é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

Tirs: Making Volatile Index Structures Persistent
with DRAM-NVMM Tiering

R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu, and Sumit Kumar Monga,
Virginia Tech; Hee Won Lee, Samsung Electronics; Minsung Jang, Peraton Labs;
Ajit Mathew and Changwoo Min, Virginia Tech

https://www.usenix.org/conference/atc21/presentation/krishnan

This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.
July 14-16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

T1PS: Making Volatile Index Structures Persistent with DRAM-NVMM Tiering

R. Madhava Krishnan
Hee Won Lee*
Virginia Tech

Minsung Jang®

Abstract

We propose TipS— a framework to systematically make
volatile indexes persistent. TIPS neither places restrictions
on the concurrency model nor requires in-depth knowledge of
the volatile index. TIPS relies on novel DRAM-NVMM tiering
to support an index-agnostic conversion, durable linearizabil-
ity and its concurrency model called the tiered concurrency to
achieve a good performance, scalability. TIPS proposes a hy-
brid low overhead logging technique called the UNO logging
to guarantee crash consistency and to handle persistent mem-
ory leaks across crashes. We converted seven volatile indexes
with different concurrency models and the Redis key-value
store application using TIPS and evaluated them using YCSB.
Our evaluations show that T1PS-enabled indexes outperform
the state-of-the-art index conversion techniques PRONTO,
NVTraverse, RECIPE, and the NVMM-optimized B+Tree
indexes (BzTree, FastFair), Hash indexes (CCEH and Level
Hash) and Trie (WOART) indexes by 3-10x while supporting
strong consistency and index-agnostic conversion.

1 Introduction

Indexes are a fundamental building block in many storage
systems, and it is critical to achieving high performance and
reliability [34, 47]. With the advent of Non-Volatile Main
Memory (NVMM), such as Intel Optane DC Persistent Mem-
ory [10,52], there have been a numerous number of research
efforts targeted towards developing NVMM-optimized in-
dexes [5,11,13,26,30,36,42-44,53-56,58,59,63,65,66]. Such
index designs mainly focus on reducing the crash consistency
overhead by primarily relying on index-specific optimizations
to improve the overall performance.

However, maturing and hardening an index requires a lot
of time and effort. For example, recently proposed NVMM
indexes have critical limitations, such as (1) weaker consis-
tency guarantee [23,37], (2) not handling memory leaks in
the wake of a crash [11, 26, 36,53, 66], (3) limited concur-
rent access [13,27,36], and (4) not supporting variable-length
keys [13,26,55,65]. Most of these missing features are critical
in real-world systems and it delimits the adoption of these in-
dexes to the real-world applications without further maturing.

Alternatively, there are decades of research on in-memory
DRAM indexes [16,39,45,47,60] which are well optimized,
engineered and used in many real-world applications such as

*TThe authors contributed to this work while they were at AT&T Labs
Research. ¥The author is currently in Amazon.

Wook-Hee Kim

Samsung Electronics”

Xinwei Fu ~ Sumit Kumar Monga
Ajit Mathew* Changwoo Min
Peraton Labs®

in-memory key-value stores and databases [18,19,32,57]. If
we can leverage these in-memory DRAM indexes for NVMM,
it not only gives a large pool of well-engineered indexes but
it will also pave way for the real-world applications built on
top of these indexes to use and adopt NVMM. The challenges
in building an NVMM-optimized index has lead to a spike in
the interest to port legacy DRAM applications, particularly
in-memory key-value stores [1-4,6,7,46,49]. However, prior
works [6,46,49] report that manual porting is complex, and
error-prone requiring a lot of engineering effort. So we believe
that it is important to provide a systematic way to convert
DRAM-based indexes for the NVMM.

A few recent studies have proposed techniques [50, 62]
or guidelines [15,21,23,37] to convert volatile indexes to
NVMM. Unfortunately, these techniques have some critical
limitations such as (1) limited applicability due to restrictions
on the concurrency control (e.g., supporting only lock-free in-
dexes) [15,21,23,37,50], (2) supporting a weaker consistency
guarantee (i.e., buffered durable linearizability) [23,37,62], (3)
requiring in-depth index-specific knowledge [15,21,23,37],
(4) high performance and storage overhead due to their crash
consistency mechanism [23, 50, 62], and (5) not addressing
persistent memory leaks [15,21,23,37,62]. We further discuss
the limitations of these techniques in §2.

To address these problems, we propose TIPS— an index-
agnostic framework to systematically make a volatile DRAM
index persistent, while supporting (1) wider applicability by
not placing any restrictions on the concurrency model of an
index, (2) strong consistency model (i.e., durable linearizabil-
ity), (3) index-agnostic conversion without requiring in-depth
knowledge on a DRAM index, (4) low overhead crash con-
sistency mechanism, (5) safe persistent memory management
(e.g., no persistent memory leak), and in addition to achieving
(6) high performance and good multicore scalability. This
paper makes the following contributions:

* We propose a novel DRAM-NVMM data tiering approach
and its concurrency model called the tiered concurrency to
achieve good performance, scalability, and applicability.

* We propose a low overhead hybrid logging technique called
the UNO logging to guarantee crash consistency, to prevent
memory leaks and to guarantee durable linearizability.

* We propose the TIPS framework based on these approaches.
T1ps provides index-agnostic conversion and does not place
any restrictions on the concurrency model or require in-
depth knowledge of the volatile index being converted.

USENIX Association

2021 USENIX Annual Technical Conference 805

* We converted seven volatile indexes with different con-
currency models, a real-world key-value store Redis and
evaluated them using YCSB [14]. Our evaluation shows
that T1PS outperforms the state-of-the-art index conversion
techniques and the NVMM-optimized indexes by 3-10x
across the different YCSB workloads.

2 Background and Motivation

We discuss the limitations of existing conversion techniques
and their implications below:

(1) Restrictions on Concurrency Control. All prior tech-
niques have limited applicability; i.e., they are designed to sup-
port only a specific concurrency model. For example, NVTra-
verse [21] and link-and-persist [15] are designed for lock-free
indexes while MOD [23] is designed for purely functional
data structures. PRONTO [50] is applicable only to the glob-
ally blocking indexes (e.g., protected by a global mutex) while
RECIPE [37] guidelines apply only to the indexes that support
lock-free or fine-grained locking.

(2) Supporting Weak Consistency. Another limitation is
that most techniques [23,37,62] support only a weaker con-
sistency; A linearizable DRAM index converted using these
techniques will support only a weaker consistency model,
Buffered Durable Linearizability (BDL) [29]. Linearizabil-
ity has been the standard consistency model in DRAM in-
dexes for almost three decades [25]. Its NVMM counterpart
is Durable Linearizability (DL) [29], and it plays a critical role
in ensuring the correctness and consistency of the NVMM
index and data. Indexes with a BDL guarantee can experience
a large amount of data loss in the wake of a crash. Moreover,
it increases the programming complexity as the developers
are burdened with reasoning about the data consistency. This
makes the conversion process complex and more error-prone;
for instance, many fundamental and non-trivial crash consis-
tency bugs have been found in the RECIPE indexes [21, 22].

(3) Requiring In-depth Knowledge. Many techniques [15,
21,23,37] require in-depth knowledge of the volatile index
and expertise in NVMM programming to apply their guide-
lines correctly. Such efforts are non-trivial as even missing a
single sfence or a clwb may render an index irrecoverable.

(4) High Storage and Performance Overhead. Many
techniques suffer from high storage and performance over-
head [23,50,62] mainly due to their crash consistency mech-
anism. For example, PMThreads [62] requires two full repli-
cas (one each on DRAM and NVMM) of the original data.
MOD [23] uses Copy-on-Write (CoW) to guarantee crash con-
sistency. Such a high storage overhead might be acceptable
for primitive data structures (e.g., stack, vector). However,
it can be detrimental for indexes and real-world key-value
stores designed to handle a large volume of data. Although
PRONTO [50] uses operational logging for crash consistency
and employs a dedicated background thread for every writer
to perform the logging, it still incurs a high overhead due to

the synchronous waiting between the writers and background
threads. We further empirically analyze these overheads in §7.

(5) Persistent Memory Leaks. Another critical but a largely
understated problem is the persistent memory leaks. While
the prior conversion techniques and the NVMM-optimized
indexes focus on providing crash consistency, they completely
ignore the memory leak problem. Although NVMM allocators
can guarantee failure atomicity for allocation/free even the
mature allocator such as the PMDK [28] does not provide
an efficient solution to identify and fix the memory leak [17].
Hence it is critical to address this within the T1PS framework.

3 Overview of TIPS

We first discuss our design goals followed by the design
overview. We assume that an index being converted has key-
value store style operations such as insert, delete, update,
lookup, and scan. Throughout this paper, we address insert,
delete and update as writes, and lookup and scan as reads. The
term plugged-in index denotes a user-defined volatile index
on NVMM that is plugged into TIPS framework. We assume
that locks can be reinitialized after crash recovery.

3.1 Design Goals

G| Support Various Concurrency Models. We aim not to
place restrictions on the concurrency model of the volatile
indexes. With TIPS, we support the conversion of indexes
that use a global lock (e.g., Mutex), lock-free (e.g., CAS), and
fine-grained locking (e.g., ROWEX [39]).

G, Support Durable Linearizability (DL). The challenge
to guarantee DL in TIPS is to achieve it without compromising
the performance, scalability, and index-agnostic conversion.

G3 Support Index-agnostic Conversion. We aim to sup-
port near black-box, index-agnostic conversion to circumvent
the need for in-depth knowledge on the volatile index and
NVMM programming. This will make the conversion process
simple, intuitive, and less error-prone. We aim to achieve this
by internally handling the complications of NVMM program-
ming such as guaranteeing crash consistency and preventing
persistent memory leak within TIPS and also providing an
uniform programming interface to assist the conversion.

G4 Design a Low Overhead Crash Consistency mecha-
nism. TIPS can not rely on index-specific optimizations for
crash consistency to support an index-agnostic conversion.
The crash consistency mechanism should incur low overhead
to achieve high performance and scalability. A crash consis-
tency mechanism also should prevent persistent memory leaks
by reclaiming the unreachable objects upon recovery.

G5 Achieve High Performance and Scalability. Ideally,
we aim to perform and scale on par with NVMM-optimized
indexes. Also, we strive to retain the original characteristics
of the plugged-in index; for example, if the volatile index is
designed for cacheline efficiency or optimized for scalability,
we aim to retain and leverage such characteristics to improve

806 2021 USENIX Annual Technical Conference

USENIX Association

Application void add customer (btree, k, v) {

Thread tips_insert(btree, k, v, btree insert);
}
o Execute a TIPS facade API (tips_insert) with
a user-provided insert function (btree_insert)
TIPS
Frontend
DRAM-
cache © Insert k/vto a TIPS-managed
DRAM-cache (linearization point)
Per-thread
Operational :)
Log (OLog) btreelinsert o Insert Fhe operatlgn to A
btree k,v) operational log with a commit
@commit:ts timestamp (durability point)

Backend @ Replay operational logs in
the global timestamp order

(i.e., execute btree_insert)

Plugged-in btree
index structure

UNDO log MEM log E

(ULog) (MLog)

@ UNDO log the data @ Log allocated and freed
before update memory addresses

@) application thread @) background persist thread DRAM NVM
Figure 1: Illustrative example of inserting a key-value pair in TIPS.
the overall performance and scalability of a TIPS index.

3.2 Design Overview
3.2.1 High-Level Idea of T1PS

Figure 1 presents the TTPS architecture and illustrates how a
write operation is handled in the TIPS framework. TIPS fron-
tend consists of a hash table on DRAM (DRAM-cache) and
an operational log (OLog) on NVMM. TIPS backend consists
of the plugged-in index — the user-provided volatile index — a
background thread (persist-thread), UNDO log (ULog), and
MEM log (MLog). When a write is issued (@), TIPS first
commits it to the per-thread OLog for guaranteeing durabil-
ity (@ - durability point) and then inserts a new key-value
pair entry (or a tombstone for deletion) in the DRAM-cache
to make the write visible (@ - linearization point). Then the
persist-thread in the TIPS backend (@) replays the same write
in the background to update the plugged-in index. To guar-
antee crash consistent update to the plugged-in index, TIPS
uses ULog to store the unmodified data for recovery. Once
the plugged-in index is updated, the corresponding key-value
entry in the DRAM-cache will be reclaimed later.

Alternatively, a lookup operation first looks for the target
key in DRAM-cache and it goes to the plugged-in index only
if the target key is not present in DRAM-cache. With this
high-level idea, we next present the design overview of TIPS
and also explain how it contributes towards achieving our
design goals discussed in §3.1.

3.22 DRAM-NVMM Tiering (G, G2, G3, Gs)

At its core, TIPS adopts a novel DRAM-NVMM data tiering
approach. As illustrated in Figure 1, two critical components
that enable the DRAM-NVMM tiering are DRAM-cache in
the TIPS frontend and plugged-in index in the TIPS back-
end. Although prior NVMM-optimized B+tree index de-
signs [42,55] and conversion techniques [50, 62] have pro-
posed to use both NVMM and DRAM, our approach is fun-
damentally different. For example, PRONTO [50] builds the
index on DRAM and logs the index operations on the NVMM
to guarantee durability. Such a tiering design limits PRONTO
indexes from scaling beyond the DRAM capacity. Instead,
in TIPS, we propose tiering of the data (i.e., key-value pairs)
while keeping the plugged-in index intact on the NVMM.

Benefits. (1) Tiering the data between DRAM-NVMM
makes our approach generically applicable to any index. This
enables all the T1PS indexes to take advantage of the faster
DRAM. (2) Unlike PRONTO, TIPS can achieve a better ca-
pacity scaling by keeping the plugged-in index on the NVMM.
(3) The writes are made visible through DRAM-cache (€
in Figure 1); this enables T1PS to guarantee DL agnostic of
the plugged-in index. (4) On top of DRAM-NVMM tiering,
we build the plug-in programming model to enable index-
agnostic conversion (§3.2.6). (5) Tiering the data enables a
new concurrency model called the tiered concurrency, which
is key to achieving high performance and scalability.

3.2.3 Tiered Concurrency for Scaling Frontend (G, Gs)

Having Tips frontend and backend enables two differ-
ent levels of concurrency: (1) concurrency model of the
DRAM-cache and (2) concurrency model of the plugged-in
index. We call this a tiered concurrency model. TIPS fron-
tend allows parallel readers and parallel disjoint writers as
DRAM-cache is a concurrent hash table and OLog is per-
thread. In the critical path, all requests succeeding in the TTPS
frontend (all writes and read hits) will follow the concurrency
model of DRAM-cache, and the operations that go to the TIPS
backend (read misses and scan) will follow the concurrency
model of a plugged-in index. Also, the background writes (@
in Figure 1) to the plugged-in index is done off the critical
path adhering to concurrency model of the plugged-in index.

In a nutshell, to achieve write scalability TIPS re-
stricts writes to the faster frontend (DRAM-cache and per-
thread OLog) and for read scalability, it relies on both the
DRAM-cache and the concurrency model of the plugged-in
index. Range scans always go to the plugged-in index as it
requires full key-value data (see details in §4.1.6). Relying
on the plugged-in index for read/scan helps TIPS to reduce
the DRAM footprint as it does not need to cache the entire
dataset in DRAM-cache. Instead, it can reclaim the keys once
the plugged-in index is updated.

Benefits. (1) Even if the plugged-in index supports only
blocking concurrency (e.g., mutex), it can still leverage the

USENIX Association

2021 USENIX Annual Technical Conference 807

1 /* TIPS facade API to use a TIPS-enabled index */

2 bool tips_insert(void *ds, key_t k, value_t v, fn_insert_t *f);
3 bool tips_update(void *ds, key_t k, value_t v, fn_update_t *f);
4 bool tips_delete(void *ds, key_t k, fn_delete_t *f);

5 value_t *tips_lookup(void *ds, key_t k, fn_lookup_t *f);

6 value_t *tips_scan(void *ds, key_t start_key, int range,

7 fn_scan_t *f);

%

/* TIPS plug-in API to implement a TIPS-enabled index */
9 bool tips_ulog_add(void *addr, size_t size);

10 void* tips_alloc(size_t size);

11 void tips_free(void *addr);

Figure 2: TIPS facade APIs to access a TIPS-enabled index, and
plug-in APIs for plugging-in a volatile index to TIPS.

DRAM-cache to process all the writes and read hits concur-
rently to achieve good performance. (2) Unlike the previous
techniques [15,21,37,50], it does not place any restrictions
on the concurrency model of the volatile indexes and hence
any volatile index can be plugged-in to the T1PS framework.

3.2.4 Adaptive Scaling for Backend Scalability (Gs)

The backend writes are slower than the frontend as it writes
to the NVMM. This can cause an imbalance in the system;
to prevent this, we propose adaptive scaling of background
writers (workers) for scaling the TIPS backend. With adaptive
scaling, TTPS continuously monitors both the frontend and
backend write throughput, and when there is an imbalance it
scales up the worker count to catch up with the faster frontend
and vice versa. While scaling up, TIPS identifies the best
worker count based on the write scalability of the plugged-in
index and it caps the scale-up at that count to get maximum
performance. Also, the real-world workloads are rarely 100%
writes, so the time between writes and the adaptive scaling can
help the backend writers to catch up with a faster frontend.

Benefits. (1) It effectively utilizes the write concurrency
of the plugged-in index. (2) Unlike PRONTO [50] which
demands a dedicated worker for every foreground writer, TIPS
can dynamically adjust the worker count based on nature of
the workload and the plugged-in index.

3.2.5 UNO Logging for Crash Consistency (G4)

To achieve a low overhead index-agnostic crash consistency,
we propose the UNO logging protocol, which makes a hy-
brid and synergistic use of traditional UNDO logging and
Operational logging. In TIPS, we use operational logging
(OLog) to guarantee immediate durability and UNDO log-
ging (ULog) to ensure failure-atomicity while updating the
plugged-in index. The unique aspect of UNO logging lies in
how we leverage the OLog to reduce the notorious UNDO
logging overhead and also reduce the number of p-barrier
(clwbs followed by sfence) by batching the recurring up-
dates to the same cache line and consequently achieve a low
overhead crash consistency. Furthermore, MEM Log (MLog)
internally logs all the allocated and freed addresses and TIPS
uses this information to identify and free all the unreachable
memory upon recovery to prevent memory leaks and defers
the actual memory free operations until OLog entries are

1 void hash_insert(hash_t *hash, key_t key, val_t value) {

2 node_t **pprev_next, *node, *new_node;

3 int bucket_idx;

4 pthread_rwlock_wrlock(&hash->lock);

5 // Find a node in a collision list

6 // Case 1: update an existing key

7 if (node->key == key) {

8 // Before modifying the value, backup the old value
9

+ tips_ulog_add(&node->value, sizeof(node->value));
10 node->value = value; // then update the value
11 goto unlock_out;
12 }
13 // Case 2: add a new key
14 // Allocate a new node using tips_alloc

15 + new_node = tips_alloc(sizeof(*new_node));

16 new_node->key = key; new_node->value = value;

17 new_node->next = node;

18 // Backup the prev node before modifying it

19 + tips_ulog_add(pprev_next, sizeof(*pprev_next));

20 “pprev_next = new_node; // then update then the node
21 unlock_out:

22 pthread_rwlock_unlock(&hash->lock);

23}

Figure 3: Code snippet of a TiPS-enabled hash table insert. Only
three lines are modified in the original code; Lines 9, 19 for UNDO
logging and Line 15 for persistent memory allocation.

consumed to prevent double-free bugs.

Benefits. (1) Using OLog requires only two p-barriers in
the critical path for all write operations; one p-barrier to
persist a OLog record and one more to persist the tail pointer
(§4.1.5). This makes the durability guarantee cheap and conse-
quently a better performance (§7.2, §7.4). (2) TIPS alleviates
the UNDO logging overhead by leveraging the OLog infor-
mation to selectively log only the memory required for correct
recovery besides the merit that UNDO logging in TIPS is per-
formed by the background workers (§4.3.2). (3) With MLog
TIPS handles the persistent memory leaks with its framework
instead of delegating it to the users.

3.2.6 Plug-In Programming Model for Index-agnostic
Conversion (G»)

The plug-in programming model provides two sets of APIs
as shown in Figure 2: (1) plug-in APIs to plug-in a volatile
index to the T1PS framework and (2) facade APIs to access
the plugged-in index. The facade APIs internally manage the
OLog and DRAM-cache without requiring any user interven-
tion (steps @, @, @ in Figure 1). With the facade APIs, the
plugged-in index implementation should be passed as a func-
tion pointer £ which is used by TIPS to update the plugged-in
index. To guarantee crash consistent updates to the plugged-in
index, the developers must modify their index implementa-
tion using TIPS plug-in APIs. The modifications are simple,
as shown in Figure 3: (1) replacing the volatile memory al-
location (and free) with tips_alloc (and tips_free) and
(2) adding tips_ulog_add before modifying/writing to an
NVMM address. Tips will execute this modified code (e.g.,
hash_insert in Figure 3) during the background reply.

By replacing the malloc with tips_alloc, the plugged-in
index will now be allocated on the NVMM, and tips_alloc
will also capture all the newly allocated address in the
MLog to prevent persistent memory leaks. The developer

808 2021 USENIX Annual Technical Conference

USENIX Association

added tips_ulog_add would ensure crash consistency while
updating the plugged-in index, and TIPS internally opti-
mizes the UNDO logging (§4.3.2) for better write coalesc-
ing and performance. Moreover, a developer is not required
insert p-barriers to the volatile codebase manually. In-
stead, they just need to annotate the stores to NVMM with
tips_ulog_add. Thus, LoC changes in the plugged-in indexes
are minimal, as shown in Table 2. While the developers still
have to add the tips_ulog_add maually, they need not handle
the persistence/visibility order as in the case of manually in-
serting p-barriers, and this makes the conversion easy and
less error-prone. Note that updates to the newly allocated
addresses (in Memlog) and existing addresses (in ULog) are
batched and persisted internally by TIPS before reclaiming
the respective logs. More details on this in §4.3.

4 Design of TIPS

We first describe the T1PS frontend design in §4.1, followed
by the TIPS backend design in §4.2.

4.1 Tiprs Frontend Design
4.1.1 DRAM-cache

The DRAM-cache is a concurrent open chaining hash table.
Concurrent writers working on the different buckets are al-
lowed to proceed in parallel while the ones working on the
same bucket are synchronized using a spinlock. Readers do
not need any synchronization (i.e., lock-free reads) as all
writes to DRAM-cache are performed via a single atomic
store. DRAM-cache also employs a RCU-style epoch based
reclamation scheme for garbage collection. We choose open
chaining hash table to guarantee O(1) writes and avoid ex-
pensive rehashing in the critical path. We discuss the configu-
rations for chain length and bucket size in §6 and §7.

4.1.2 Handling Write Operations

All write operations are first committed to the OLog to guar-
antee durability, and then a new entry is created and added to
the DRAM-cache to make the writes visible. For delete, the
entry also carries a tombstone mark for the readers to identify
that it has been deleted logically. To make writes faster, the
entries are always added at the head of a bucket. We explain
how Ti1Ps guarantees Durable Linearizability (DL) in §5.

4.1.3 Handling Lookup Operation

Readers first traverse the DRAM-cache bucket looking for
the target key. As the collision chain is sorted by the arrival
order of write requests, the readers can stop at the first match
instead of traversing the entire chain. If the key is not present,
then TIPS internally redirects the readers to the plugged-in
index using the function pointer provided in the tips_lookup
call. Scan operations require traversing the plugged-in index
and the OLog to return a consistent result. We further describe
itin §4.1.6 after introducing the OLog design.

4.1.4 Safe Reclamation

Since all writes happen in the DRAM-cache, the collision
chain can proliferate and result in a high chain traversal over-
head. To address this, we employ a background garbage col-
lector thread called the gc-thread. When the chain length
of a bucket exceeds the preset threshold, the gc-thread is
triggered, which then visits the respective bucket and safely
reclaims the entries. To ensure safe reclamation of entries
i.e., without impacting the concurrent readers, TIPS employs
an epoch-based reclamation scheme, which is widely used in
lock-free and RCU-based data structures [20,24,48,61]. TIPS
manages two types of epochs: (1) local epoch, which is the
global epoch value when readers enter the critical section, and
(2) global epoch, which is advanced when all active readers
in the current epoch exit the critical section.

The gc-thread first logically reclaims entries by unlinking
them from the collision chain and storing them in the free-list.
The reclaimed entry then becomes invisible to new readers.
Note that the gc-thread logically reclaims the entries that are
successfully replayed, so upon a read miss, readers can still
retrieve the reclaimed entries from the plugged-in index. To
determine if there are any outstanding readers on the logically
reclaimed entries, the gc-thread checks the local epoch of all
the active readers. If the local epoch is the same as the global
epoch, i.e., no outstanding readers from the previous epoch
exist; then the gc-thread physically frees the entries in the
free-list that are logically reclaimed two epochs ago. Note
that the gc-thread atomically modifies the collision chain, so
the readers and writers are free to enter the critical section
without waiting for reclamation to finish.

4.1.5 Operational Log (OLog)

OLog guarantees durability to the write operations executed
on the DRAM-cache. An OLog record consists of the oper-
ation type (insert, delete or update), the respective function
pointer to the plugged-in index logic, key, value, and a global
timestamp (commit-ts) to denote the commit order of an oper-
ation. OLog is a circular buffer where new entries are always
added at the tail. The atomicity for an OLog write is guaran-
teed by its tail pointer update. Once an OLog record is written
and persisted, the tail pointer is atomically updated to point
to the new record, followed by persisting the tail pointer.

4.1.6 Handling the Scan Operations

Algorithm. The scan operation in TIPS is always directed to
the plugged-in index, as it requires a full range of keys and
values. However, the plugged-in index is not guaranteed to be
up-to-date since the persist-thread might still be propagating
some of the updates that might potentially fall within the
scan range. So, after scanning the plugged-in index, TIPS
traverses the OLogs looking for any potential keys that might
fall within the scan range. Upon finding any, the scan buffer
is adjusted to incorporate not yet propagated operations.

Traversing OLog. To minimize the OLog traversal over-

USENIX Association

2021 USENIX Annual Technical Conference 809

head, we leverage the commit timestamp of each OLog record
(commit-ts) and the timestamp when a scan operation starts
(scan-ts). While traversing the OLog, the scan thread com-
pares its scan-ts with the commit-ts. If the commit-ts <
scan-ts, then the scan thread reads the key information in
the OLog record and checks if it falls within the scan range.
It is safe to ignore OLog records with commit-ts > scan-ts
because these are in the future with respect to the scan thread,
so it can stop traversing the OLog. Refer to §5 for correct-
ness. Traversing the OLog is fast and adds only a negli-
gible overhead for three reasons: (1) We partially traverse
not-yet-propagated OLog entries stopping at the first future
entry. (2) As the persist-thread continuously propagates the
updates, there will not be much backlog in the OLog. (3) Fi-
nally, the scanning of OLog is a sequential read operation
on the NVMM, which is almost as fast as reading from the
DRAM [64]. We verify this emperically in §7.3.

4.2 Tirs Backend Design

The primary role of the TIPS backend is to combine and
replay the per-thread OLog on the plugged-in index. To guar-
antee correct replay order, the persist-thread combines the per-
thread OLog entries, and then it spawns the required number
of background workers, which replays the combined entries to
the plugged-in index. The persist-thread decides the required
worker count on-fly using the adaptive scaling algorithm. The
following subsections explain each of these steps in detail.

4.2.1 Adaptive Scaling of Background Workers

T1ps automatically adjusts the number of workers at every
epoch based on the write scalability of the plugged-in index
and the nature of the workload. One epoch (e) is defined as
one iteration of combining and replying the OLog entries. We
denote W, as the worker count for the next epoch e + 1.

At every epoch e, TIPS calculates the foreground through-
put (F), which is the number of OLog entries produced by
application threads during the epoch, and the background
throughput, which is the number of OLog entries consumed
by the worker threads during the epoch. TIPS calculates the
processing rate R, which is F,/B,. It aims to maintain R,
close to 1 by adjusting the number of workers (W,).

If R, > 1, the foreground writers are filling up the OLog
at a faster pace, and if this situation persists, it will lead to
blocking of writers as the workers are slow in clearing up the
OLogs. So TrIps will increase W, by a predefined step A
aiming to improve the B, and keep up with F,.

If R, < 0.5, workers are clearing up the OLogs faster than
foreground writers fill them up. Employing excess number of
workers is a waste of CPU, so TIPS decreases W, by A.

Finally, if 1 < R, < 0.5, TIPS considers that the workers
are on par with foreground writers and hence maintains the
same number of workers (i.e., W,1 = W,).

TIPS maintains a user-configurable upper bound (W*“?) and
a lower bound (W'") to cap the number of workers (W,)

while scaling up and down respectively. In addition, while
scaling up, TIPS memorizes the best performing worker count
(W™Me); so that if W, reaches the upper bound TIPS can fall
back to W”** and continue until scaling down is needed.

By default, TIPS sets W/*" to 0 and W*? to the number of
physical cores. TIPS uses a smaller A when the worker count
is small (i.e., A =1 when W, < 4) and uses a bigger A when
the worker count is large (i.e., A =4 when W, > 4).

4.2.2 Concurrent Replay of OLog Entries

After deciding the number of workers, persist-thread com-
bines the per-thread OLog entries and adds them to the per-
worker queue. To avoid copy overhead, TIPS maintains only
a pointer to the OLog record in per-worker queue.

There are two key invariants that must be maintained in
the combining process: (1) Since the OLog records are re-
played concurrently, it is essential to maintain the correct
ordering, especially for non-commutative operations (e.g.,
insert(kl,v) and delete(kl)). For commutative operations
(e.g., insert(k2,v) and delete(k3)), the replay can be done
in any order without violating the correctness. (2) The OLog
can not be reclaimed until all the entries in the per-worker
queues are consumed. For (1), TIPS uses hashing to ensure
that all the non-commutative operations will be placed in the
same worker-queue. After combining, persist-thread spawns
W, workers. Then each worker sorts the entries in the times-
tamp (commit-ts) order and replays them to the plugged-in
index. This ensures that non-commutative operations are al-
ways executed by the same worker in their exact order of ar-
rival. For (2), persist-thread waits until the end of the current
epoch to safely reclaim the OLog (see the details in §4.3.3).

4.3 UNO Logging

In this section, we describe the design of ULog and MLog.
Similar to OLog, the atomicity of ULog and MLog writes
is guaranteed by atomic tail pointer update. Both ULog and
MLog are protected using a global Readers-Writer lock.

4.3.1 Memory Log (MLog)

What to log? All the newly allocated and freed addresses
are recorded in the MLog along with a tag to denote if the
address is allocated or freed. Also, each allocated address
carries a timestamp (alloc-ts) to denote the time at which
the particular address is allocated. TIPS memory allocation
APIs internally use PMDK allocator. PMDK not only guaran-
tees failure atomicity for memory allocation and free but also
atomic persistence of a variable that stores the NVMM heap
address [28]; T1PS passes an address in MLog to the PMDK
memory allocation API that guarantees the address pointing
to the allocated memory is persisted when returning from
the APIL. Similarly, PMDK memory free guarantees atomic
persistence for an address that is set to NULL. During recovery,
all the non-NULL addresses with the “allocated” tag in MLog
are deemed to be non-reachable. Such addresses are freed to
avoid memory leaks as the insert operations that created these

810 2021 USENIX Annual Technical Conference

USENIX Association

addresses will be re-executed again from the OLog. Similarly,
it is possible to re-execute the same OLog entry more than
once; This can cause a double-free bug if a crash happens
amidst a delete operation. To avoid this, TIPS logically re-
moves the address from the plugged-in index, stores it in the
MLog, and defers the actual memory free until the subsequent
OLog reclamation. Because after reclaiming the OLog, the
delete operation can not be re-executed again.

A running example. Suppose that inserting (or deleting)
a key triggers split (or merge) on the leaf node A in a B+-
tree, and a new leaf node A’ is allocated (or the existing A
freed). Say a crash happens before the completion of split
(or merge) but after allocating A’ (or freeing A). During the
recovery, TIPS will re-execute the same insert (or delete) from
the OLog, and it once again allocates a new leaf node A” (or
free A again). This scenario leads to a persistent memory-leak
of A’ (or double-free of A). With the MLog, TIPS can reclaim
the previously allocated node A’ (or restore node A) during
recovery to avoid persistent memory leak (or double-free).

4.3.2 UNDO Log (ULog)

What to log? ULog is used by the worker threads to guar-
antee failure-atomic updates to the plugged-in index. Gen-
erally, all the addresses that are being modified are required
to be logged in the ULog. Instead, in TIPS, we leverage the
OLog information to selectively log only the addresses that
are needed for correct recovery. To decide whether to log
a given address, the workers rely on two timestamp infor-
mation: 1) the time at which the requested address is allo-
cated (alloc-ts) and 2) the time of last OLog reclamation
(reclaim-ts). If the requested address has its alloc-ts >
reclaim-ts (i.e., the address is allocated after the last OLog
reclamation), then the operation to recreate the contents of
this address is guaranteed to be present in the OLog. Hence
the workers skip the UNDO logging. Otherwise, the workers
first check if the requested address is already logged due to
any previous write request. If so, the workers will skip the
UNDO logging; else, they record the contents of the requested
address in the ULog. The persist-thread defers the persistence
of addresses in the ULog until the subsequent ULog recla-
mation. Thus, recurring updates to the same address can be
batched and persisted at the start of every ULog reclamation.

A running example. Say a B+-tree node A is being modified
500 times between two ULog reclamations. Then a worker
will log A in the ULog at the time of its first modification
and reuse the same record until the next ULog reclamation.
After the 500th update, say a ULog reclamation is triggered;
the persist-thread before reclaiming the ULog will persist A
with its latest update. If a crash happens before persisting 4,
during the recovery, TIPS correctly spots and reverts node A
to the state before its first modification from the ULog. Then
it re-executes all the 500 updates from the OLog to bring A to
its latest state before the failure.

4.3.3 UNO Logging Reclamation

Log reclamation is triggered when any of OLog or ULog
reaches their preset capacity threshold. The persist-thread
always reclaims all the logs together even if only one of
them reaches its capacity threshold. That is because, in TIPS,
the information required for a correct recovery is distributed
across all three logs. The reclamation yields for two cases;
it waits until the (1) current epoch of background replay to
end, and (2) pending scans to finish traversing the OLog. The
UNO logging reclamation consists of the following two steps:

Step 1. Flush the addresses in the ULog and MLog. First,
all the addresses in the ULog and MLog are persisted by
calling p-barrier. This guarantees that all the writes that
occurred since the last UNO reclamation are persisted.

Step 2. Reclaim the logs. Replayed OLog entries and per-
sisted ULog entries in Step 1 are obsolete; they can be safely
reclaimed to free up space for the incoming writes. Since
the OLog has been reclaimed; we no longer required to keep
track of the allocated and freed addresses; so the logically
reclaimed addresses stored in the MLog are physically freed
and then the MLog space can also be safely reclaimed.

Crash safety of reclamation. The reclamation procedure is
crash-safe. The crash safety is guaranteed by atomically set-
ting the flush_done flag after the completion of Step 1. Upon
a crash, the recovery procedure first checks the flush_done
flag. If the flag is set, it means that Step 1 has been completed
successfully before the crash occurred and this guarantees that
all the updates to the plugged-in index are persisted. Hence
the recovery simply reclaims the remaining logs (Step 2) and
terminates. If the flag is unset, then a standard recovery pro-
cedure described in the following section is followed.

4.4 Recovery

T1Ps flushes all the logs and sets the tail pointer of the UNO
log to NULL upon a safe termination. Therefore, if the tail is
non-NULL upon a TIPS restart, it triggers the recovery proce-
dure. If flush_done is set, recovery proceeds as described in
the previous section. Otherwise, the recovery consists of three
steps; (1) replay ULog to set the index to the exact consistent
state that existed at the last UNO reclamation; (2) free all the
newly allocated addresses (before the crash) from the MLog
to prevent persistent memory leaks; (3) replay the OLog to
get to the last successfully committed update before the crash.
Note that the logs are replayed only up to their tail pointers to
avoid executing any partial writes during the recovery.

If a crash occurs during the ULog replay (Step 1) or MLog
free (Step 2), TIPS can continue from where it left off. This
is because the changes to the plugged-in index due to ULog
replay are immediately persisted. Also, freeing MLog after
ULog replay does not affect the persistent state of the index.
As described in §4.3.1, freeing MLog entries is guaranteed
with atomic persistence to NULL, making this step failure-safe.
On the other hand, if there is a crash while executing OLog

USENIX Association

2021 USENIX Annual Technical Conference 811

entries (Step 3), TIPS treats it similar to the failure during
normal execution; i.e., after rebooting, TIPS re-executes all
the three steps. Because replaying OLog during recovery
is treated similar to replaying the OLog in the background
during normal execution. Note that re-executing OLogs after
the ULog and MLog replay is idempotent, so it does not affect
the consistency of the plugged-in index.

5 Correctness of T1PS

Theorem 1. TIPS guarantees Durable Linearizability (DL).

Proof. To guarantee DL, TIPS must satisfy three main invari-
ants: (1) Effect of a committed operation can not be undone
in the face of a crash. For all the non-commutative operations
(e.g., insert(kl,v), delete(kl)), (2) the order of commit
(i.e., OLog write), and visibility (i.e., DRAM-cache write)
must always be maintained; and (3) also the background re-
play must be performed in the linearization order—in the same
order as the operations are made visible in the TIPS frontend.

For (1), the effect of a write operation is visible only after
updating the DRAM-cache entry, which is strictly done after
persisting the OLog record. This guarantees that the readers
will never observe the effects of non-durable write. For (2),
the commit and the visibility order for non-commutative oper-
ations are synchronized using the per-bucket spinlock in the
DRAM-cache as such operations is always guaranteed to hap-
pen on the same DRAM-cache bucket. A writer acquires the
lock and commits its operation in the OLog with a timestamp
(commit-ts). Then it adds the entry in the DRAM-cache and
releases the lock, which guarantees that the order of com-
mit and visibility is always the same for non-commutative
operations. For (3), as described in §4.2.2, TIPS uses hash-
ing to ensure non-commutative operations always go to the
same worker queue. Then the worker sorts its queue in the
commi t-ts order and updates the plugged-in index to maintain
the linearization order. For commuting operations, maintain-
ing the linearization order is not required as they work on
disjoint keys, so the effect of such operations will be the same
regardless of the order in which they are executed.

By guaranteeing DL, TIPS eliminates the possibility of non-
trivial crash consistency bugs as found in the previous work
RECIPE [37]. Particularly, T1PS avoids the dirty read bugs as
unpersisted writes are never visible to readers as guaranteed
by (1). Even if certain reads are served from the DRAM-cache
and say a crash happens, the OLog reply during the recovery
will ensure that the plugged-in index is up to date with all
the committed writes that happened before the crash. This
ensures that all the pre-crash reads are still valid as they can
be retrieved from the plugged-in index. O

Theorem 2. TIPS guarantees DL for scan operations.

Proof. A scan operation in TIPS traverses both the plugged-
in index and the OLog, and then it merges the results. The
DL guarantee can be violated if (1) the scan thread reads a

partially written OLog entry and (2) if it reads the unpersisted
tail pointer. Both these cases can result in loss of data if a crash
happens because of reading non-durable data. To avoid (1),
the scan thread traverses the OLog from head to tail and this
will hide any ongoing OLog writes as the failure atomicity of
an OLog write is guaranteed by atomically updating the tail
pointer (§4.1.5). To avoid (2), the scan thread before starting
its traversal, checks if the tail pointer is persisted. If yes, it
starts traversing; else, it backs off and retries. O

6 TIPS Implementation

T1PS is written in C, and the core library is about 5000 LoC.
We use the hardware clock (rdtscp in x86 architecture) for
scalable timestamp allocation. To address the clock skew
between the CPU cores, we use ORDO [31] as done in
many other previous works [33, 35]. Note that ORDO does
not require any hardware extensions. We set the maximum
DRAM-cache chain length to 5 beyond which the gc-thread
starts reclaiming the applied entries in the chain. We chose
this number after carefully considering the DRAM/NVMM
random read performance ratio; random read latency in
NVMM is about 5x slower than DRAM [64] so that travers-
ing more than 5 nodes in the collision chain do not pay off.

7 Evaluation

We evaluate TIPS by answering the following questions: (1)
How do T1Ps perform against prior conversion techniques
(§7.2)? (2) How do the T1Ps-indexes perform against prior
NVMM-optimized indexes (§7.3)? (3) How do the Tips-
indexes scale for different workloads (§7.4)? (4) What is the
sensitivity for DRAM-cache and UNO logging size (§7.5)?
(5) How does TIPS impact real-world application (§7.6)?

Evaluation Platform. We use a system with Intel Optane
DC Persistent Memory (DCPMM). It has two sockets with
Intel Xeon Gold 5218 CPU with 16 cores per socket, 512GB
of NVMM (4% 128GB) and 64 GB of DRAM (4x16GB). We
used GCC 8.3.1 with -03 flag to compile benchmarks and ran
all our experiments on Linux kernel 4.18.16.

Configuration. We used YCSB [14]- a standard key-value
store benchmark (Table 1) for all our evaluations. We used
index-microbench [60] to generate the YCSB workloads. We
ran the benchmarks for 32 million keys; we first populate an
index with 32M keys and then run the workloads, which per-
forms 32M operations. We use random integer and string keys
with uniform distribution. We also evaluate the TIPS for large
datasets and Zipfian distribution in §7.4. We preset the size
of our per-thread OLog and the global ULog to 32MB each,
the DRAM-cache to cache 25% of the total number of keys
(300 MB) and the upper bound for the number of workers
(W¥P) to 32 (i.e., half of the available CPUs). We present the
sensitivity analysis for these configurations in §7.5. To ensure
a fair comparison, we carefully chose the indexes as the exist-
ing conversion techniques are specific to certain concurrency

812 2021 USENIX Annual Technical Conference

USENIX Association

models. We also ported all the indexes to use the PMDK
memory allocator. Porting all the RECIPE [37] and NVTra-
verse [21] indexes with PMDK allocator incurred about 1800
LoC. For all our evaluations (unless mentioned specifically),
we use 32 threads to match the maximum physical CPU cores
(without hyperthreads) available on our platform and present
the scalability results for all the T1PS-indexes in §7.4.

7.1 Converting Volatile Index using TIPS

Converting an index using TIPS is simple (§3.2.6), and it
requires only minimal LoC changes as shown in Table 2. For
all the indexes, we replace the memory allocation (and free)
with tips_alloc (and tips_free). Below we discuss how we
annotated the NVMM stores with tips_ulog_add.

Index with Single Pointer Updates. Indexes for which write
operations involve updating only a single pointer such as a
Hash Table (HT), BST, and CLHT requires a tips_ulog_add
before updating the HT/BST/CLHT node in the insert and
delete logic, similar to the example shown in Figure 3. The
lock-free indexes (LFHT/LFBST) use atomic Compare and
Swap (CAS) and we added a tips_ulog_add before the CAS
logic such that tips_ulog_add will be called again upon a
CAS retry. Note that repeated UNDO logging will neither
impact the correctness nor the performance as TIPS performs
UNDO logging for an address only at the time of its first
modification (§4.3.2). All such conversions require only 5-8
lines of change to the existing volatile codebase (Table 2).

Index with Multi-Pointer Updates. For the indexes like
the B+tree or ART tips_ulog_add is added to backup the
B+Tree/ART node before the triggering node split/merge
operation. Also, tips_ulog_add is added before modifying
the B+Tree/ART node in the normal case insert and delete
logic. Totally it required only 11 and 9 LoC changes in the
B+tree and ART codebase respectively. Note that none of the
indexes require any modification in their read and scan logic.

Comparison with other Conversion Techniques.
PRONTO [50] requires developers to manually add
op_begin() and op_commit(). With NVTraverse [21]
developers must first modify the index implemetation to a
"traversal" index and then manually add the ensureReachable
and makePersistent APIs. Similar to the tips_ulog_add
(§3.2.6), the aformentioned APIs will internally issue
p-barrier without requiring any user intervention. Addi-
tionally, unlike PRONTO and NVTraverse, TIPS can be
used on indexes supporting different concurrency models.
Like Tips, both PRONTO and NVTraverse formally prove
that their conversion yields correct persistent algorithm by
guaranteeing DL. As also reported in the NVTraverse paper,

YCSB Workload | Read-Write-Scan % | Workload Nature
A 50-50-0 Write Intensive
B 95-5-0 Read Intensive
C 100-0-0 Read Only
D 95-5-0 Read Latest
E 0-5-95 Short Range Scan

Table 1: Characteristics of YCSB workloads.

Indexes

Concurrency Control

LoC

Hash table (HT)

Lock-Free HT (LFHT) [51]
Binary Search Tree (BST)
Lock-Free BST (LFBST) [12]

Readers-writer lock
Non-blocking reads and writes
Readers-writer lock
Non-blocking reads and writes

5/211
5/199
5203
5/194

B-+tree Readers-Writer lock 8/711
Adaptive Radix Tree (ART) [40] Non-blocking reads/blocking writes 9/1.5K
Cache-line Hash Table (CLHT) [16] Non-blocking reads/blocking writes 8/2.8K
Redis [8] Blocking reads and writes 18/10K

Table 2: Lines of code (LoC) to convert volatile indexes using TIPS.

F-1 F-2
10 14
PRONTO-HT . BzTrec mummmm
TIPS-HT tooonaff 12 FastFair s
RONTO-B+Tree — 10 FastFair-str .
8 TIPS-B+Tree mooooafy 8 TIPS-B+Tree mooxx g
2 a8 Z TIPS-str g

&
K
&
KA
el
KA
el
KA
1
K
K

XL

KKK,
91010707078
<>
SO

XK
K

0%

60
T
6%

e
<X
0%

O

X

=)

&5
XX
X

8

6

4

il

0 K '
A B

A D E C D E
YCSB Workload YCSB Workload

Figure 4: Performance comparison of TIPS against PRONTO for

Hash Table (HT) and B+Tree (F-1) and T1ps-B+Tree against the

NVMM-optimized B+Tree indexes— FastFair and BzTree (F-2).

RECIPE [37] can not always guarantee a correct conversion,
even for the indexes that fall under their prescribed condition.

Moreover, RECIPE does not formalize the guarantees of
their conversions and does not discuss the implications of
guaranteeing BDL. Their updated ArXiv version [38] pre-
scribes to selectively add p-barrier to specific loads to guar-
antee DL. But it is left to the developers to figure out the loads
that needs to be correctly flushed; this further complicates
the conversion. Alternatively, TIPS requires only minimal and
simple modifications in the volatile codebase. We also for-
mally describe how our conversion guarantees DL and yields
a correct persistent algorithm for all our conversions.

7.2 Ti1ps vs. Other Conversion Techniques

Tips vs. PRONTO [50]. PRONTO is the state-of-the-art
technique to convert globally blocking indexes with DL guar-
antee. As shown in Figure 4 (F1), both T1ps-HT and T1pS-
B+Tree outperform the PRONTO counterparts by 20x across
all workloads. Although both T1PS (T1PS-HT, T1PS-B+Tree)
and PRONTO use RW lock for concurrency, TIPS can pro-
cess the reads and writes concurrently in the DRAM-cache,
and hence it shows a better performance. Also, PRONTO’s
overhead mainly comes from the synchronous waiting of writ-
ers for its background thread to complete the logging. Our
performance profiling on the PRONTO-HT reveals that about
25% of the execution time is spent on synchronous waiting. In
T1Ps, there is no such synchronous waiting as it does not have
any separate logging threads. Instead, writers will perform
logging in their private OLog. Another source of overhead
is the blocking during snapshots, which accounts for 8% of
the execution time. Moreover, PRONTO builds its index on
DRAM, so it can not scale beyond the DRAM capacity while
T1PS can scale up to the NVMM capacity. This is a critical
design benefit because legacy applications adopt NVMM not

USENIX Association

2021 USENIX Annual Technical Conference 813

F-1

NVT-BST
0 TIPS-LFBST xzxxzx
RECIPE-LFHT s
TIPS-LFHT oo

[
55
(=]

CCEH
TIPS-CLHT &xxxxxi
LevelHashing s £

RECIPE-CLHT,
4 %
0
A B C D

YCSB Workload YCSB Wnrkload
Figure 5: Performance comparison of T1PS with NVTraverse (F-1),
RECIPE (F-1, F-2) and TirS-CLHT with NVMM-optimized hash
indexes— CCEH and LevelHashing (F-2).

—_

—_ =
[SS I

Mops/sec
[oe]

Mops/sec

BOBBOBOBXX K II IR

(=
.
RXXKKKKA
DOXXXXHXHKHRNA

F-1 F-2
15 2 WOART

WOART
12 L RECIPE-ART msm 3 RECIPE-ART s
TIPS-ART x=xxzx

9 TIPS-ART Exxxzx
6
(| ol Ig
ol R o L_HMR |

A B C A B C
YCSB Workload

YCSB Workload
Figure 6: Performance comparison of TIPS-ART with RECIPE-

ART and WOART for 32 threads (F-1) and 1 thread (F-2).

2529

X

KRR

Mops/sec

o

2]

'Z'!’Z’Z

il
E

just for durability but also for its large in-memory capacity.

T1PS vs. NVTraverse [21]. NVTraverse is the state-of-the-
art technique to convert lock-free indexes with DL guaran-
tee. As shown in Figure 5 (F-1), TipS-LFBST outperforms
NVT-BST by up to 3x across all workloads. Further analysis
revealed that on average, each read and write in NVT-BST
incurs 6 and 17 p-barriers, respectively, in the critical path.
While T1pS-LFBST incurs only 2 p-barriers for each write
in the critical path and reads never require p-barrier, thanks
to the UNO logging and the DRAM-cache. Moreover, TIPS
serves up to 25% of read requests from the DRAM-cache. So
the readers do not need to traverse the BST on the NVMM
for 25% of its read requests and hence a better performance.

T1ps vs. RECIPE [37]. Comparing TIPS and RECIPE in
terms of performance is not an apple-to-apple comparison
as RECIPE supports only a weaker consistency (i.e., BDL).
Besides performance, we also stress how hard it is to achieve
DL without trading off performance. Figure 5 and Figure 6
compare the performance of TIPS and RECIPE for LFHT,
ART [39], and CLHT [16], respectively. TIPS indexes perform
similar or better than RECIPE indexes across all workloads ex-
cept for CLHT in workload A. This is because writes to CLHT
incurs only one cacheline modification and one p-barrier
in RECIPE. While in T1ps-CLHT, it incurs two p-barriers
to commit the OLog. Nonetheless, TIPS-CLHT supports DL,
and it performs mostly similar to NVMM-optimized hash
indexes CCEH [53] and LevelHashing [66]. An easy way
to guarantee DL, as proposed by Izraelevitz et al. [29] is to
add a p-barrier for every reads and writes. We followed it
to make a DL version of the RECIPE hash table (DL-LFHT
in Figure 5). Such a conversion leads up to 1.4x drop in per-
formance. One can also perform index-specific optimizations
like the NVTraverse to guarantee DL. However, it requires

expertise in NVMM programming and in-depth knowledge of
the volatile index. Conversely, TIPS achieves DL with good
performance and, notably, in an index-agnostic way.

7.3 Tiprs vs. NVMM-optimized Indexes

Tr1pPS-B+tree. Figure 4 (F-2) shows the performance of TIPS-
B+tree against FastFair [26], and BzTree [11]. TIPS outper-
forms BzTree by up to 3x across all workloads; BzTree uses
CoW and PMwCAS [59] to support crash consistency, and
this generates a lot of NVMM write traffic. Unlike BzTree,
T1PS-B+tree supports low overhead crash consistency using
UNO logging and hence a better performance. TIPS performs
similar or better than FastFair except for workload C. FastFair,
with its smaller fanout (16), provides good point query perfor-
mance, and TIPS-B+tree with a larger fanout (128) provides a
good range query performance than FastFair. For string keys,
FastFair (FastFair-str) performs up to 5x slower than TIPS
(Trps-str) as it loses its cache efficiency due to additional
pointer chasing to retrieve string keys. Note that TIPS stores
pointer to its keys for both string and integer keys; therefore
no significant performance drop is observed.

T1PS-ART. In Figure 6, we present the performance of TIPS-
ART and WOART [36]- volatile ART variant designed for
NVMM. WOART is single-threaded, and hence we used a
global lock for concurrency as done in previous work [37,38].
WOART performs up to 40x slower than TTIPS-ART across
different workloads due to its poor concurrency model. For a
single thread, TIPS-ART performs similar to WOART except
for workload E. For workload E, the performance of T1ps-
ART and RECIPE-ART are almost identical; this proves our
claim in §4.1.6 that the additional OLog traversal in scan
operations imposes negligible overhead. Our performance
profiling revealed that only 2-3% of the time is spent on
traversing OLog regardless of thread count.

7.4 Analysis on T1PS Design

Write Scalability. Figure 7 shows the scalability of the TIPS
indexes. For write-intensive workload A, all TIPS indexes
show good performance and scalability; for TipS-B+Tree a
sharp increase is observed after 16 threads. Because (1) for
lower thread counts, the aggregate OLog size is less (OLog is
per-thread). Moreover, as TIPS-B+Tree uses global RW lock
T1PS backend writes are slower than the concurrent frontend
writes, and consequently, foreground writers are blocked due
to the lack of OLog space. (2) For higher thread counts, fore-
ground blocking time is significantly reduced with a larger
aggregate OLog size, Although the T1PS-HT uses RW lock,
it is per-bucket and hence a better level of concurrency than
the Tips-B+tree. This enables TIPS backend to reply the
OLog concurrently and hence a better performance for TIPS-
HT. Still, for 16 threads, TTPS-B+tree outperforms PRONTO-
B+Tree which also uses global RW lock by up to 3.

Read Scalability. All Tips indexes show good scalability
for read-intensive workloads. Indexes supporting concurrent

814 2021 USENIX Annual Technical Conference

USENIX Association

35 Workload A | Workload B . Workload C 20 Workload D p Workload E
3'0 TipS-HT —f— TIPS-LFHT - -X- - TIPS-LFBST - {3 - ¢ Tips-CLHT —@— TiPs-B+Trec — -
S5 | PRONTOHT —e 9% 8 PMDK-HT 10 o 16 Mg 0 TIPS-ART - ©—
o P e 4
£ 20 : 8 3
515 —~
= 10 2
0.5 1
0.0 0

Threads # Threads

Threads

1 8 16
Threads

24 32

Threads

Figure 7: Scalability of TIPS-HT (RW lock), TipS-B+Tree (RW lock), TipS-LFHT, Tips-LFBST, T1ps-CLHT and T1pPS-ART.

TIPS-CLHT
12 TIPS-LFBST xxxzzx
TIPS-ART =
TIPS-B+Tree oo
TIPS-LFHT xzm
I ‘ % l TIPS-HT x=x=xx
C
YCSB Workload

]

Figure 8: Performance of TIPS indexes for Zipfian workloads.

Mops/sec

reads show good performance; for instance, TiPS-LFHT per-
forms up to 1.2x better than T1PS-HT (RW lock) in workload
C. All indexes regardless of their concurrency model shows
high performance for workload D. Because workload D fol-
lows read-latest distribution, latest writes are being repeatedly
read. Fortunately, the latest writes are most likely to be present
in the DRAM-cache; hence a higher read hit ratio and con-
sequently better performance. Although we cache only 25%
of the keys for all workloads, the read hit for workload D is
about 70%, while for other workloads it is less than 25%.

Impact of UNO Logging. Both Tips-HT and PMDK-HT
(Figure 7) use RW lock, and they both use the UNDO logging
to guarantee crash consistency while updating the hash table.
However, despite the similarities, TIPS-HT significantly out-
performs PMDK-HT. The main performance bottleneck in
PMDK is the logging operations in the critical path. This is
evident from Figure 7, PMDK-HT performs and scales on
par with T1ips-HT for workload C (100% reads), but its per-
formance plateaus even for a small fraction of writes (5%) in
workload B. With UNO logging, UNDO logging is kept off
the critical path and consequently making TIPS scale better.

Impact of Skewed Workloads. Figure 8 shows the perfor-
mance of TIPS indexes for Zipfian distribution; all indexes
shows up to 2x better performance than the uniform dis-
tribution. Particularly for workload A, the chances of write
coalescing in the ULog increases due to frequent updates to
the same address. This reduces the number of UNDO logging
performed, and further analysis revealed that the number of
UNDO logging performed is reduced by 16% than that of
uniform distribution. This further accelerates the background
writes, and thus overall write performance is improved. For
read-intensive workloads, repeated reading of hotkeys results
in more DRAM-cache hits and eventually a better read perfor-
mance. On average, the DRAM-cache hit ratio is increased
by 5% for the Zipfian distribution. Overall, TIPS, in partic-

F-1 F-2

—_
S5}
553
(=]

I 64M Keys o gH 32-Threads rooosg
@
210 96M Keys s 516 16-Threads &xzzza
a. 3 128M Keys wooosa E 1-Thread fesessd
) 9]
= 212 g
~ =
6 g S
= 9
2 K
o o E 8 o 9
= o s R R
) 4 H] & K
3 K P 4 K &
e 2 K > & &
K K K
£ A < 8 8
= 0 K K5 K

>
o~)
@]
)
>
o]
a
)

YCSB Workload YCSB Workload
Figure 9: Studying the impact of large dataset (F-1) for 32 threads
and adaptive scaling (F-2) for varying threads with T1PS-ART.

ular, UNO logging and DRAM-cache are well equipped to
handle the skewed workloads. Note that we did not evaluate
workload D as it supports read-latest distribution by default.

Impact of Large Dataset. Figure 9 (F-1) presents the perfor-
mance of TIPS-ART for large datasets. While the performance
for 64M and 96M keys is mostly the same across all the work-
loads, there is up to a 23% drop in performance for 128M
keys. Particularly for workload C, the performance drop is
also observed for 96M keys; for a larger dataset, the ART
index grows bigger, and it results in increased pointer chasing
to get to the leaf nodes, and hence there is a slight dip in the
performance. Note that the RECIPE-ART also exhibits a per-
formance drop of up to 16% across all workloads for 128M
keys. Overall, this evaluation shows that TIPS as a system can
handle much larger datasets effectively.

Impact of Adaptive Scaling. Figure 9 (F-2) shows the aver-
age number of background workers used for TIPS-ART. More
workers are used for workload A as it is write-intensive, for
all the other workloads workers count is relatively less as the
write ratio is marginal. No workers are created for workload
C as it is read-only. Workload E has the same write ratio (5%)
as B and D, but T1ps employs only one worker for E. Because
ART’s scan is inherently slower, hence the foreground threads
spend most of the time on the scan operation (i.e., foreground
writes are slow), this gives TIPS enough time propagate the
updates. Thus our adaptive scaling can effectively adapt for
the nature of workloads and the plugged-in index.

7.5 Sensitivity Analysis

Sensitivity to DRAM-cache Size. As shown in Figure 10,
for read-intensive workloads, about 1.8-2.8 x performance
increase is observed as % keys cached increases. This is
because the read hit ratio increases as more keys are being

USENIX Association

2021 USENIX Annual Technical Conference 815

(53 -
Q
s 3 100
g 25 YCSB-A oo " - YCSB-D

. R = o
5 2 YCSB-B xxxxzx ;Ej o 75 :::E’:j
o= K ol
5§ 1.5 |- YCSB-C coooo o T 50 i
= RR K 3 1

7

Oy REEC EERS oS ol
Z 0.5 SRt hel IS8 KK
A= alelsl 4K 0 sk
L
~ 50 100 100

% Keys Cached % Keys Cached

Figure 10: Performance sensitivity of TipS-B+tree (F-1) and read
hit % (F-2) for the varying DRAM-cache size. X-axis represents the
% of keys cached in the DRAM-cache (default = 25%).

3 F-1 F-2

5§15 £30

g TiPS-B+Tree woooo S5 TIPS-ART xxxxxx
£12 220

5 09 5is

. Sl

.z 03 -5

R D 53 S
& 4 8 16 32 64 4 8 16 32 64

UNO Log Size (MB) UNO Log Size (MB)

Figure 11: Performance sensitivity (F-1) and the number of log
reclamations triggered (F-2) in Tips-B+Tree and T1pPS-ART for the
varying UNO log size for Workload A (default = 32MB).

cached, enabling readers to complete their reads on the faster
DRAM. Since workload A is write-intensive, it is less sen-
sitive to DRAM-cache size. As more writes happen on the
DRAM-cache, the applied keys are actively evicted, and it
stores mostly the newly written keys. This poorly impacts the
read hit ratio, and consequently, readers are forced to fall back
to the B+tree on the NVMM.

Sensitivity to UNO Log Size. Figure 11 illustrates the per-
formance of TIPS-ART, TIPS-B+tree for different UNO log
sizes for the write-heavy workload A. As shown, there is a
4x and 9x performance drop for TIPS-ART and T1PS-B+tree
with 32MB (default) and 4MB log size, respectively. This is
because as the log size becomes smaller, the foreground writ-
ers are blocked for more time as T1PS-B+tree (RW lock) has
a single-threaded backend. Whereas T1PS-ART supports con-
current backend and is relatively less affected by decreasing
log size. Both TiPS-ART and TiPS-B+tree shows a 1.6x
performance increase for 64MB because the log size is big
enough to completely buffer all writes, and zero reclamations
are triggered for 64MB. Also, note that more than 3 reclama-
tions are triggered for a default log size of 32MB. The impact
of smaller log sizes is relatively marginal for read-heavy work-
loads. The performance change is negligible until 8MB, and
about a 20% performance drop is observed for 4MB log size.

7.6 Real-world Application: Redis

We ported a popular DRAM key-value store, Redis [8], us-
ing TIPS (T1PS-Redis). We compare its performance with
the vanilla Redis running on the DRAM (DRAM-Redis)
and NVMM (NVMM-Redis), and also with Intel’s PMEM-
Redis [7]. Note that NVMM-Redis does not ensure crash con-
sistency and PMEM-Redis stores only the values in NVMM.
Figure 12 shows the performance of Redis GET and SET
operation evaluated using Redis-Benchmark [9]. We ran the
benchmark for 32M keys (8-bytes) with a uniform random

SET 0.10 GET
Tips-Redis —4— | s
......... Horrrosinnnninnnnegf 0.08 P o2 S
K PMEM-Redis - {3 -
3 EEEE AR =B 006 NVMM-Redis - -X- -
, < DRAM-Redis -:- ;-
0.04
IO AR Y Lt X 00257 o3¢mmnadganmmmmmnnn X
L L 1 0.00
32 48 64 1 16 32 48 64
Clients # Clients

Figure 12: Performance comparison of T1PS-Redis with vanilla
Redis running on DRAM and NVMM, and Intel’s PMEM-Redis.

distribution. For SET operations, T1PS-Redis consistently out-
performs the NVMM-Redis by 2.5, and it performs up to
1.5% and 1.1x slower than the DRAM-Redis and PMEM-
Redis, respectively. For the GET operations, TIPS-Redis per-
form up to 2x better than the NVMM-Redis and up to 2.2x
slower than the DRAM-Redis and PMEM-Redis. T1PS-Redis
maintains all the data and the Redis core on the NVMM, so
(1) it provides a larger in-memory capacity (4 X in our experi-
ment) and immediate durability. (2) Both PMEM-Redis and
DRAM-Redis take about 100 seconds to restore data from
disk every time a server instance is created. While T1PS-Redis
takes less than 1 second to recover upon safe termination.

7.7 Recovery

We performed the recovery test on all the T1PS-indexes. We
injected crash 200 times arbitrarily using SIGKILL, similar
to previous work [37,41]. We also tested a crash during the
recovery procedure. All TIPS-indexes successfully recovered
after every crash. The worst-case recovery time would be
a crash happening when the OLog is full. To measure this
time, we injected a crash just when the OLog becomes full.
Recovery time ranges between 0.5 and 9 seconds depending
on the number of OLogs and concurrency control of the index.

8 Conclusion

We propose TIPS, a framework to systematically make
volatile indexes and in-memory key-value stores persistent.
At its core, TIPS adopts a novel DRAM-NVMM tiering to
support index-agnostic conversion and durable linearizability.
With the tiered concurrency model, TIPS achieves good scala-
bility, performance, and enhanced applicability. UNO logging
protocol is critical to achieve low crash consistency overhead
and prevent persistent memory leaks. In our evaluation, we
showed that T1PS could be effectively applied to indexes with
varying concurrency models and the T1PS-enabled indexes
shows excellent performance against the state-of-the-art index
conversion techniques and NVMM-optimized indexes.

Acknowledgement

We thank the anonymous reviewers and Haris Volos (our
shepherd) for their insightful comments and feedback. This
work was supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the
Korea government (MSIT) (No. 2014-3-00035).

816 2021 USENIX Annual Technical Conference

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
(9]

[10]

[11]

[12]

Accelarating Redis with Intel Optane DC Persistent
Memory. https://ci.spdk.io/download/
2019-summit-prc/02_Presentation_13_
Accelerating_Redis_with_Intel_Optane_
DC_Persistent_Memory_Dennis.pdf.

Aerospike Performance on Intel Optane Persistent
Memory. https://www.aerospike.com/blog/
performance-on-intel-optane-persistent_
memory/.

Bringing The Latest Persistent Memory Technology to
Redis Enterprise. https://redislabs.com/blog/
persistent-memory-and-redis-enterprise/.

Intel Optane DC Persistent
NoSQL Performance Review.
//wWww.storagereview.com/review/
intel-optane-dc-persistent-memory-nosql_
performance-review.

Memory
https:

Key/Value Datastore for Persistent Memory. https:
//github.com/pmem/pmemkv.

Optimize Redis With Next Gen NVM. https:
//www.snia.org/sites/default/files/SDC/
2018/presentations/PM/Shu_Kevin_Optimize_
Redis_with_NextGen_NVM.pdf.

Pmem-Redis. https://github.com/pmem/

pmem-redis/.
Redis. https://github.com/antirez/redis.

Redis Benchmark - How fast is Redis?
redis.io/topics/benchmarks.

https://

Anandtech. Intel Launches Optane DIMMs Up
To 512GB: Apache Pass Is Here!, 2018. URL:
https://www.anandtech.com/show/12828/
intel-launches-optane-dimms-up-to-512gb_
apache-pass-is-here.

Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,
and Per-Ake Larson. Bztree: A High-performance
Latch-free Range Index for Non-volatile Memory. In
Proceedings of the 44th International Conference on
Very Large Data Bases (VLDB), Rio De Janerio, Brazil,
August 2018.

Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. Ef-
ficient Lock-Free Binary Search Trees. In Proceedings
of the 33th ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC), Paris, France,
July 2014.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

Shimin Chen and Qin Jin. Persistent B+-trees in Non-
volatile Main Memory. In Proceedings of the 41st Inter-
national Conference on Very Large Data Bases (VLDB),
Hawaii, USA, September 2015.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the st
ACM Symposium on Cloud Computing (SoCC), pages
143-154, Indianapolis, Indiana, USA, June 2010. ACM.

Tudor David, Aleksandar Dragojevic, Rachid Guerraoui,
and Igor Zablotchi. Log-free concurrent data structures.
In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC), Boston, MA, July 2018.

Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Asynchronized Concurrency: The Secret to Scal-
ing Concurrent Search Data Structures. In Proceedings
of the 20th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS), Istanbul, Turkey, March 2015.

Anthony Demeri, Wook-Hee Kim, R. Madhava Krish-
nan, Jaecho Kim, Mohannad Ismail, and Changwoo Min.
Poseidon: Safe, fast and scalable persistent memory al-
locator. In Proceedings of the 21st, Delft, Netherlands,
December 2020.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
and Mike Zwilling. Hekaton: SQL Server’s Memory-
optimized OLTP Engine. In Proceedings of the 2013
ACM SIGMOD/PODS Conference, pages 1243—1254,
New York, USA, June 2013. ACM.

Franz Firber, Sang Kyun Cha, Jirgen Primsch,
Christof Bornhovd, Stefan Sigg, and Wolfgang
Lehner. Sap hana database: Data management
for modern business applications. SIGMOD
Rec., 40(4):45-51, January 2012. URL: http:
//doi.acm.org/10.1145/2094114.2094126,
doi:10.1145/2094114.2094126.

Keir Fraser. Practical Lock Freedom, 2004.
https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-579.pdf.

Michal Friedman, Naama Ben-David, Yuanhao Wei,
Guy E. Blelloch, and Erez Petrank. NVTraverse: In
NVRAM Data Structures, the Destination is More Im-
portant than the Journey. In Proceedings of the 2020
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), London, UK, June
2020.

USENIX Association

2021 USENIX Annual Technical Conference 817

https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf
https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf
https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf
https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf
https://www.aerospike.com/blog/performance-on-intel-optane-persistent_memory/
https://www.aerospike.com/blog/performance-on-intel-optane-persistent_memory/
https://www.aerospike.com/blog/performance-on-intel-optane-persistent_memory/
https://redislabs.com/blog/persistent-memory-and-redis-enterprise/
https://redislabs.com/blog/persistent-memory-and-redis-enterprise/
https://www.storagereview.com/review/intel-optane-dc-persistent-memory-nosql_performance-review
https://www.storagereview.com/review/intel-optane-dc-persistent-memory-nosql_performance-review
https://www.storagereview.com/review/intel-optane-dc-persistent-memory-nosql_performance-review
https://www.storagereview.com/review/intel-optane-dc-persistent-memory-nosql_performance-review
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://github.com/pmem/pmem-redis/
https://github.com/pmem/pmem-redis/
https://github.com/antirez/redis
https://redis.io/topics/benchmarks
https://redis.io/topics/benchmarks
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb_apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb_apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb_apache-pass-is-here
http://doi.acm.org/10.1145/2094114.2094126
http://doi.acm.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shree-
pathi, Mohannad Ismail, Sunny Wadkar, Changwoo Min,
and Dongyoon Lee. Witcher : Detecting crash con-
sistency bugs in non-volatile memory programs, 2020.
arXiv:2012.06086.

Swapnil Haria, Mark D. Hill, and Michael M. Swift.
MOD: Minimally Ordered Durable Datastructures for
Persistent Memory. In Proceedings of the 25th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Lausanne, Switzerland, March 2020.

Thomas E. Hart, Paul E. McKenney, Angela Demke
Brown, and Jonathan Walpole. Performance of Memory
Reclamation for Lockless Synchronization. J. Parallel
Distrib. Comput., 67(12):1270-1285, 2007.

Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3):463—-492, 1990.

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-addressable Persistent B+-tree. In Proceedings of
the 16th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 187-200, Oakland, California,
USA, February 2018.

Intel. C++ bindings for libpmemobj (part 6) - trans-
actions, 2016. URL: http://pmem.io/2016/05/25/
cpp-07.html.

INTEL. PMDK man page: pmemobj_alloc,
2019. URL: http://pmem.io/pmdk/manpages/
linux/v1.5/1libpmemobj/pmemobj_alloc. 3.

Joseph Izraelevitz, Hammurabi Mendes, and Michael
Scott. Linearizability of Persistent Memory Objects
Under a Full-System-Crash Failure Model. In Proceed-
ings of the 30st International Conference on Distributed
Computing (DISC), Paris, France, September 2016.

Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC), Boston, MA, July 2018.

Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim,
and Taesoo Kim. A Scalable Ordering Primitive for
Multicore Machines. In Proceedings of the 13th Euro-
pean Conference on Computer Systems (EuroSys), pages
34:1-34:15, Porto, Portugal, April 2018. ACM.

Alfons Kemper and Thomas Neumann. Hyper: A hy-
brid oltp&olap main memory database system based
on virtual memory snapshots. In Proceedings of the

(33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

27th IEEE International Conference on Data Engineer-
ing (ICDE), pages 195-206, Hannover, Germany, April
2011.

Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Mad-
hava Krishnan Ramanathan, and Changwoo Min. Mv-
rlu: Scaling read-log-update with multi-versioning. In
Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 779-792, Prov-
idence, RI, April 2019. ACM.

Onur Kocberber, Boris Grot, Javier Picorel, Babak
Falsafi, Kevin Lim, and Parthasarathy Ranganathan.
Meet the walkers: Accelerating index traversals for in-
memory databases. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 468—479, Davis, CA, USA, De-
cember 2013.

R. Madhava Krishnan, Jacho Kim, Ajit Mathew, Xin-
wei Fu, Anthony Demeri, Changwoo Min, and Sudarsun
Kannan. Durable Transactional Memory Can Scale
with Timestone. In Proceedings of the 25th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Lausanne, Switzerland, March 2020.

Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In Pro-
ceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), Santa Clara, California,
USA, February—March 2017.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE:
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
Ontario, Canada, October 2019.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE:
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. October 2019. arXiv:1909.13670v2
[cs.DC], https://arxiv.org/abs/1909.13670v2.
arXiv:arXiv:1909.13670v2.

V. Leis, A. Kemper, and T. Neumann. The adaptive radix
tree: ARTful indexing for main-memory databases. In
Proceedings of the 29th IEEE International Conference
on Data Engineering (ICDE), pages 38—49, Brisbane,
Australia, April 2013.

Viktor Leis, Florian Scheibner, Alfons Kemper, and
Thomas Neumann. The ART of Practical Synchroniza-
tion. In Proceedings of the International Workshop on

818

2021 USENIX Annual Technical Conference

USENIX Association

http://arxiv.org/abs/2012.06086
http://pmem.io/2016/05/25/cpp-07.html
http://pmem.io/2016/05/25/cpp-07.html
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
https://arxiv.org/abs/1909.13670v2
http://arxiv.org/abs/arXiv:1909.13670v2

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Data Management on New Hardware, pages 3:1-3:8,
San Francisco, California, June 2016.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng
Wang, and Thomas Willhalm. Evaluating Persistent
Memory Range Indexes. In Proceedings of the 45th
International Conference on Very Large Data Bases
(VLDB), Los Angeles, CA, August 2019.

Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees:
Optimizing Persistent Index Performance on 3DXPoint
Memory. In Proceedings of the 46th International
Conference on Very Large Data Bases (VLDB), Tokyo,
Japan, August 2020.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory. In
Proceedings of the 46th International Conference on
Very Large Data Bases (VLDB), Tokyo, Japan, August
2020.

Shaonan Ma, Kang Chen, Shimin Chen, Mengxing
Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu.
ROART: Range-query optimized persistent ART. In
Proceedings of the 19th USENIX Conference on File
and Storage Technologies (FAST), pages 1-16, Santa
Clara, CA, February 2021.

Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-value Stor-
age. In Proceedings of the 7th European Conference
on Computer Systems (EuroSys), pages 183-196, Bern,
Switzerland, April 2012.

Virendra J. Marathe, Margo Seltzer, Steve Byan, and
Tim Harris. Persistent Memcached: Bringing Legacy
Code to Byte-Addressable Persistent Memory. In Pro-
ceedings of the 17th Workshop on Hot Topics in Storage
and File Systems, Santa Clara, CA, July 2017.

Ajit Mathew and Changwoo Min. HydraList: A Scal-
able In-Memory Index Using Asynchronous Updates
and Partial Replication. In Proceedings of the 46th Inter-
national Conference on Very Large Data Bases (VLDB),
Tokyo, Japan, August 2020.

Paul E. McKenney. Structured deferral: Synchronization
via procrastination. ACM Queue, pages 20:20-20:39,
1998.

A. Memaripour and S. Swanson. Breeze: User-Level
Access to Non-Volatile Main Memories for Legacy Soft-
ware. In Proceedings of the 36th International Confer-
ence on Computer Design, Hartford, CT, October 2018.

Amirsaman Memaripour, Joseph Izraelevitz, and Steven
Swanson. Pronto: Easy and Fast Persistence for Volatile

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

Data Structures. In Proceedings of the 25th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Lausanne, Switzerland, March 2020.

Maged M. Michael. High performance dynamic lock-
free hash tables and list-based sets. In Proceedings
of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA °02, page 73-82,
New York, NY, USA, 2002. Association for Computing
Machinery. doi:10.1145/564870.564881.

Micro. 3D XPoint Technology, 2019. URL:
https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies (FAST), Boston, MA, February 2019.

Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles
B. Morrey III, Dhruva R. Chakrabarti, and Michael L.
Scott. Dali: A Periodically Persistent Hash Map. In
Proceedings of the 31st International Conference on Dis-
tributed Computing (DISC), Vienna, Austria, October
2017.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In Proceedings of the 2015 ACM
SIGMOD/PODS Conference, San Francisco, CA, USA,
June 2016.

Ismail Oukid and Wolfgang Lehner. Data structure en-
gineering for byte-addressable non-volatile memory. In
Proceedings of the 2017 ACM SIGMOD/PODS Confer-
ence, Chicago, Illinois, USA, May 2017.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP), pages 18-32, Farmington, PA, November 2013.
ACM.

Li Wang, Zining Zhang, Bingsheng He, and Zhenjie
Zhang. PA-Tree: Polled-Mode Asynchronous B+ Tree
for NVMe. In Proceedings of the 36th IEEE Interna-
tional Conference on Data Engineering (ICDE), Dallas,
TX, April 2020.

Tianzheng Wang, Justin Levandoski, and Per-Ake Lar-
son. Easy Lock-Free Indexing in Non-Volatile Memory.

USENIX Association

2021 USENIX Annual Technical Conference 819

https://doi.org/10.1145/564870.564881
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology

[60]

[61]

[62]

[63]

In Proceedings of the 34th IEEE International Con-
ference on Data Engineering (ICDE), pages 461-472,
Paris, France, April 2018.

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis,
Huanchen Zhang, Michael Kaminsky, and David G. An-
dersen. Building a Bw-Tree Takes More Than Just
Buzz Words. In Proceedings of the 2018 ACM SIG-
MOD/PODS Conference, pages 473—488, Houston, TX,
USA, June 2018.

Haosen Wen, Joseph Izraelevitz, Wentao Cai, H.Alan
Beadle, and Michael L. Scott. Interval-Based Memory
Reclamation. In Proceedings of the 21st ACM Sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP), wien, Austria, March 2018.

Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang,
and Mikel Lujdn. PMThreads: Persistent Memory
Threads Harnessing Versioned Shadow Copies. In Pro-
ceedings of the 2020 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), London, UK, June 2020.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-

[64]

[65]

[66]

NVM Memory Systems. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa
Clara, CA, July 2017.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST), Santa Clara, CA,
February 2020.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-
ing consistency cost for nvm-based single level systems.
In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST), Santa Clara, Califor-
nia, USA, February 2015.

Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Carlsbad, CA, October 2018.

820

2021 USENIX Annual Technical Conference

USENIX Association

	Introduction
	Background and Motivation
	Overview of Tips
	Design Goals
	Design Overview
	High-Level Idea of Tips
	DRAM-NVMM Tiering (G_1, G_2, G_3, G_5)
	Tiered Concurrency for Scaling Frontend (G_1, G_5)
	Adaptive Scaling for Backend Scalability (G_5)
	UNO Logging for Crash Consistency (G_4)
	Plug-In Programming Model for Index-agnostic Conversion (G_2)

	Design of Tips
	Tips Frontend Design
	DRAM-cache
	Handling Write Operations
	Handling Lookup Operation
	Safe Reclamation
	Operational Log (OLog)
	Handling the Scan Operations

	Tips Backend Design
	Adaptive Scaling of Background Workers
	Concurrent Replay of OLog Entries

	UNO Logging
	Memory Log (MLog)
	UNDO Log (ULog)
	UNO Logging Reclamation

	Recovery

	Correctness of Tips
	Tips Implementation
	Evaluation
	Converting Volatile Index using Tips
	Tips vs. Other Conversion Techniques
	Tips vs. NVMM-optimized Indexes
	Analysis on Tips Design
	Sensitivity Analysis
	Real-world Application: Redis
	Recovery

	Conclusion

