the next kernel, even though the earlier
kernel is not completed by GPU yet. In that case, memory
corruption does not occur since kernels in the GPU stream
are processed sequentially.

However, it is critical to make the CPU process keep track
of GPU memory usage trends precisely to enable memory
sharing for concurrent training. To illustrate the current limi-
tation concretely, let us show effective memory observed in
TensorFlow during training ResNet-50 in Figure 3. In the
figure, training exhibits a cyclic pattern for a short period
followed by a long pause due to kernels pending on GPU dur-
ing an iteration. Unlike the CPU’s view, the actual memory
usage trend from GPU’s view appears in Figure 2(a), which
perfectly follows a continuous cycling pattern.

In summary, for concurrent training with multiple GPU
streams, today’s approaches that make memory sharing de-
cisions based on CPU’s view are vulnerable to memory cor-
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Figure 3: GPU memory usage from CPU view (ResNet-50).

ruption led by simultaneous accesses on the same memory
address. This issue is the last challenge to address.

4 Design Overview

Zico aims at providing efficient spatial GPU sharing by en-
abling coordinated job scheduling and GPU memory man-
agement for concurrent training. As a system currently built
on TensorFlow, the framework keeps tracking the lifespans
of memory used in each training and produces a schedule of
concurrent training executions to avoid GPU memory over-
subscription. We seek to achieve the following goals in the
design of Zico:

* High performance. A single iteration runs for a short time
duration from tens to hundreds of milliseconds. Thus, a mod-
est overhead with memory sharing in each iteration can mani-
fest as a long delay in the entire training. We should attempt
to minimize such overhead and achieve high performance.

e Wide model support. Section 3.2 demonstrates a wide
range of patterns in memory demand across models during
training. Our memory sharing strategy should be general,
not restricted to specific memory patterns. The concurrent
training may not even expose similar or the identical models.

* Common approach. Our approaches are mainly compati-
ble with DNN platforms that express a job execution as a com-
putation graph ahead of time, e.g., TensorFlow [1], Caffe [21],
and MXNet [5]. The other platforms are based on imperative
programming and train a model without constructing a com-
putation graph, namely, the eager mode. The memory-aware
scheduler in Zico makes decisions based only on observed
memory demands at runtime, making it also applicable to the
eager mode.

Zico has two key system modules as shown in Figure 4: (i)
scrooge scheduler, a processing unit that orchestrates execu-
tions of concurrent training driven by memory demand pat-
terns; and (ii) memory manager, a unified memory allocator
that handles both inter- and intra-training memory requests.

Scrooge scheduler. Zico monitors GPU progress to capture
precise memory usage in GPU for each training over time.
On observing memory usage, Zico schedules concurrent jobs
to achieve the best possible performance in training while
putting the total memory consumption within a predefined
budget, which does not exceed GPU memory capacity. This
is a sophisticated problem to which a naive strategy rarely

Memory budget

N

Memory Manager
Non-sharable Sharable Non-sharablef

Scrooge Scheduler

Objective

Monitor .
function

Schedule

Job A JobB - Memory demand pattern
- - I i i
- Memory region teration time
In-use Free

Figure 4: System architecture in Zico.

works. When memory is sufficient for running concurrent
training without sharing, no coordination among jobs might
be necessary. In contrast, when memory is tight, we need a
schedule of concurrent training in order not to exceed the
given memory budget. A simple approach towards saving
memory consumption can be coordinating training jobs in
such a way that forward pass execution (i.e., memory alloca-
tion phase) is overlapped with backward pass execution (i.e.,
memory deallocation phase) as much as possible. However,
when memory demand patterns are beefy such as in Fig-
ure 2(a), the system-wide memory usage can blow up because
the memory demand in the forward pass grows fast while the
backward pass shrinks its memory demand relatively slowly.

To provide concrete guidance for memory sharing, we de-
vise scrooge scheduler that facilitates an objective function
helping forecast the system-wide memory demand in the
future. Before starting a new iteration, the scheduler takes
into account the lifespans of in-use memory regions, which
are sharable memory units in Zico. Then, the scheduler pre-
dicts whether allowing the iteration immediately will consume
memory less than the memory budget. If this is nearly impos-
sible, the scheduler estimates the minimum stall time to be
applied on the new iteration so that memory allocations in the
forward pass to be issued later are safely fulfilled when more
memory is available. It is essential to maintain precise region
lifespan in order to make a correct decision in the schedul-
ing. To meet this goal, Zico iteratively refines region lifespan
based on feedback collected from prior iterations at runtime.

Scrooge scheduler is agnostic to programming model in
DNN platforms and only relies on information on memory de-
mand patterns. For this reason, Zico is able to perform spatial
memory sharing as long as memory requests are appropriately
clustered on regions and their lifespans can be estimated. As
explained next, we facilitate tensor types to constitute regions
for sharing, but many different ways are indeed possible —
e.g., classification based on tensor access time intervals in
eager mode [2].

Memory manager. Zico organizes the entire GPU memory
space into a collection of regions, which is a contiguous mem-
ory space that stores a set of tensors in the same type. Using
regions is a natural choice for us to mitigate the sharing over-
head and to keep memory stored with feature maps not con-
tended with other tensor data. Using regions further assists job
scheduling decision to be made promptly. Scrooge scheduler
makes use of memory demand pattern that changes dynami-
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cally within an iteration. If we consider memory changes at
the granularity of tensor, we may need to investigate too many
time points along the way, putting a strain on the scheduler.
Details will be discussed in Section 5.

The memory manager separates memory space into two
areas, sharable and non-sharable. The sharable area repre-
sents currently unused memory that can be granted to any
in-flight training in need of more space (mainly for feature
maps), whereas the non-sharable area constitutes job-local
memory pools. Zico analyzes the computational graph and
extracts type information on tensors at runtime. During train-
ing iterations, allocation requests for feature map tensors are
always served from their own regions first in the local mem-
ory pool. If regions in the local memory pool are used up,
the memory manager assigns a new region from the sharable
area. In general, feature maps demand the most regions in the
system and these regions are mainly shared across concurrent
training jobs.

The current design of Zico limits two training jobs to share
a common memory area since many models we observe, in-
cluding models in Figure 2, exhibit rather beefy memory de-
mand patterns or high GPU utilization. For co-locating more
than two jobs, a feasible approach is to organize the jobs into
a group of pairs and schedule each pair independently with
its own memory budget. This is a natural extension to Zico,
so we leave it as a future work.

Protection level. We provide Zico as a single framework in-
stance mainly for performance reason. Existing multi-process
solutions such as MPS do not promise good performance
for elastic memory space sharing across different processes.
For example, to grant memory across two MPS processes,
we require invoking CUDA APIs such as cudaMalloc and
cudaFree quite frequently at each training iteration. Among
these API, cudaFree is known to stall GPU’s pipelined exe-
cution upon invoked [9], making itself harmful if recklessly
used. Our measurement also reveals that a single ResNet-50
training that allocates memory using these APIs becomes 7x
slower than the training that allocates memory locally.

Note that key scenarios discussed in Section 2.2 are enough
to train models in the same protection domain. Apart from it,
we design Zico to be useful for a variety of scenarios as long
as isolation is not a primary concern, e.g., the same tenancy
with trusting users in a shared GPU cluster.

S Scheduling Algorithm

In this section, we formalize the scheduling problem for con-
current training and introduce the scrooge scheduler. All re-
lated implementation details on how to obtain memory usage
patterns are explained in Section 6.

5.1 Problem Definition

We make use of memory consumption at the region level
to shape the memory pattern of a job. Despite the coarser-
grained leveling of memory utilized by tensors, using regions
still provides meaningful information to compute memory
sharing potential. Since regions allocated for feature maps are
the main target for sharing, in the problem formulation, we
assume all regions for a job have the lifetime that spans the
forward-backward passes for a single iteration.

Formally, we denote M regions required for an iteration of a
training job as {R; : 1 <i < M} following the allocation order,
with region R; having two parameters to indicate its lifespan:
Time(R;(a)) for the allocation time and Time(R;(d)) for the
deallocation time. Assume at time moment 7 that there are K
active regions in the system that indicate the sum of memory
footprint of the concurrent jobs. To achieve efficient GPU
memory provisioning, we need to minimize the time delay to
be applied on each training iteration without overcommitting
the system-wide memory budget C. This objective turns into
the following formulation:

argmin (Time(R1(d)) — Time(Ry(a)) + TimeShift) (1)
TimeShift

subject to

K
Y Size(R) <C 2)
i=1

at any time T over a training iteration, where {Size(R;) : 1 <
i < K} are the sizes of active regions in the system.

Intuitively, Equation | represents that an iteration, whose
duration corresponds to Time(R;(d)) - Time(R, (a)), must be
delayed by the minimum 7imeshift. Note that there are other
costs such as model synchronization in distributed training
that affect training time. They are mostly static [15,25,37,45]
and can be easily factored in.

5.2 Time Shift Model

From the perspective of memory sharing, the worst case pos-
sible is having forward passes of all training jobs run simulta-
neously. This may lead to no memory sharing opportunity as
regions being freed out in the backward pass of a job may not
be used by the other training job. Therefore, when it comes
to exceeding the memory budget C, scrooge scheduler adds
a time delay driven by the TimeShift parameter to a training
iteration appropriately to ensure that memory allocations dur-
ing the forward pass occur when enough memory is available.

Since DNN training is highly periodic and deterministic,
when training on an apportioned GPU compute capacity is
stabilized, we see almost no variations on the region lifes-
pans over iterations. Moreover, for each iteration, allocation
times for adjacent regions exhibit strong temporal dependency.
In other words, the time interval between Time(R;(,)) and
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Time(R;1(q)) for a job is almost static and does not change
drastically over iterations. Similarly, deallocations of any two
consecutive regions have such strong temporal dependency.
This observation suggests that TimeShift is the most effective
when applied to the entire iteration, not an individual region.
Suppose we postpone the allocation of an arbitrary region R;
by TimeShift. In that case, deallocations of the regions be-
tween R and R; will be all postponed by TimeShift, because
allocations for the regions subsequent to R; get delayed by
TimeShift and temporal dependencies during deallocations
are still preserved. This results in increasing overall memory
usage for the iteration unnecessarily.

5.3 Memory Sharing Algorithm

Now, we explain how scrooge scheduler works to enable spa-
tial memory sharing. Scrooge scheduler optimizes for the
minimum possible iteration time based on Equation 1 at run-
time. To solve the problem, the scheduling algorithm must
address two challenges: C-1) The lifespan of the region, L(R;),
changes according to how two training jobs execute under
co-location; C-2) While L(R;) is changing, the schedule has to
find an optimal TimeShift in Equation 1. Scrooge scheduler
performs iterative searching steps to reach the goal. For C-1,
scrooge scheduler introduces a feedback-driven online pro-
cess in which the scheduler monitors lifespans of all R; during
the current step and updates them to use in the next step. For
C-2, at each step, scrooge scheduler decides TimeShift of
the co-located training jobs toward minimizing their iteration
times. After several steps, the lifespans are adjusted enough
and stabilized. TimeShift should be estimated in an iteration
basis to determine when the current iteration has to start.

Profiling phase (The first search step). When a new train-
ing job is issued, scrooge scheduler initiates profiling phase
during which it collects basic information on the new job.
In particular, the scheduler runs the first iteration of the new
job in an isolated manner. During this profile phase, scrooge
scheduler identifies regions by type and obtains lifespan for

each feature map region in the solo run'.

Informed phase. After the profile phase, scrooge scheduler
knows useful information for co-locating jobs. In this in-
formed phase, for a new iteration to be started for a job (e.g.,
job A) with TimeShift = 0, the scheduler navigates through
time progress using lifespan information and predicts if the
memory constraint in Equation 2 is violated or not. If violated,
the scheduler waits for time T, which leads to TimeShift +=
T, and does the prediction again. This time-shifting contin-
ues until the scheduler meets the memory constraint — this
is guaranteed as the other co-located job (e.g., job B) will
ultimately release all regions at the end of its backward pass.

To illustrate, for job A’s forward pass, Time(R5?" 4(a)) -
Time(RI°”#(a)) indicates the time duration in which the

I'This profiling can also be done offline to reduce online profiling cost.

job A uses Size(RI°’#(a)) amount of memory, which cor-
responds to the allocation of the first region R{?’ 4. Likewise,
Time(R" 4 (a)) - Time(R{** 4 (a)) indicates the time taken
for the entire forward pass in which job A gradually demands
more memory by allocating regions from R{”b Ato R{V“b A In
this way, scrooge scheduler can forecast the memory demand
trend for job A’s forward pass and similarly the trend for its
backward pass.

To fulfill the condition in Equation 2, scrooge sched-
uler also needs to know the memory demand trend of
the co-located job B. Assume that job B deallocates its
Riy1, ie., R/ 5B, when the scheduler attempts to schedule
job A’s forward pass. Then, scrooge scheduler knows that
during Time(R/°" B(d)) - Time(RI°* B(d)), job B will use
Y Size(R/°” B) amount of memory. As such, as job B grad-
ually deallocates its in-use regions from R! b B 1o R{“b B in
order over time, job B will ultimately release ¥ Size(R/*" B)
amount of memory after Time(R{*® B(d)) - Time(RI°" B(d)).

With this memory trend information on job A and job B,
scrooge scheduler can decide during Job B’s backward pass,
if Job A can start by computing 1) the amount of memory
required by Job A as time progresses and 2) the amount of
memory released by job B as time progresses in terms of
regions. This brings out the system-wide active regions as
time progresses, which scrooge scheduler uses to predict if
memory consumption will always fit in the defined memory
budget, i.e., if Equation 2 is satisfied.

In the informed phase, we first use a memory budget which
is lower than the actual memory budget C to calculate region
lifespans under a conservative schedule that incurs a smaller
interference among jobs and thus a less aggressive memory
sharing. At this time, the execution of concurrent training is
far from optimal, i.e., having long time shifts. From this point,
scrooge scheduler iteratively optimizes the objective function.
The scheduler gradually increases the lowered memory bud-
get to allow more interference over time and keeps updating
region lifespans until it reaches back the memory budget C. It
is necessary to calculate region lifespans under co-location
with such adaptation because co-scheduling jobs that together
have >100% compute demands than the GPU’s capacity will
inadvertently interfere with the lifespan calculations.

Note that scrooge scheduler works regardless of training
two heterogeneous models or when forward passes of the two
jobs overlap. Although scheduling is a per-iteration process,
it operates at a low cost as memory patterns are already dis-
cretized into region level (the scheduling overhead will be
discussed in Section 7.4). In reality, the slowdown for each
training is very predictable when two training jobs exhibit
very similar GPU compute demands. A rare but challeng-
ing case is when a beefy model is trained along with a lean
model which suddenly suffers from a dramatic slowdown
from co-location. This case results in memory not being re-
leased from the lean model for a long time while the beefy
model keeps allocating memory, leading to the system-wide
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memory usage going over GPU memory capacity. In this case,
Zico gives up an attempt on spatial GPU sharing and falls
back to time-multiplexing.

Deadlock potential. With concurrent jobs in phases of in-
creasing memory allocation, the deadlock could happen when
there is insufficient memory to allocate to these in-flight jobs.
Scrooge scheduler does not start the current iteration of a
training job if global memory consumption would go beyond
the memory budget during its forward-backward passes. In
the worst case, scrooge scheduler will schedule the current it-
eration when the co-located job finishes its iteration (releasing
all memory), guaranteeing training progress similar to tempo-
ral sharing and thus preventing the deadlock. Such planned
execution should be accompanied by tracking of memory
used by GPU, which we will explain in the next section.

6 Memory Management with Concurrency

We discuss how to track GPU memory usage for sharing,
classify tensors according to usage type, and manage GPU
memory for tensors of different types using regions.

6.1 Tracking Memory Usage in GPU

Most of existing DNN platforms are mainly customized for
single-job training and unaware of memory sharing among
concurrent training jobs. As described in Section 3.3, inherent
asynchrony between CPU and GPU does not incur any cor-
rectness issue for memory operations when there is only one
job to run on the platform. However, for concurrent training
with each job assigned with its own GPU stream, we should
not make memory released by CPU readily available for the
co-located jobs, since kernel computations to be launched on
the multiple GPU streams are independent and unordered. In
essence, the memory corruption could occur because there
is no dependency among kernels in different GPU streams.
We apply two techniques to support efficient memory sharing
without the corruption.

Memory deallocation. For memory deallocation, rather than
immediately releasing the memory based on CPU point of
view, we must wait until GPU actually completes the corre-
sponding kernel execution. Zico facilitates CUDA event to
meet this requirement. CUDA event is a specific kernel that
can be inserted into the GPU stream and monitored by CPU
for its completion. Once GPU reaches a CUDA event, it is
guaranteed that kernels launched before the detected CUDA
event have finished the execution. Hence, tensors of those
kernels can be safely released if no longer accessed. Tracking
in-use memory with CUDA event is not cost-free, requiring
CPU cycles. To reduce the overhead, Zico inserts CUDA
event periodically at a certain memory allocation granular-
ity (currently, 8 MB for CNNs and 256 MB for RNNs). We
discuss the sensitivity of the granularity in Section 7.4.

Memory allocation. The memory tracking brings out an-
other issue, namely, early memory allocation. Although deal-
location of memory occurs after the actual kernel completion
as a result of the memory tracking, its allocation occurs by
CPU when the kernel is issued to the GPU stream. Thus, the
allocation time is typically earlier than the time the kernel ac-
tually starts its execution, accesses the memory, and completes
the execution within GPU. It is always desirable to maintain
a small number of in-flight kernels (i.e., kernels pending on
GPU stream), since this way would narrow the above time gap
and ultimately avoid unnecessary pre-allocations of memory
by CPU: otherwise, the system makes memory allocations
too early compared to the actual time the memory is utilized
by GPU kernels. Oftentimes, we found memory consumption
soars up due to a number of in-flight kernels issued at full
CPU speed. To address this issue, Zico limits the number
of in-flight kernels to a certain level just sufficient to keep
GPU busy. Currently, the right number is obtained via offline
profiling for each model while not causing a loss in overall
training performance. It can be also easily found online by
running a few iterations over varying numbers of in-flight
kernels to be limited in the GPU.

6.2 Tensor Classification

With a computation graph constructed for training, Zico dif-
ferentiates the tensors used by GPU kernel operators forming
the graph. In general, we classify the current tensors into
three types: feature map tensors, gradient map tensors, and
temporary tensors, where temporary tensors are neither fea-
ture maps nor gradient maps. A temporary tensor is mostly
created by an operator and used internally, not later accessed
by other operators. To correctly classify tensors in this way,
we exploit three pieces of information available for a tensor:
by considering the operator creating the tensor as the source
operator, (i) whether the source belongs to the forward pass;
(i) whether there is any destination operator accessing the
tensor outside the source; and (iii) whether the destination be-
longs to the backward pass. Feature map tensors will meet all
three conditions while gradient map tensors are distinguished
from complying with (ii) and (iii) only. The remaining tensors
are all sorted into temporary tensors.

For the proposed tensor classification, we need to identify
whether a computation kernel is involved in the forward pass
or the backward pass. Memory manager in Zico pinpoints the
peak memory as the starting point of the backward pass. This
method exploits the fundamental property of DNN training
that a forward pass is a memory allocation phase and a back-
ward pass is a memory deallocation phase. This method is a
simple but generic approach that does not depend on DNN
implementation and does not belong to a specific framework.
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Figure 5: Throughput in training the same models. ResNet-50 and BERT are run on Machine 1 and NASNet, ResNet-110,
GNMT, and RHN are on Machine 2 considering their model sizes.

6.3 Managing Memory Regions

Based on the tensor classification, the memory manager in
Zico accepts the tensor type as parameter and then allocates
the tensor on a region according to the type. The region-based
memory management is a basic mechanism in TensorFlow
and we extend it to build our own memory sharing system.

The essential goal of Zico’s memory management policy is
to promote spatial sharing with low interference between co-
scheduled training jobs. Based on separating sharable regions
(global) from non-sharable regions (job-local), we assure no
contention occurs when non-sharable regions are enough to
allocate new tensors for the local job. Further, within the local
regions, temporary tensors are stored exclusively on a few
regions managed by their own free block lists which manage
empty memory space for allocating new tensors. Temporary
tensors are small in size and frequently allocated and soon
deallocated, thus contending with other types of tensors for
accessing free block lists unless managed separately.

The size of the sharable and non-sharable area changes
elastically depending on runtime demands. As a region stores
tensors in the same type, for feature map tensors the demand
will increase and decrease within each iteration. Thus, during
forward pass, the local memory manager will continuously
request regions from the sharable area and then during the
backward pass, these regions will be returned back to the
sharable area. The free regions in the sharable area are shared
through a free list for which updates are synchronized by
a lock. To prevent the potential contention on the lock, the
granularity of the regions needs to be chosen carefully. We
experimentally validated different region sizes over diverse
training jobs. From the sensitivity study, we chose the region
size to be at least tens of MB to minimize lock contention. The
results of the sensitivity study can be found in Section 7.4.

7 Evaluation

Experimental setup. We implement Zico in TensorFlow
1.13.1 and compare it with spatial sharing using MPS
(MPS)” and temporal sharing with no job switching over-
head (Temporal), which is similar to the approach taken

2Spatial sharing within a single framework exhibits similar limitations to
MPS, i.e., performance degradation with memory oversubscription.

in the state-of-the-art [44]. We select six training bench-
marks across different DNN tasks including NASNet [48],
ResNet-110 [16], ResNet-50 [16], GNMT [42], RHN [47], and
BERT [11]. All models use the stochastic gradient descent
(SGD) optimizer.

The evaluation is performed on two machines. Machinel
has an NVIDIA Tesla V100 GPU with 32 GB GPU memory,
3.8 GHz Intel Xeon(R) Gold 5222 4 CPU cores and 64 GB of
host memory. Machine2 has an NVIDIA RTX 2080 Ti GPU
with 11 GB GPU memory, 3.8 GHz Intel Xeon(R) Gold 5222
4 CPU cores and 64 GB of host memory. Both machines run
Ubuntu 16.04. We use Machinel and Machine2 to evaluate
large models and small models, respectively.

7.1 Training Same Models

We first compare Zico, MPS, and Temporal when two identi-
cal models are concurrently trained. The memory budget in
Zico is configured as GPU memory capacity.

Figure 5 shows the throughput of the six models when train-
ing over different input batch sizes (i.e., number of samples)
in x-axis. For each model, some of the batch sizes are chosen
to have MPS exceed GPU memory capacity to show how
effective Zico is in such cases. The figure shows that as com-
pared to temporal sharing, Zico achieves higher throughput
across all batch sizes in all models. In particular, Zico out-
performs Temporal by on average 35% for NASNet and 37%
for GNMT across the batch sizes. These results are rather
surprising as the largest batch size in each model results in
memory consumption in solo training that reaches close to
the GPU memory limit. Even in such an extreme memory
usage scenario, Zico finds an optimal time point to start the
forward pass of a job while the backward pass of the other job
is in progress. Therefore, Zico does not have any model being
completely time-multiplexed, making it co-schedule the jobs
more efficiently than Temporal.

Zico achieves comparable throughput with MPS from small
to modest batch sizes for each model. MPS is sometimes
slightly better than Zico. This is not because MPS provides a
better schedule for concurrent training but mainly because the
underlying setup is different: Zico runs on a single framework
and MPS runs two training jobs on different framework in-
stances and processes. Nonetheless, throughput in MPS drops
significantly when models are trained on large batch sizes.
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Figure 6: Aggregated memory usage for training the same
models. For each model, bars are sorted by the batch sizes
as used in Figure 5. The red bars indicate the batch sizes of
aggregated memory usage beyond GPU memory capacity.

On training large batches, MPS suffers from GPU memory
oversubscription that accompanies UVM overhead. Subse-
quently, as compared to MPS, Zico is up to 4.7 times faster
across models. Note that the solo training of RHN incurs high
memory usage even with small batch sizes, causing memory
oversubscription for MPS across all batch sizes. Figure 6
presents the system-side memory usage (which sums up the
memory usage of the two co-located jobs) to reveal the degree
of GPU memory oversubscription handled by Zico.

In Figure 7, we show how memory usage patterns are coor-
dinated in Zico to reduce the system-wide memory footprint.
For the space reason, we select only two models, ResNet-110
and BERT, for which concurrent training is scheduled slightly
differently. In ResNet-110, almost no delay on each iteration
occurs, i.e., TimeShift ~ 0, making it behave similar to the
non-coordinated spatial GPU sharing. On the contrary, in each
scheduling interval of BERT, there is a slight delay applied to
every iteration to keep memory consumption within the bud-
get. It is worth noting that for training the same models, the
memory-aware schedules across iterations for a job are very
regular, making scheduling decisions across the co-located
jobs rather deterministic. We also found out training the same
models entails an almost similar, if not the same, slowdown
for each job. Hence, scrooge scheduler can quickly stabilize
its memory-aware scheduling across jobs even without begin-
ning from a low memory budget during the informed phase.

In general, Zico delivers more benefit to less computation-
intensive models such as GNMT. Over GPU generations,
GPU compute capacity scales faster than GPU memory ca-
pacity does, keeping the bottleneck pushed towards GPU
memory capacity. With this trend continued, the advantage of
Zico over temporal sharing is likely to grow in the future.

7.2 Training Non-identical Models

Now, we use two distinct models in concurrent training. In
this experiment, we select five models to make combinations
based on different GPU compute demands: GNMT (low),
RHN (1ow), NASNet (high), ResNet-110 (high), and BERT
(high). Figure 8 shows the throughput normalized by Tem-
poral over diverse co-location combinations which all over-
subscribe GPU memory capacity. In the figure, we put the
memory demand of individual training in the parenthesis,
computed as the percentage of GPU memory capacity, which
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Figure 7: Memory usage over time for training the same
models. ResNet-110 and BERT are shown as an example.

is obtained by varying batch sizes for the model.

For training non-identical models, we organize co-location
combinations into three scenarios: (i) including both models
with low GPU utilization (i.e., RH+GT), (ii) including one
model with low GPU utilization (i.e., NN+GT and BT+GT),
and (iii) including both models with high GPU utilization
(i.e., NN+RN). First, Figure 8 shows that Zico significantly
outperforms MPS regardless of GPU utilization between the
co-located jobs. Zico is around 5.7x faster than MPS on aver-
age, specifically faster up to 5.1x in RH+GT, 8.3x in NN+GT,
6x in BT+GT, and 6.5x in NN+RN. Our conclusion repeats:
MPS experiences significant performance degradation under
GPU memory oversubscription.

In comparison to Temporal, Zico achieves higher through-
put by 42% in RH+GT, 46% in NN+GT, 27% in BT+GT, and
15% in NN+RN on average. That is, Zico favors scenario (i)
and (ii) over (iii) because ample GPU cycles are available
by running a model with low compute demand. Nonethe-
less, in Zico, since any of co-located jobs starts training once
memory constraint is met, no fair use of compute resources
is guaranteed. As a result, in the NN(30%)+GT(90%), Zico
obtains a great throughput improvement for GT over Tempo-
ral but slightly worse performance for NN due to a bit fewer
iterations scheduled within a time duration as opposed to
Temporal. We leave balancing individual job throughput on
top of increasing the aggregated throughput as future work.

It is also worth noting that Zico achieves different schedul-
ing ratio for the co-located jobs depending on their memory
usage patterns. To illustrate, we show memory usage pat-
terns in RN+NN in Figure 9, where ResNet-110 has relatively
shorter iteration time compared to NASNet. On the given
memory budget, Zico decides to schedule executions of the
two jobs in such a way that ResNet-110 runs its iterations
more frequently than NASNet does — Zico keeps scheduling
ResNet-110 during time periods with low-to-moderate mem-
ory usages in NASNet to maximize GPU memory utilization.
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Figure 9: Memory usage over time for training NASNet and
ResNet-110 concurrently. This co-location incurs different
scheduling ratios for having different memory demands.

7.3 Dynamic Memory Budget Change

Recall that for co-locating more than two jobs, e.g., four jobs,
we propose to organize the jobs into a group of pairs and
schedule each pair independently with a lower memory bud-
get. Then, when some of the jobs depart, the system would
have fewer pairs and need to make a schedule based on the
increased memory budget. Therefore, adapting to the mem-
ory budget change is a fundamental functionality required in
Zico to deal with the dynamic workload. In this section, we
evaluate Zico scheduling decisions when several continuous
changes are made on the memory budget.

Figure 10 shows how Zico schedules two NASNet training
jobs while decreasing the memory budget and then increasing
it back. Before the first change, the two jobs run concurrently
with zero delay by virtue of scrooge scheduler between con-
secutive iteration executions of a job under the budget set as
70% GPU memory. Around A time point, the memory budget
is set down to 50% and Zico begins to schedule the co-located
jobs more conservatively. During this period, each job ex-
hibits a wider gap (140 ms) between consecutive iterations.
Around B time point, the memory budget returns back to 70%
and Zico now takes a more aggressive schedule on memory
sharing. At this moment, we attempt to further increase the
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Figure 10: Memory usage patterns on dynamic memory bud-
get changes. The budget is decreased from 70% GPU memory
to 50% at time A and then increased back to 70% at time B.

memory budget to fully utilize GPU memory, but we do not
see any change in both throughput and memory footprint. The
reason is that 70% GPU memory is already enough to make
an ideal scheduling decision for Zico with no TimeShift. That
is, Zico does not overuse GPU memory unnecessarily.

7.4 Design Validation

GPU memory tracking. As explained in Section 6.1, track-
ing in-use memory is essential to share memory with the
correctness between multiple GPU streams. Table | shows
the sensitivity of memory tracking granularity. If CUDA event
is inserted too frequently, it imposes overhead on CPU and
leads to delaying training iteration. For instance, inserting
CUDA event for every GPU kernel launch slows down the
training up to more than 50% in GNMT. To mitigate this
overhead, CUDA event is inserted periodically in Zico. For
models which use CPU intensively like GNMT, due to the
significant number of light-weight kernels to issue, coarse-
grained tracking is required to avoid this overhead. On the

GPU tracking NN RN-110 RN-50 GNMT RHN BERT

All 78% 91% 97% 44% 94% 97%
Fine-grained 100% 100% 100% 89% 99% 99%
Coarse-grained  100% 100% 100% 97% 99% 100%

Table 1: Throughput with memory tracking (normalized to the
throughput with no memory tracking). A11, Fine-grained,
and Coarse-grained track GPU memory for every kernel
launch, 8 MB allocation, and 256 MB allocation, respectively.
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Granularity NN  RN-110 RN-50 GNMT RHN BERT

Tensor 94% 99% 98% 90% 96% 94%
Small region  94% 99% 100% 97% 99% 99%

Table 2: Throughput with different sharing granularity (nor-
malized to sharing granularity of 64 MB region size).

other hand, for models which use CPU less like CNN models
and BERT, even fine-grained tracking does not bring out the
actual delay of the training iteration. Zico chooses the right
memory tracking granularity, minimizing the overhead.

Sharing granularity. As mentioned in Section 6.3, if the
sharing granularity is too fine-grained, e.g., tensor granularity,
the contention of shared lock becomes non-negligible. Ta-
ble 2 shows the sensitivity of different sharing granularity
choices, where the size of small region is set to 512 KB. The
table presents the normalized throughput with respect to us-
ing our default region size (64 MB) for memory sharing. The
tensor-level sharing could introduce up to 10% of throughput
degradation as shown in GNMT.

Scheduling. Making a scheduling decision in our scrooge
scheduler takes O(n) time complexity, where n is a small
number of regions exercised by co-located jobs. The observed
overhead is only a few hundreds of nanoseconds, and hence
scrooge scheduler has nearly zero scheduling overhead. More-
over, the scheduling process of one job does not interfere with
the scheduling process of counterpart co-located job, since
each job has a dedicated CPU thread.

8 Related Work

Temporal/Spatial GPU sharing. Temporal GPU sharing
represents software-based techniques that time-share GPU for
DNN workloads. Gandiva [43] proposes a GPU time-slicing
mechanism for the first time to mainly accelerate hyperparam-
eter tuning jobs. It initiates job switching at iteration boundary
to reduce CPU-GPU communication overhead. Salus [44]
tries to remove the switching overhead by making model pa-
rameters of a job resident in GPU memory even when the job
is inactive. It further integrates a spatial sharing mechanism to
harness underutilized memory in a similar way to MPS [10].
We faithfully compare Zico with both temporal and spatial
sharing in Section 7.

Tensor swapping/recomputation. Prior works make use of
host memory as a swap storage for DNN training to mitigate
memory footprint in GPU [17,32,36]. vDNN [36] predictively
swaps tensors ahead of time to overlap CPU-GPU commu-
nication with GPU computation during training. It mainly
focuses on swapping the inputs of convolutional layers as
they tend to have long lifespans in CNN models. SwapAdvi-
sor [17] considers memory allocation and operator scheduling
to jointly optimize for swapping decisions. Capuchin [32] pro-
poses a computational graph agnostic technique that estimates

the costs of tensor swapping and recomputation to make the
best choice between the two.

Other prior works study dropping tensors created in for-
ward pass and recomputing them in backward pass [6, 19,41].
SuperNeurons [41] introduces a cost-aware recomputation
technique to remove tensors from convolution layer, which
are cheap to recompute. Checkmate [19] formulates tensor
recomputation into an optimization problem and provides an
approximation algorithm to recompute tensors timely. Similar
to tensor swapping, tensor recomputation reduces memory
footprint for a single training. The goal of Zicois different;
Zico reduces global memory footprint for concurrent training.

Compression. Many approaches were invented to reduce
memory footprint of DNN training, including HW-based com-
pression techniques [7,30]. There are also a few SW-based
memory compression techniques. Gist [18] proposes a series
of layer-specific encoding techniques to compress tensors
including feature maps. Echo [46] proposes a compression
technique more effective on LSTM RNN training driven by
internal operator dependencies. Zico is complementary and
can be combined with tensor compression techniques.

9 Concluding Remarks

We present our attempt on realizing GPU memory sharing
across concurrent training. The proposed system, Zico, is the
first introducing a memory-aware scheduler that coordinates
training iterations among co-located jobs with minimum stall
times. Zico works generally for co-locating both identical
models or non-identical models regardless of the iteration
time and the memory pattern of each model. Our experimental
results show that Zico outperforms existing GPU sharing
approaches. With growing model sizes, very large models
such as GPT family [33,34,38] are preferred to run with model
parallelism or data parallelism to accommodate intermediate
tensors on GPU memory. Despite diverse parallelism in use,
we believe Zico benefits both cases as we still see increasing
and decreasing memory usage within an iteration.
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