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Abstract

Smart contracts in Ethereum are executable programs de-
ployed on the blockchain, which require a client for their exe-
cution. When a client executes a smart contract, a world state
containing contract storage and account details is changed in
a consistent fashion. Hence, the execution of smart contracts
must be sequential to ensure a deterministic representation
of the world state. Due to recent growth, the world state has
been bloated, making testing and profiling of Ethereum trans-
actions at scale very difficult.

In this work, we introduce a novel off-the-chain execution
environment for scalable testing and profiling of smart con-
tracts. We disconnect transactions from the world state by
using substates to execute the transactions in isolation and
in parallel. Compared to an Ethereum client, our execution
environment reduces the space required to replay the transac-
tions of the initial 9 M blocks from 700.11 GB to 285.39 GB.
We increased throughput from 620.62 tx/s to 2,817.98 tx/s
(single-threaded) and 30,168.76 tx/s (scaled to 44 cores). We
demonstrate the scalability of our off-the-chain execution en-
vironment for hard-fork testing, metric evaluations of smart
contracts, and contract fuzzing.

1 Introduction

Ethereum is a permissionless blockchain capable of execut-
ing smart contracts. Since its inception in 2015, a total of
964 M transactions deployed in 11.6 M blocks have been pro-
cessed. The number of unique Ethereum accounts soared
from 20 M in 2018 to more than 131 M by January 2021. The
rapid adoption has been fueled by applications in trade [34],
banking [27, 37], governance, and supply chain. This trend
has been amplified by a growing interest in decentralized fi-
nance1, with a total value of 4 billionUSD and a recent peak
of 3.1 M contract calls in a single day [10].

1Decentralized finance (DeFi) refers to an alternative, peer-to-peer finan-
cial infrastructure built on the blockchain.

Because smart contracts control large monetary values,
blockchain designers and developers have a strong incentive
in building tools that improve the correctness, efficiency, and
security of their smart contracts. Developers typically write
smart contracts in the Solidity language [17]. The Solidity
compiler translates smart contracts into an immutable byte-
code representation for the Ethereum virtual machine (EVM).
Bytecode is persistently deployed on the blockchain where it
can be invoked for execution on the EVM in a transaction.

The execution of smart contracts and Ethereum itself is a
protocol defined formally in the Yellow paper [44] and prac-
tically implemented in Ethereum clients. Ethereum clients
function as peers on the Ethereum network. They keep the
ledger of the Ethereum blockchain consistent, fetch its up-
dates, and integrate the EVM to execute smart contracts. The
two most popular clients are Geth [18]2 and Parity [39]3.
When a client executes a smart contract, it constructs its in-
put state from the blockchain’s ledger and writes its state
changes back onto the ledger. Hence, a smart contract’s state
evolves continuously on the ledger, where the history of all
state changes of a smart contract is kept.

For testing, the state of a smart contract must be retrieved
before it can be validated and analyzed. However, due to the
ledger’s cryptographically secured data structures and due to
its sequential representation of the ledger as a blockchain, the
retrieval of a smart contract’s state is prohibitively slow [35,
46]. This problem is exacerbated for testing and debugging
tools that process large quantities of blocks (or even all blocks)
on the blockchain.

It has been acknowledged by the community that the test-
ing of smart contracts at scale is a long-standing problem. It
affects the development of the entire blockchain-oriented soft-
ware (BOS) ecosystem, i.e., all software systems that work
with a blockchain implementation. There have been calls for
research into mocking blockchains [40] for enhancing testing

2Geth is the most widespread open source Ethereum client officially main-
tained by the Ethereum community, with a market share of 80 %, according
to https://ethernodes.org/.

3In Jan. 2020, Parity has been renamed to OpenEthereum.
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and debugging in isolation. A recent survey [50] conducted
among practitioners, GitHub developers, and industry profes-
sionals working on Ethereum smart contracts revealed the
concern that the “EVM is a single-threaded machine that
cannot run transactions in parallel”, which may affect “peo-
ple who have a higher requirement on the timely reaction
and verification of their transactions”. A survey [5] among
156 developers of popular blockchain projects on GitHub
shows that backward compatibility (the ability to validate ear-
lier transactions) and the difficulty of setting up testnets4 are
pressing issue for BOS developers, and that the distributed
environment currently cannot be adequately simulated on de-
velopment machines.

To mitigate the above problems and enable testing and
profiling of smart contracts at scale, we introduce a trans-
action record and replay mechanism that enables the fast
re-execution of individual transactions for testing purposes.
Our mechanism records the historical Ethereum state that
was used when a transaction was originally executed. The
transaction can then be replayed in isolation for testing pur-
poses. Our recorder reorganizes the Ethereum world state into
transaction-relevant substates. Replay is conducted off-the-
chain to avoid the overhead of the distributed system. The
replayer mocks the distributed blockchain environment so
that a transaction has the same execution behavior as if it was
executed by an Ethereum client. Our approach facilitates the
efficient replay of all transactions of the blockchain because
transactions can be replayed in parallel (unlike testnets) and
in isolation. We demonstrate that our novel off-the-chain ex-
ecution environment enables applications such as hard-fork
testing (i.e., a regression test checking whether the newly in-
troduced policies of a hard fork do not hamper the execution
of legacy smart contracts), metric evaluations of smart con-
tracts (e.g., measuring the number of wasteful instructions in
a smart contract), and contract fuzzing for detecting execution
anomalies in smart contracts.

The contributions of this work are as follows:

• We present a new off-the-chain execution environment
for blockchain transactions using a recorder and replayer
so that transactions can run in isolation showing unprece-
dented performance improvements in comparison with
state-of-the-art approaches.

• We introduce a new substate representation for transac-
tions that captures the substate of the world state which
is relevant for their execution.

• We show the efficiency and effectiveness of our approach
using a regression tester for hard forks, a dead-code anal-
ysis, and a program fuzzer.

4A testnet is a blockchain that is used for testing of smart contracts in a
production-like environment, but without spending cryptocurrency of real
value.

2 Background and Motivation

Ethereum Blockchain: A blockchain is a ledger shared
among peers on a peer-to-peer (P2P) network. The Ethereum
blockchain is fully described in its specification, the Yellow
paper [44]. A blockchain is implemented as a chain of blocks
that has been accepted by participants in the network follow-
ing a consensus protocol. A block consists of a block header
and a block body. The block header contains the reference
to the parent block and metadata for the block verification.
The block body holds a sequence of transactions created by
participants and added in the block by miners. Transactions
may either transfer funds or invoke smart contracts.

A transaction in the blockchain is signed by its sender and
contains input data that are propagated into the global state.
The execution of a transaction can be perceived as a state tran-
sition where a global state is transformed. The global state
encompasses the state of smart contracts, accounts, and other
aspects such as transaction receipts or smart-contract execu-
tion logs. Accounts are addressed by public keys generated
by the private keys of the account owners. The sender issuing
a transaction has to sign the transaction with the account’s
private key. Peers can verify the transaction by computing the
sender’s account address from the signatures. It is important
to note that the state transition must be deterministic among
all peers in the blockchain network for the sake of consistency.
Without deterministic state transitions of a transaction, it is
impossible to find consensus.

The Ethereum blockchain provides the following three
types of transactions. A transfer transaction takes assets from
a sender and transfers them to a recipient. A transaction for
contract creation conveys the initial endowment of the newly
created account and a smart contract in the form of EVM
bytecode to initialize the created account. The created ac-
count is associated with contract code, and it has an account
storage to maintain its state across contract invocations. A
contract invocation transaction sends a message to an account
to execute the associated contract code. The message contains
input data and gas converted from cryptocurrency to fuel the
EVM bytecode execution. The EVM will execute the contract
code with the input data, consuming the gas metered based
on executed instructions. If the gas consumption reaches the
provided gas limit, the contract is terminated prematurely.

Ethereum World State: The Ethereum world state is the
global state information of Ethereum that maps between ac-
count addresses and the data associated with an account. Each
account has its own key-value storage in which only the owner
has the authority to load and store values via SLOAD and
SSTORE instructions of EVM bytecode. For state verification
and as input to the next block, Ethereum clients are required
to maintain a local copy of the entire global state after pro-
cessing a particular block. As depicted in Figure 1a, Ethereum
employs key-value (KV) maps to maintain (1) accounts and
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(a) Ethereum world state and account storage.
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⋯

(b) Flat KV map and corresponding MPT.

Figure 1: Ethereum world state and account storage (a), corre-
sponding MPT as the underlying representation of a flat KV
map (b).

(2) the data stored in each account. Data is encoded in re-
cursive length prefix (RLP) format [44]. For cryptographic
verification, the flat KV maps are encoded as Merkle Patricia
tries (MPTs, [16]), depicted in Figure 1b. State verification in
Ethereum relies on the property of MPTs that if two MPTs are
identical, the hash values of their root nodes are identical [33].

The EVM bytecode interface provides the view of the flat
KV map from Figure 1a to the application. Only after trans-
action execution will a client employ the RLP and MPT en-
coding depicted in Figure 1b, verify states, and store the MPT
nodes in an on-disk key-value database (KVDB). A client
may use a data representation different from MPTs to improve
database performance [1]. Nevertheless, MPTs must still be
constructed for state verification as mandated by the ledger
protocol. The specification of the EVM and the world state
are provided in the Ethereum Yellow paper [44].

3 Limitations of Smart Contract Testing

Testing smart contracts requires an Ethereum world state and
a transaction execution environment. We refer to transac-
tion replay as the execution of a transaction at the historical
Ethereum state that the transaction was originally executed on
at a given block height on the blockchain. Note that, in prin-
ciple, it is not necessary to have the Ethereum network and
blockchain available for testing. In this section, we consider
different test environments currently available to blockchain
designers and developers for replaying transactions. None of
them facilitate replay on transaction granularity—only block
granularity is supported. We highlight the impracticality of
the test environments and conclude with the observed scala-
bility problems. Unless otherwise specified, our evaluations
were conducted on the server platform shown in Table 1.

Server Geth
full node

Substate
replayer

Geth
archive node

CPU
Intel Xeon E5-2699 v4,

2.2 GHz to 3.6 GHz, 22 cores × 2 sockets
RAM 512 GB DDR4 RAM @ 2,400 MHz

SSDs (PCIe) Intel Optane 900P 480 GB
Intel Optane DC P3700 800 GB

Samsung
PM1725b

6.4 TB

OS
CentOS Linux release 7.9.2009 (core),

kernel version 4.11.3-1.el7.elrepo.x86_64
Filesystem ZFS pool (1.2 TB total size) XFS

Table 1: Evaluation platform specification.

3.1 Transaction Replay Delegation

JSON 
RPC 
Client

Mainnet Archive DB

State
N-1

EVM

State
N

JSON RPC Server

JSON RPC 
messages

Execution 
Results

Figure 2: JSON RPC server (archive node) replaying transac-
tions in block N on behalf of a client. State N is the state after
executing all transactions in block N. The client sends request
messages via the JSON RPC interface; messages include RPC
method names and their arguments.

Ethereum clients can be configured as Ethereum archive
nodes. They keep the entire history of world states in their
database and can thus be used to retrieve historical state in-
formation. Geth provides a JSON RPC API5 for this purpose.
Via the JSON RPC API, a Geth client can delegate the replay
of a transaction to an archive node. Figure 2 illustrates this
scenario.

Unfortunately, delegation suffers from significant overhead
incurred by the JSON RPC API and the fact that transac-
tion throughput of archive nodes is seriously constrained by
the considerable database size for storing all historical world
states (6 TB of disk space for blocks up to 11 M [20]). An
Ethereum client can be configured as an archive node that
generates execution traces during transaction replay. In a
small experiment, we observed that a query to replay traces of
ten blocks at blocks after 9 M using traceBlockByNumber
timed out running for an entire hour (at that stage we stopped
the replay attempt). After disabling the EVM stack, mem-
ory, and storage tracing, the archive node achieved a replay
throughput of 19.4 tx/s for 100 blocks at block 9 M and after.
Hence, a test environment that uses transaction replay dele-
gation is not a viable solution for testing—even for a small
number of replay queries.

5https://geth.ethereum.org/docs/rpc/ns-debug
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3.2 Transaction Replay in a Client
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Block
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Block
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⋯ EVM EVM ⋯

⋯
State
N-1

State
N

⋯
State

M

Ethereum Client

Figure 3: Full node to replay transactions in block N. State N
is the state after block N has been imported, and block M is
any block prior to block N on the blockchain.

When Ethereum clients are configured as Ethereum full
nodes, they replay transactions for verification and synchro-
nization with peers on the network. Figure 3 illustrates how
Ethereum clients replay transactions during synchronization.
To replay transactions in block N, a client requires the state at
block N−1. A full node can download the state after block M
directly from trusted peers using a fast synchronization proto-
col instead of processing all M blocks from the genesis block
by itself. The fast synchronization protocol is a trade-off to
save transaction processing time at the cost of the higher
network bandwidth required for downloading the state. The
community refers to fast synchronization as fast-sync mode
and it represents the default configuration of Geth clients. At
block 11.5 M, a Geth full node consumes more than 600 GB
of disk space [21].

Transaction replay in full nodes suffers from severe draw-
backs: If the desired block for replay is located far behind
the tip of the chain, no peer will be available to provide the
state for synchronizing in fast-sync mode. In the absence
of a downloadable state, the client must process (import) all
blocks itself, commencing from the genesis block, to produce
state N−1 for replaying block N. In our experiment, the Geth
client on an AWS i3.2xlarge instance took 8.13 h to fast-
sync the state at block 11.5 M. When the Geth client imported
blocks from the genesis block, it took 227 h (i.e., 9.5 d) to
produce the state at block 8 M. Similarly to replay delegation,
transaction replay throughput is very low: At block height 9 M
the observed throughput of our archive node was 19.4 tx/s
while our full node achieved 447.7 tx/s. Therefore, replaying
millions of transactions with an archive node is not viable in
practice, and a full node will take several weeks to accomplish
such a testing task.

3.3 Testnets

The Ethereum main network (mainnet) is the only P2P net-
work for real-world trading of Ethereum cryptocurrency. For
testing purposes, the Ethereum community maintains public
and private testnets where new protocols are activated and
tested before they are deployed on the mainnet. Blockchain
designers and developers deploy and test contracts on a test-

net using clients that synchronize with recent blocks from the
testnet like the nodes on the mainnet. The major limitation of
testing with testnets is that its state can only be configured via
side effects of smart contracts that are executed through trans-
actions. This requires considerable effort from a developer to
build a test fixture. In particular, the developer must deploy
and execute the following transactions to test a smart contract
on a testnet: (1) transactions to initialize the target contract
and other participating accounts, (2) transactions to set up
the complete world state and environment parameters for the
input, and (3) a transaction to invoke the target contract with
the prepared input state.

3.4 Lack of Scalability on Multicores

Testing smart contracts by replaying transactions on a full
node does not scale on a multicore server because of two
reasons: First, execution of transactions on the blockchain is
inherently sequential. To replay transactions in blocks later
than the current state, a node must import all intermediate
blocks on the chain between the current block and the block
to be replayed. Second, it takes a considerable amount of
disk space to maintain a complete world state in MPT format.
Running multiple Ethereum nodes with different ranges of
blocks has the potential to increase the overall throughput on a
multicore server. However, each node will require hundreds of
GBs to maintain multiple world state instances. E.g., running
nine full nodes for segments of 1 M blocks as stated in Table 2
requires 2.8 TB of disk space. One may expect an archive
node to scale on multicores because it does not have to import
blocks prior to replaying a transaction. But practically, as
observed in our experiments, a single archive node requires
6 TB of disk space and exhibits very low transaction replay
throughput. (Note that our evaluation platform from Table 1
uses PCIe SSDs and thus can be considered an advantageous
case, performance-wise.) Testing smart contracts on a testnet
has the same limitations as replaying of transactions on a
full node because it executes transactions in order and has to
encode a complete state in MPT format for verification.

4 Off-The-Chain Testing

Our new off-the-chain testing environment is based on a trans-
action record and replay mechanism. The record mechanism
records the historical state from before and after a transaction
on the chain. The recorder is an augmented Ethereum client
that produces the historical state as a side effect while import-
ing blocks from the blockchain. For a transaction, the recorder
captures substates, which contain only relevant parts of the
world-state and environment parameters that contain enough
information to replay a transaction with no dependency on
earlier transactions. The recorder stores the substates in the
substate database, which is a flat key-value map.
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The replay mechanism mocks the Ethereum protocol of
a client such that transactions can be executed without the
peer-to-peer network of Ethereum and the cryptographic veri-
fication tasks of a client. We use EVM binaries for building
the replay mechanism, which are stand-alone clients and have
been implemented for checking the correctness of the EVM
only. Our replay mechanism operates directly on the substate
database. It executes transactions off-the-chain, in parallel,
and in isolation achieving unprecedented scalability for test-
ing smart contracts.

4.1 Transaction Substate
Key to our record/replay mechanism is the substate, which
contains a subset of the world-state trie to faithfully replay a
transaction. The subset contains all the entries represented as a
key-value pair (not as an MPT) for executing the transaction in
full isolation. The substate is enhanced with meta information
that is required for the execution of the transaction including
(1) the values of the input arguments of the transaction, (2) the
cryptographic hashes needed for the execution, and (3) the
expected return values. In the following, we summarize the
information stored in substates.

1. Alloc: information about each accessed account, i.e.,
account address, nonce, balance, code hash, and storage
values from the world state accessed by the transaction.

2. Block: block number, block creation timestamp, block
hashes, coinbase, difficulty, and block gas limit.

3. Message: nonce, gas price, provided gas, sender account
address, recipient account address, input value, and input
data of the transaction to initiate the message call.

4. Result: status code, transaction gas usage, logs and their
Bloom filter from the output of the transaction execution.

The substate representing the historical Ethereum world state
before executing a transaction is called the input substate. It
consists of three parts: input alloc, block, and message. The
substate representing the historical Ethereum world state after
executing a transaction is called the output substate. It consists
of two parts: output alloc and the transaction result. Together,
the input and output substates contain all information required
to faithfully replay and validate the respective transaction.
Note that accounts and storage values that are not accessed
by a transaction can be omitted from a substate because they
have no effect on the transaction’s execution and hence cannot
affect the transaction’s output.

4.2 Substate Recorder
Our substate recorder is an extended Ethereum client that col-
lects and stores transactions’ substates while importing blocks
as depicted in Figure 4. Our recorder collects the substates
from before and after a transaction on the chain. We refer

Figure 4: Substate recorder.

to these substates as the input and output substates, respec-
tively, and the recorder stores them as a substate record in the
substate database.

Throughout the execution of a transaction, the recorder col-
lects the set of indices accessed in the world state. An index
is represented by a tuple 〈Address,Key〉, where Address
denotes an account/wallet address, and Key represents the
storage key to the account’s accessed storage location (as il-
lustrated in Figure 1a). After the transaction’s completion, the
recorder collects for each index the corresponding value from
the world state prior to the start of the transaction (for the input
substate), and the value from the world state after the transac-
tion terminated (for the output substate). The collected input
and output tuples are of the shape 〈〈Address,Key〉,Value〉.
Collectively, the input/output tuples contain the complete set
of storage locations and associated values read and written by
a transaction.

As an example, we assume a token transfer of 10 units from
account 1 at address1 to account 2 at address2. Account 1
and account 2 are endowed with 25 units and 80 units before
transaction commencement, and both accounts maintain their
token values at storage key key2. Recording this transaction
will result in the following input/output tuples, which signify
the drop of funds in account 1 from 25 to 15 units, and the
increase in account 2 from 80 to 90 units.

(1)
Input tuples: Output tuples:
〈〈address1,key2〉,25〉 〈〈address1,key2〉,15〉
〈〈address2,key2〉,80〉 〈〈address2,key2〉,90〉

The recorded input/output tuples do not include storage
locations where accounts keep information that has not been
accessed as part of a given transaction. In practice, a transac-
tion involves only a few accounts. The recorded input/output
tuples thus constitute a small subset of the world state’s ac-
count storage before and after a transaction, which facilitates
space-efficient transaction replay.

We record input/output tuples for nested transactions,
which occur with calls across smart contracts. Tuple collec-
tion includes reverted transactions, which are transactions that
do not take effect on the world state, e.g., because the transac-
tion runs out of gas. Even such invalid transaction termination
requires the input/output tuples to ensure the faithful replay
of the reverted transaction.
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Consider as an example the aforementioned token-transfer
contract. The contract has a runtime check for reverting
a transaction if there are insufficient funds available. As-
sume that the initial endowment of account 1 is zero, hence,
the runtime check will fail and make the transaction re-
vert. In this case, the input substate will have the tuple
〈〈address1,key2〉,0〉 only. This tuple is nevertheless nec-
essary for reproducing the failed runtime check during replay.

As depicted in Figure 4, our recorder creates a substate
record from the input/output substates (including the trans-
action’s environment parameters, i.e., block, message, and
transaction result), and stores the substate record in the sub-
state database. Records in the substate database are indexed
by the key 〈block, tx〉, where block is the block number
and tx is the index of the transaction within the block. Each
substate record can thereby be accessed by a single database
lookup, which eliminates dependencies on earlier transactions
and provides our replayer with instant access to the historical
state of any recorded transaction.

Because our recorder collects substates during on-chain
operations, it requires as much time and space as the synchro-
nization of a Geth full node. However, the recording has to
be performed only once. As soon as the substate database is
created, all historical transactions can be replayed an arbitrary
number of times with our replay mechanism.

4.3 Substate Replayer

Figure 5: Substate replayer.

The replay mechanism is based on the EVM binaries that
we extended for replaying transactions arbitrarily and in paral-
lel from our substate database. Figure 5 illustrates the design
of our multi-threaded replayer. It receives the number of re-
play threads T and an inclusive block range [Nfirst,Nlast] as
input. The replayer creates a thread pool of T replay threads
and pushes the designated block numbers from Nfirst to Nlast
into a channel on which all replay threads wait6. We employ
a dynamic work partitioning scheme where replay threads
repeatedly dequeue a block number, load the block’s substate
records, and replay its transactions.

6The EVM binaries and hence our extensions are implemented in the Go
programming language.

For each transaction, a replay thread invokes a fresh EVM
instance, for which it copies input alloc, block, and message
from the input substate to an in-memory context that the EVM
instance can read and modify off-the-chain. This in-memory
context simulates on-chain features such as hard forks, gas
costs, block environment, precompiled contracts, and database
snapshots for reverted transactions.

The EVM instance executes the corresponding smart con-
tract code in isolation on the in-memory context. The replay
thread thereafter collects the output tuples and the transaction
result from the modified context and validates them against
the recorded output substate. If a thread successfully replayed
all transactions in a block, it sends the block number back
to the main thread. The main thread maintains the processed
block total and triggers the termination of the replay threads
once all blocks have been processed.

Replay threads collect the set of indices accessed in the
world state in the same manner as the recorder. Because trans-
action replay must be deterministic (running the same transac-
tion with the same input must produce the same output), the
replayed transaction must access the same storage locations
as the recorder, and the accessed indices must coincide.

For example, considering the token transfer example (1) on
the previous page. If during replay the transaction accesses in-
dex <address1, key1> instead of <address1, key2>, the
replayer will detect this index mismatch (cf. “Assert Equal”
in Figure 5).

In general, if any of the accessed indices, output values,
or the transaction result differ from the recorded historical
information, the replayer will raise an exception, report the
substate record’s key and the difference between the EVM
output and the expected output, and terminate.

4.3.1 Replay Performance and Accuracy

We evaluated the runtime and storage improvements of our
replayer compared to a Geth full node, and we validated its
replay accuracy. All experiments where conducted on the
platform specified in Table 1. Tables 2 and 3 compare the disk
space and execution-time requirements of a Geth full node and
our substate replayer to replay all 590 million transactions of
the initial 9 M blocks of the Ethereum mainnet. We imported
blocks from files to replay transactions with the Geth full node.
The size of Geth’s database in Table 2 increases drastically
as it contains all accounts existing in the previous blocks.
The substate database requires less space than Geth because
Geth must maintain a complete world state with all accounts
and storage values in MPTs for on-chain synchronization,
while our off-the-chain test environment selectively recorded
accounts that are accessed during transaction execution.

Table 3 compares time and throughput of transaction re-
play between Geth and our substate replayer with a single
thread. Both took more time in later blocks because the num-
ber of transactions per block increased. Blocks in range 2–
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Blocks
(M)

Geth
full node (GB)

Substate
replayer (GB)

Space
savings (%)

0–1 0.96 0.68 29.17
1–2 3.00 1.83 39.00
2–3 29.30 16.91 42.29
3–4 37.76 6.58 82.57
4–5 124.57 39.55 68.25
5–6 272.06 51.58 81.04
6–7 407.48 50.30 87.66
7–8 551.04 55.96 89.84
8–9 700.11 62.00 91.14

0–9 700.11 285.39 59.24

Table 2: Disk space requirements and space savings of our
substate replayer over a Geth full node. The space required
by Geth is the size of its database at the last block of the
stated range. Ranges 8–9 M and 0–9 M require the same space
because the Geth full node maintains a complete world state
at 9 M regardless of the number of blocks it replays.

Geth full node Substate replayerBlocks
(M) Time (s) tx/s Time (s) tx/s

Speed-
up (×)

0–1 1184 1414.07 526 3183.01 2.25
1–2 2879 2217.13 1517 4207.73 1.90
2–3 28906 252.73 24125 302.82 1.20
3–4 10775 1946.33 5222 4016.03 2.06
4–5 94868 1196.67 28873 3931.90 3.29
5–6 165673 748.71 35390 3504.97 4.68
6–7 173503 552.82 33672 2848.55 5.15
7–8 224426 485.51 38060 2862.87 5.90
8–9 248519 447.70 41999 2649.17 5.92

0–9 950733 620.62 209384 2817.98 4.54

Table 3: Total execution time (s) and throughput in transac-
tions per second (tx/s) of Geth block import and substate
replay with a single thread.

3 M showed lower performance because of denial-of-service
(DoS) attacks described in [3]. In later blocks, the Geth full
node was substantially slower than our substate replayer be-
cause Geth needs multiple LevelDB lookups to read MPT
nodes leading to a single MPT leaf value. As the blockchain
grows, the number of MPT nodes and the size of the Geth
database increases, which increases both the total number of
lookups and the time per lookup. In contrast, our substate
recorder packages all values required to replay a transaction
into a single substate record. Therefore, one LevelDB lookup
is sufficient to load all data required to replay a transaction.
Overall, our substate replayer is 4.54 times faster than the
Geth full node. Because transaction replay from a substate
record is an isolated execution on the EVM, it can be par-
allelized. Figure 6 shows the speedup when using multiple
replay threads for the initial 9 M blocks of the Ethereum main-
net.
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Figure 6: Speedup of parallel transaction replay by the multi-
threaded substate replayer with 9 M blocks compared to a
Geth full node.

As discussed in Section 4.3, our replayer will raise an ex-
ception if the execution of a replayed transaction deviates
from the recorded historical information. When replaying the
590 million transactions on the Ethereum mainnet from the
genesis block up to block 9 M, our replayer finished with-
out raising an exception, which confirms that all transactions
were replayed faithfully and that our off-the-chain testing
environment achieved a replay accuracy [26] of 100 %.

5 Use Cases

In this section we introduce three use cases for our substate
replayer: (1) a metric use case based on transaction replay,
(2) a fuzzer use case based on testnets, (3) a method to assess
hard forks using off-the-chain execution.

5.1 Metric Use Case

Program analysis techniques have been widely adopted for
smart contracts. A 2019 survey of 27 Ethereum contract anal-
ysis tools [11] found that most tools concentrate on security
issues and employ static analyses. But pressing efficiency and
scalability limits of blockchains have become another major
concern [13, 30, 41, 49]. We argue that because of the inher-
ent limitations of static analyses, in particular precision and
cost [7,14], dynamic analysis techniques will gain further mo-
mentum. Specific metrics aimed at measuring the complexity,
communication capability, gas-usage and performance have
already been instigated in [40]. A set of metrics that includes
contract execution time and the time to update the Ethereum
world state has been proposed in [49]. Novel program metrics
in smart contracts will be required to guide future design deci-
sions for infrastructure and language implementation, e.g., to
determine the profitability of speculative parallelization [12].

To demonstrate the effectiveness of our record/replay in-
frastructure for comprehensive dynamic analyses of transac-
tions on the Ethereum mainnet, we implement a metric for
wasteful instructions. A wasteful instruction is an instruction
whose side effect does not lead to a lasting side effect on the
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Nr. Opcode Nr. Opcode
1 PUSH 0x80 13 DUP
2 PUSH 0x40 14 REVERT
3 MSTORE 15 JUMPDEST
4 PUSH 0x00 16 POP
5 PUSH 0x01 17 PUSH 0x3797
6 SSTORE 18 DUP
7 CALLVALUE 19 PUSH 0x25
8 DUP 20 PUSH 0x00
9 ISZERO 21 CODECOPY
10 PUSH 0x15 22 PUSH 0x00
11 JUMPI 23 RETURN
12 PUSH 0x00

Figure 7: A bytecode of a smart contract and its value graph. Necessary instructions are colored in blue.

blockchain. Because each instruction needs to be paid for by
gas, wasteful instructions are costly and should be avoided.

To determine wasteful instructions at runtime, we construct
a value graph G(V,E) for each smart contract execution. Dur-
ing the EVM execution, each instruction becomes a node
in the value graph, and edges between nodes denote data
flow among instructions. We define necessary instructions
as instructions that contribute towards side effects on the
blockchain or results to users. We categorize the list of neces-
sary instructions as follows.

• SSTORE, SELFDESTRUCT, CREATE, and CREATE2 cause
side effects on the blockchain by changing the world
state trie or the account storage trie.

• RETURN produces a result of the smart contract and de-
livers it to the user.

• LOG0, LOG1, LOG2, LOG3, and LOG4 generate log records.

• CALL, CALLCODE, and DELEGATECALL execute another
smart contract. Although these instructions do not have
a side effect themselves, the callee contract might have
a side effect. Investigating such a relationship is beyond
this paper’s scope, so we simplified and considered call-
related instructions as necessary instructions. However,
STATICCALL, which cannot have any side effect by its
definition, is excluded.

A sample bytecode and its value graph are depicted in
Figure 7. Each node in the graph represents an instruction
with the attached number specifying the execution order. If
instruction x depends on instruction y, we add a directed edge
from instruction y to instruction x. For example, 3:MSTORE
receives two stack values as its arguments to store the value
from 1:PUSH at the memory address from 2:PUSH. Depen-
dencies are not restricted to values from the EVM stack but
may extend to memory references. Instruction 23:RETURN
is such a case: it pops two arguments from the stack, which
represent the address and length of data in memory to return.
The third dependency (on 21:CODECOPY) encodes the mem-
ory reference itself. Instructions 12–14 from the bytecode do

not occur in the value graph because the underlying execution
took the jump from instruction 11 to instruction 15 at runtime.

We built an algorithm that propagates the necessity of in-
structions in the value graph in a backward fashion, based
on the introduced necessary instruction list. Necessary in-
structions are colored in blue in Figure 7. All instructions con-
nected to 6.SSTORE and 23.RETURN are considered necessary.
We obtain the set of wasteful instructions as the complement
set of the necessary instructions.

To analyze the wastage characteristics of the Ethereum
blockchain, we computed value graphs for the initial 9 M
blocks on the replayer, which took 75 h to complete. A box
plot and the average ratios of wasteful instructions are shown
in Figure 8 and Figure 9.
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Figure 8: Box plots of wasteful instruction ratios for ranges
of 1 M blocks.
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Figure 9: Average ratios of wasteful instructions for ranges of
1 M blocks.
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The median and average of the wasteful instruction ratios
are gradually increasing from block 5 M. As a consequence,
wasteful instructions constitute nearly 50 % of the total in-
structions in range 8–9 M. The irregularity in range 2–3 M in
Figure 8 is due to DoS attacks in the year 2016 (cf. [3]). As a
result, the box and whiskers in this range stick to zero, while
the average ratio is not affected. Another irregularity shows in
range 1–2 M in Figure 9, because it contains smart contracts
with a high total number of instructions but a negligible num-
ber of necessary instructions. This skewed the average ratio
of wasteful instructions, although this was not caught in the
box plot.
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Figure 10: The average of wasted gas per transaction for
ranges of 1 M blocks.

We calculated the gas consumed by wasteful instructions.
As illustrated in Figure 10, recent transactions tend to waste
more gas. We found a single transaction to waste nearly
25,000 gas in range 8–9 M.

5.2 Fuzzer Use Case

Fuzzing is a popular means to assess software quality [32]
and exercise a program under test with many randomized
inputs. A fuzzer aims to execute as many program paths as
possible by varying input values, and, hence, fuzzers incur
a large runtime overhead as they repeatedly execute the pro-
gram under test. Some approaches reduce the environment
overhead [47] or improve path coverage [36] for alleviating
the fuzzing overheads. There is a variety of fuzzers available
for Ethereum such as Echidna [24] and Harvey [45], which
require user annotations in the Solidity source code for guid-
ing the fuzzing process. Other fuzzing tools [31, 42] do not
require annotations but still require the source code (not the
EVM bytecode).

Low-performing fuzzers limit the effectiveness of a fuzzing
campaign and may result in many false negatives [29]. Par-
allelizing fuzzers improve the performance but cannot be
directly used for the blockchain testing due to its sequential
execution. A parallel fuzzer for blockchains would require to
replicate the blockchain for each parallel instance, which is
not a viable approach.

We adapt our replay mechanism introduced in Section 4.3
for parallel fuzzing as a showcase. The aim of this showcase

is to demonstrate the efficiency of the ContractFuzzer [29]
using our parallel replay mechanism. The ContractFuzzer
dynamically analyzes compiled bytecode, which is most suit-
able for third-party auditing of binaries that does not require
user annotations for fuzzing. The ContractFuzzer cannot audit
third-party contracts efficiently without our replay mechanism
because contracts will be fuzzed on the testnet where all smart
contracts undergoing the fuzzing campaign must be deployed
(as described in Section 3.3). For each input variation of a
fuzzing campaign, the contracts must be redeployed on the
testnet slowing down the campaign.

For fuzzing, the ContractFuzzer tool needs an Ethereum
smart contract application binary interface [19, ABI], which
describes input parameters and the message type of a smart
contract. Most re-usable contracts/services have their ABIs
publicly available, e.g., via the Etherscan web service [22].
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Figure 11: ContractFuzzer workflow.

Figure 11 depicts a sequence diagram of the Contract-
Fuzzer workflow without our replay mechanism. The byte-
code of a contract is read by the fuzzer, which analyzes the
contract’s ABI and generates a set of random messages that
execute the contract and comply with its ABI. The tester
sends the messages one-by-one to Geth, for execution on the
EVM, which contains specific monitoring hooks for discov-
ering vulnerabilities that occur during bytecode execution.
The results from the bytecode execution are sent back to the
fuzzer, which generates a vulnerability report.

Figure 12: Extended ContractFuzzer architecture.

We extended the ContractFuzzer with our replay mecha-
nism for parallel fuzzing as depicted in Figure 12. Our parallel
fuzzing mechanism directly reads the input substate from the
substate database (as indicated by the dashed arrow in Fig-
ure 12) such that fuzzing can be performed in parallel and
without the need of deployment on the testnet.

The input variations generated by the ContractFuzzer in
the form of random messages (see Figure 11) differ from the
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Number of
threads

Throughput
(contracts/min)

Speedup (×)
over original

Speedup (×)
replay

Original 1 0.46 n/a n/a

Replayer

1 3.28 7.07 n/a
4 4.65 10.01 1.42
8 6.25 13.46 1.90

16 10.05 21.65 3.06
32 15.99 34.44 4.87

Table 4: ContractFuzzer performance improvements.

recorded, historical message data of the input substate from
Section 4.1. For each input variation, the replayer replaces
the historical message data of the input substate by the in-
formation provided in the corresponding message from the
ContractFuzzer. This modification of the transaction input
obviates the need to validate the transaction (“Assert Equal”
in Figure 5) because fuzzing does not attempt a faithful re-
play. Rather, the purpose of the input variation in the fuzzer
is to execute untested program paths and uncover previously
unobserved behavior in the smart contract under test. We
used several of ContractFuzzer’s sample contracts [28] to
validate the integration of ContractFuzzer and its modified
Geth EVM with our replayer. The integration produced the
expected result, i.e., the same vulnerabilities as the original
ContractFuzzer.

Our focus with this use case was to determine the achiev-
able performance from off-the-chain fuzzing. For this exper-
iment, we used our recording of the Ethereum mainnet. We
created a simple NodeJS client for the Etherscan web ser-
vice [22] to obtain the ABI of contracts. We used this client
to get the first several hundred contracts from the mainnet
that provide their ABI. Because ContractFuzzer supports con-
tract analysis in batches, we divided this group into batches
of ten contracts each. We have executed an analysis of this
dataset using various combinations of batches running in par-
allel. We have measured the throughput of contracts (i.e, the
number of analyzed contracts/min) as shown in Table 4. The
first row lists the performance of the original ContractFuzzer,
while the following rows list the throughput with increasing
parallelism—i.e., the number of contract batches analyzed in
parallel. The middle column provides the speedup over the
original ContractFuzzer (w.r.t. the first row).

It follows from the second row that the ContractFuzzer
with replay executing all batches in sequence is faster than the
original ContractFuzzer. We attribute this to the fact that Geth
adds more overhead compared to our light-weight substate.
The speedup grows proportionally in the number of threads.
The last column shows the relative speedup of multi-threaded
over single-threaded replay.

Our fuzzing method has three key benefits: Firstly, our re-
player provides smart contracts instantly and without prior
deployment on a testnet, making the fuzzing configuration

straightforward. Secondly, our database has no dependencies
between substate records and enables parallel fuzzing. This
allows fuzzing campaigns on smart contracts where an arbi-
trary number of threads can be utilized. Thirdly, the substate
database always provides the same initial data, while fuzzing
against the testnet requires repeated redeployment to start
from the same initial state.

5.3 Hard Fork Assessment

The Ethereum specification has been updated over the years
because of several reasons such as the introduction of new
EVM instructions and the protection from DoS attacks. Peers
willing to accept the update have participated by accepting
a blockchain forked from the existing blockchain, or hard
fork. A hard fork is first proposed via a meta Ethereum im-
provement proposal (meta EIP), which includes other EIPs.
When the Ethereum community agrees on the hard fork, a
certain block number is pre-determined after which the hard
fork becomes effective.

At the time of writing there have been nine hard forks on
the Ethereum blockchain that changed gas costs of existing in-
structions or introduced new instructions. Such updates of the
EVM specification can cause problems on already-deployed
smart contracts which—then—depend on an outdated spec-
ification. For example, Ethereum suffered from breaks of
backward compatibility by EIP-1884 [15] during the Istanbul
hard fork. The EIP changed the gas cost of several opcodes
and it was expected that a few contracts will fail to operate. In-
deed, Ethereum frameworks such as Aragon and Kyber found
function calls in their smart contracts to fail with out-of-gas
errors [6, 43]. Aragon expected that EIP-1884 would break
680 smart contracts in their framework [9], and had to release
new smart contracts to replace them [43].

Therefore, it is essential to assess a hard fork on existing
contracts before it is activated on the network. The Ethereum
community maintains testnets where hard forks are activated
and tested before being deployed on the mainnet. However,
testnets have their own state databases which differ from the
mainnet, and developers must execute transactions on a testnet
to deploy contracts and predict possible impacts from a hard
fork. This approach is merely a new execution of transactions
and cannot reproduce the historical contexts with a new hard
fork specification.

We propose the use of our replayer to assess new hard forks
on already deployed smart contracts on the mainnet. Our
replayer efficiently replays transactions in the same context
except the protocols changed by the new hard fork. Hence, the
effect of the hard fork on existing contracts can be observed,
which helps decision making and hard-fork analysis.

For demonstration purposes we conducted an assessment
of the historical hard forks on the Ethereum mainnet. Table 5
enumerates the history of the Ethereum hard forks at the
time of writing. Out of nine hard forks, the DAO Fork and
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EVM runtime exception (%) Gas usage changed (%)

Hard fork
Assessed

transactions
(M)

Invalid
JUMP

Invalid
opcode Reverted

Output
changed

(%)
Out-of-gas Increased Decreased Unaffected

(%)

Homestead 0.416 0.000 0.000 0.000 0.000 0.002 0.000 0.000 99.998
Tangerine Whistle 2.508 0.585 0.000 0.000 3.667 2.761 75.125 0.003 17.859
Spurious Dragon 3.055 0.530 0.000 0.000 9.407 2.549 71.182 0.001 16.331

Byzantium 26.014 0.062 0.000 0.000 2.560 0.299 8.359 0.001 88.718
Constantinople /

Petersburg
193.668 0.008 0.000 0.000 0.344 0.040 1.123 0.000 98.485

Istanbul 303.300 0.064 0.198 1.009 3.804 7.884 68.494 18.547 0.000

Table 5: Hard fork assessment: percentage of affected and unaffected contract invocations and the share of each effect. Column
“Assessed transactions” indicates the number of contract invocation transactions executed for the assessment. A transaction in
“EVM runtime exception” was successful in the original invocation but raised an exception during the hard fork assessment. (1)
“Invalid JUMP”: destination of the JUMP instruction was not a JUMPDEST instruction. (2) “Invalid opcode”: executed instruction
was the INVALID instruction or not defined in the hard fork. (3) “Reverted”: the REVERT instruction was executed. (4) “Output
changed”: side effect on replay output changed, disregarding gas usage and account balances. (5) “Out-of-gas”: successful in
the original invocation but raised out-of-gas exception in the hard fork assessment. (6) “Increased” & “Decreased”: produced
the same output as the original invocation except gas usage and account balances. (7) “Unaffected”: produced the exactly same
output as the original invocation.

Muir Glacier are not included because they do not affect
the EVM specification for transaction execution. Hard fork
Constantinople / Petersburg comprises two steps that took
effect within the same block and hence were combined for
this study. For the assessment of a hard fork on deployed
contracts, all historic contract invocation transactions prior
to the activation of the hard fork are relevant (cf. Section 2).
The activation position of a hard fork on the chain thereby
determines the number of transactions that need to be assessed,
from the genesis block until the block where the hard fork
became active. Column “Assessed transactions” in Table 5
depicts the number of contract invocation transactions that our
replayer executed for each of the historical hard forks on the
mainnet. Note that the Istanbul hard fork took place at block
height 9.069 M, whereas the block range of our experiment
was 0–9.0 M, but we do not regard the excluded 69 k blocks
to be significant for this demonstration of our replayer. In
total, our replayer executed 529 million contract invocation
transactions as part of this assessment. The experiment took
15.15 h with an overall throughput of 9,694.30 tx/s.

The results, i.e., the effects of each hard fork on the contract
invocation transactions prior to its activation on the mainnet,
are depicted in Table 5. The columns below “EVM runtime
exception” state the percentage of transactions for which the
original invocation was successful but raised an exception
in the hard fork assessment. JUMP instructions to invalid des-
tinations and the INVALID instruction have been used as a
pragmatic way to throw runtime exceptions. The Byzantium
hard fork at block 4,370,000 introduced the REVERT instruc-
tion. The main difference is that JUMP and INVALID consume
all remaining gas but REVERT refunds the remaining gas to
the sender.

Effects on Execution Path The sum of column “EVM run-
time exception” and column “Output changed” is the percent-
age of transactions for which the EVM specification change
resulted in an execution path different from the original invo-
cation. The hard fork with the highest ratio of sum of “EVM
runtime exception” and “Output changed” is Spurious Dragon
with 9.9 %, followed by Istanbul, and Tangerine Whistle with
5.1 % and 4.3 %. Spurious Dragon activated EIPs that in-
creased the gas cost of EVM instructions, limited code size,
and cleared empty accounts in the world state trie to protect
the network from DoS attacks. The other two hard forks, Is-
tanbul, and Tangerine Whistle, mainly updated gas costs of
EVM instructions. This is an indication that the execution
paths of those contracts are highly dependent on the EVM
gas system. Hence, updating the gas system may cause such
contracts to fail.

Effects on Gas Consumption The hard forks Tangerine
Whistle and Spurious Dragon increased the gas costs of sev-
eral EVM instructions, resulting in more than 70 % of contract
invocations to consume more gas, and 2 % to raise an out-of-
gas exception. The Istanbul hard fork increased the gas costs
of several instructions that access tries and reduced the gas
costs of loading call data input, which affected all contract
invocations. As a result, 68.5 % of all contract invocations
consumed more gas, 7.9 % raised an out-of-gas exception,
and 18 % consumed less gas.
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6 Related Work

Hartel and Staalduinen [26] proposed a tool to generate a
replay script for historic transactions based on Truffle. It re-
deploys the smart contract with historic data for replay on
the blockchain. This approach cannot faithfully reproduce
historic data because the execution environment may have
changed on redeployment. Their re-execution fails to accu-
rately replay 39 % of the 1120 sampled smart contracts [26].
In contrast, we identified the complete set of environmen-
tal parameters required to faithfully replay transactions. We
achieved a replay accuracy of 100 % for the 590 million trans-
actions on the Ethereum mainnet up to block 9 M. Our ap-
proach replays transactions off-the-chain and thereby elimi-
nates the networking and consensus overhead. Our substate
database provides direct access to the transaction-relevant
substate of any recorded transaction, which allows transaction
execution in isolation and at scale. In contrast, [26] can only
execute transactions sequentially from the tip of the chain.
Their method relies on the availability of the verified contract
source code on Etherscan, but only 2.2 % of all Ethereum
smart contracts deployed until Sept. 2018 have been made
available as source code on Etherscan [38].

Transaction replay is often required to find vulnerabilities
of smart contracts and verify the soundness of such methods.
ContractFuzzer [29] and EVMFuzzer [23] adopted fuzzing
techniques to spot weaknesses in smart contracts and EVMs.
ContractFuzzer used 6,991 smart contracts for fuzzing and de-
tected seven types of vulnerabilities. EVMFuzzer performed
fuzzing for 253,153 contracts to expose vulnerabilities in dif-
ferent types of EVMs. Hartel and Schumi [25] used mutation
testing to assess the quality of smart contracts. They injected
smart contract specific mutations at a large scale and per-
formed the experiment for more than 2 million transactions.

Replaying the whole blockchain can be conducted to under-
stand the dynamic behavior of the Ethereum ecosystem. Yang
et al. [48] and Baird et al. [4] measured transaction execution
time for millions of blocks and discovered that time-per-gas
ratios of instructions are not uniform, which potentially threat-
ens the decentralization of the Ethereum network. Aldweesh
et al. [2] observed a similar result by measuring CPU and gas
usage of opcodes independently with their OpBench frame-
work. TokenScope [8] replayed the blockchain to investigate
inconsistent tokens in Ethereum. They took a trace-based ap-
proach to find inconsistencies by comparing the information
about data structure, interfaces, and events. They reported
7,472 inconsistent tokens out of 57,411 tokens from 6 million
examined blocks.

7 Conclusion

The Ethereum blockchain and its surrounding environment
have been rapidly developed in recent years. This has led
to a situation where “the need for software engineers to de-

vise specialized tools and techniques for blockchain-oriented
software development” [40] has arisen. However, there is a
lack of tools that scale for tasks including third-party auditing,
testing, debugging, and quality assurance.

Our work proposes a new infrastructure for the lightweight
execution of smart contract transactions. Our framework can
exercise smart contracts at scale, multi-threaded, and in iso-
lation. We were able to execute all available smart contracts
from the Ethereum mainnet 4.54 times faster in comparison to
the standard Ethereum client, Geth. Moreover, we could scale
the execution effectively, e.g., on 44 cores our framework runs
50.03 times faster.

Our infrastructure is highly suitable in scenarios that re-
quire the fast and repeated execution of smart contracts. We
have demonstrated the application of our testing and profil-
ing infrastructure in three use cases: (1) for bytecode met-
rics, (2) for smart contract fuzzing, and (3) for hard fork
compatibility assessment. Our infrastructure scales for the
whole blockchain, which has not been possible with prior
approaches.
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Availability

The source code of our record-replay infrastructure is publicly
available at https://github.com/verovm/usenix-atc21.
The repository contains a download link to the substate
database (285 GB) of the initial 9 M blocks of the Ethereum
blockchain that has been recorded and replayed as part of this
study.
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