
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

PyLive: On-the-Fly Code Change for Python-based
Online Services

Haochen Huang, Chengcheng Xiang, Li Zhong, and Yuanyuan Zhou,
University of California, San Diego

https://www.usenix.org/conference/atc21/presentation/huang-haochen

PYLIVE: On-the-Fly Code Change for Python-based Online Services

Haochen Huang∗, Chengcheng Xiang∗, Li Zhong, Yuanyuan Zhou
University of California, San Diego

Abstract
Python is becoming a popular language for building online

web services in many companies. To improve online ser-
vice robustness, this paper presents a new framework, called
PYLIVE, to enable on-the-fly code change. PYLIVE leverages
the unique language features of Python, meta-object protocol
and dynamic typing, to support dynamic logging, profiling
and bug-fixing without restarting online services. PYLIVE
requires no modification to the underlying runtime systems
(i.e., Python interpreters), making it easy to be adopted by
online services with little portability concern.

We evaluated PYLIVE with seven Python-based web appli-
cations that are widely used for online services. From these
applications, we collected 20 existing real-world cases, in-
cluding bugs, performance issues and patches for evaluation.
PYLIVE can help resolve all the cases by providing dynamic
logging, profiling and patching with little overhead. Addi-
tionally, PYLIVE also helped diagnose two new performance
issues in two widely-used open-source applications.

1 Introduction

Python has gained wide adoption on developing online ser-
vices. Many companies use Python to build their main on-
line platforms. For example, Google’s Youtube front-end
server is built using Python [37, 51, 96]. Instagram’s web
services and Quora’s main web services are also built with
Python [36, 81, 94]. In addition to commercial companies,
many open-source projects also use Python to build various
frameworks for online services. Table 1 shows six categories
of them, including web frameworks, e-commerce and message
queues, etc.

These online services have critical requirements on high
availability. A recent survey shows that 99.99% of uptime (i.e.,
52.6 minutes per year) has become the minimum availability
standard for most services [57]. A report from Statista shows
that in 2020 one hour server downtime can cause more than
$301K cost for 88% of companies and more than $5 million
cost for 17% of companies [87].

However, high availability becomes challenging when there
are code changes to apply to systems of running services.
Such changes include adding logs to gain more diagnostic
information, instrumenting programs to profile performance
bottlenecks and applying patches to fix bugs.
∗Co-first authors.

Category Server Frameworks (Github stars)

E-commerce Odoo (17.5k), Saleor (7.8k), Oscar (4.3k)
Web framework Django (45k), Flask (48k), Pyramid (3.3k)
Web Server Gunicorn (6.8k), Tornado (19.1k)
Message queue Celery (14k), huey (2.7k), rq (6.6k)
Cache backend Django-cacheops (1.1k), Beaker (429)
FTP server pyftpdlib (1k), fbtftp (325), pyrexecd (202)

Table 1: Popular Python-based frameworks for online services.

Motivated by Python’s popularity and the demand of ap-
plying code changes while keeping high availability, this pa-
per presents a new idea that leverages the unique language
features of Python to perform dynamic code changes. Specifi-
cally, we design and implement a framework, called PYLIVE,
that enables dynamically changing Python programs for on-
the-fly logging, profiling, and bug-fixing on production sys-
tems without restarting them.

PYLIVE’s capability to change code during production runs
can be used by online services for various purposes including:
(1) On-the-fly logging for diagnosing production-run er-
rors. When an online service exhibits some abnormal be-
haviors, engineers can use PYLIVE to dynamically add logs
at certain locations to collect debugging information from
production-run. The logs can be enabled only during certain
time (e.g. when the load is light) to minimize the performance
impact. Production-run information is useful for diagnosing
challenging issues (e.g., resource leaking) that are hard to
reproduce in a testing environment and only manifest after a
long-time (e.g., weeks) running.
(2) On-the-fly profiling for diagnosing production-run
performance issues. When an online service has perfor-
mance issues observed for certain types of requests, engineers
can use PYLIVE to dynamically profile a set of functions
for a short period of time to collect production-run timing
information to troubleshoot the issues. The capability to (1)
dynamically start and stop profiling during production runs
and (2) only profile a small set of specified functions allows
engineers to troubleshoot elusive performance issues without
introducing much performance overhead. These performance
issues may only emerge in production-run but are hard to re-
produce during offline testing, making it necessary to perform
in-production profiling.
(3) Urgent dynamic patching (bug-fixing or security

USENIX Association 2021 USENIX Annual Technical Conference 131

patch). PYLIVE allows dynamically applying urgent patches
to fix some critical bugs or security issues without stopping
and restarting an online service. These bugs and issues can
either cause major failures or open up vulnerabilities to at-
tackers and thus needs to be patched as soon as possible.

PYLIVE complements the commonly-used system update
practice—rollout deployment [7, 42, 84]. Rollout is not the
best choice for dynamic logging and profiling for two reasons.
First, rollout still requires a restart of each service instance,
which can clear the key program states for diagnosis. These
states (e.g., resource leaks) may only be reproduced after a
long production run, which is undesirable to be cleared by
rollout. Second, a rollout deployment is heavyweight and
an overkill for just collecting logging/profiling information.
For instance, sometimes only a few servers of a fleet exhibit
abnormal behaviors because of their unique memory states.
If engineers want to diagnose the issue by rolling out a patch
with new logging statements, this patch needs to be batched
together with many other patches and will not be applied until
the next deployment (wait for a few hours or even a few days).
PYLIVE provides a better solution from both perspectives. It
requires no restart of service instances so it retains the issue
states for logging/profiling. In addition, it enables dynamically
adding logging/profiling statements to a running program
quickly and also removes the statements flexibly.

PYLIVE is designed based on the unique language features
of Python. Python is an interpreted language that supports the
meta-object protocol [22, 58] and dynamic typing. The meta-
object protocol enables programs to dynamically modify their
own metadata, including function bodies/interfaces and class
attributes, while dynamic typing allows changing variable
types during running. This makes dynamic code change much
easier for Python than for compiled languages (e.g., C/C++)
and other interpreted languages that do not support the full
meta-object protocol or dynamic typing (e.g., Java):

• For compiled languages, dynamically changing a program
requires many complex transformations to its code (e.g.,
patch functions) and memory layout (e.g., load new code
into memory), as shown in previous work [38, 46, 54, 55,
68, 76, 77]. At run time, a compiled program’s code is
binary code and its memory layout is fixed in different
segments. Modifying binary code or memory layout may
introduce safety concerns.

• Some other interpreted languages, like Java, do not sup-
port the full meta-object protocol or dynamic typing. For
example, Java does not support many types of dynamic
changes, like adding/deleting methods or changing meth-
ods’ signatures. Java is also statically-typed, making it
hard to change variable types. For such languages, im-
plementing dynamic code change requires modification
to the language runtime (e.g., JVM), as in previous work
[71, 78, 90]. This introduces portability concerns as differ-
ent versions of runtime may be used by different systems.

PYLIVE makes two main contributions: (1) PYLIVE real-
izes safe and portable dynamic code change by leveraging
Python’s language features. PYLIVE is safe as it requires no
low-level transformations of machine code or memory lay-
out. PYLIVE is portable as it relies only on the interfaces
provided by standard Python interpreters and thus can be eas-
ily adopted by existing Python-based systems. (2) Besides
patching, PYLIVE also enables instrumentation-based code
changes for dynamic logging and profiling. PYLIVE provides
convenient interfaces to flexibly instrument customized code
to a selected set of functions at running time. This is useful for
collecting diagnostic information in production-run systems
without causing significant performance degradation.

We evaluate PYLIVE with 20 real-world cases from seven
widely-used Python-based applications (including the popu-
lar Django framework and Gunicorn used by Instagram [35]).
All these applications have been deployed in various com-
panies to serve millions of customers [5, 13, 23, 26, 27, 34].
PYLIVE successfully helps resolve the cases with on-the-fly
logging, profiling and patching with little overhead. Addi-
tionally, PYLIVE has helped two widely-used open source
e-commerce applications diagnose two new performance is-
sues. We also measure the performance benefit of PYLIVE by
comparing it with restarting services to apply code changes.
During normal time (no code change), PYLIVE’s overhead is
negligible. Upon a code change, PYLIVE causes no downtime
and has little performance degradation (<0.1%). In compar-
ison, restarting the applications to apply changes can cause
2-17 seconds downtime and take up to 4.5 minutes to warm
up (up to 90% performance downgrade during warmup).

2 Background

This section briefly describes the unique language features of
Python that enables PYLIVE’s dynamic code change.

Meta-object protocol. Python is designed with a full sup-
port of the meta-object protocol [22, 58]. A meta-object is an
object that contains a program’s metadata, including types,
interfaces, classes and methods, etc. The meta-object protocol
provides programming interfaces for programs to manipulate
these metadata at runtime. For example, a new method named
A can be dynamically added to class C simply with C.A =
D (D is A’s definition). Similarly, an existing function’s code
body can also be changed at runtime with A.__code__ =
D.__code__. Once it is changed, the new D is called when
A is invoked. Other supported changes include changing a
function’s interface, adding a new field to a class, changing a
variable’s type, etc. All the above changes are supported by
the standard Python interpreter [32].

Dynamic typing. Python defines and checks variable types
at running time, which makes it easy to dynamically change
them. For instance, a Python variable a can be changed from

132 2021 USENIX Annual Technical Conference USENIX Association

a string to a bool. And at running time each time before a
is used, a type checking is performed. A wrong typed call
compare(a,b) is detected by the Python interpreter, which
will throw a runtime exception. In comparison, for Java, it is
impossible to dynamically change a variable’s type without
changing the underlying JVM. For C/C++, this is also almost
impossible as a string is passed by pointer while a bool is
passed by value.

Python bytecode. A Python interpreter stores and inter-
prets programs in bytecode, providing an opportunity for
dynamically instrumenting code. Compared to machine code,
bytecode is much easier to analyze and change with automatic
tools. First, it is architecture-independent. Although Python
can run on X86-64, ARMv7 and other architecture, it has the
same bytecodes for all architectures. So the same tool can
be used for Python on all platforms. Second, bytecode also
has fewer instructions than machine instructions. Python 3.8
bytecode only has 112 instructions, while X86 alone has 1503
instructions, let alone all various architectures. Third, Python
bytecode retains more type information than machine code.

3 PYLIVE Framework

PYLIVE is a runtime framework that accepts dynamic change
requests from engineers and applies them dynamically into
production-run systems without a restart. PYLIVE can be
used for on-the-fly logging, profiling and bug-fixing.

In this section, we begin with the design objectives (§3.1)
and interfaces (§3.2) of PYLIVE. We then discuss the three
challenges faced by PYLIVE: (1) How to support dynamic
changes for function interface, function body and data struc-
ture? (§3.3) (2) How to identify safe change points to apply
a change without causing inconsistency problems? (§3.4)
(3) How to update programs with multi-threads and multi-
processes? (§3.5)

3.1 Design Objectives
PYLIVE is designed with the following objectives:

(1) General. PYLIVE’s generality comes from three aspects:
(a) it requires no change to the standard Python interpreter.
Therefore, engineers need not to download a modified inter-
preter, which may not be compatible with their systems. (b)
PYLIVE is also general on the types of changes supported. It
supports not only changes to function body, but also changes
to function interfaces (e.g. add one more parameter) and data
structures (e.g. add one more field). (c) Since most online ser-
vices have multiple threads/processes, PYLIVE also provides
support for multi-threads and multi-processes.

(2) Flexible. PYLIVE is flexible from two perspectives. First,
PYLIVE is flexible in terms of when to apply a change and
when to revert a change, all based on engineers’ requirements.

This can help engineers collect logs for a short amount of time
to minimize the performance impact. For example, they can
perform on-the-fly logging or profiling only during light-load
time. Second, PYLIVE is also flexible with where to profile
or log. PYLIVE allows engineers to specify which modules
or functions to instrument logging/profiling code.

(3) Consistent and Safe. Dynamic changes to a running pro-
gram need to be performed at a carefully selected execution
point (aka, a safe point) to avoid inconsistency problems. For
instance, changing an unlock function to its new implemen-
tation after an old lock function is already executed may
cause inconsistency, leading to incorrect states. Unfortunately,
choosing a safe point for general changes has proved to be
undecidable [53]. So PYLIVE relies on engineers’ knowledge
to decide when a change is safe to happen: either when the
changed functions are not executing, or a user-specified check
function (e.g., specifying a lock is not held) returns true.

(4) Low Overhead. PYLIVE is designed to impose as little
overhead as possible. At normal time when no change needs to
be applied, the PYLIVE thread is sleeping and simply waiting
for engineers’ inputs. Once engineers instruct it to make code
changes, PYLIVE’s thread is woken up to perform the change.
Once a change is already applied in this target program’s meta-
data, PYLIVE gets to sleep again and is no longer involved in
the execution of the target program.

(5) Little Human effort. PYLIVE aims to minimize engineers’
efforts in using it. PYLIVE itself is downloaded as a small
Python library that can be easily installed. Only two lines of
Python code are needed to set up PYLIVE at the initialization
of the target program. To insert a dynamic change, PYLIVE
only needs engineers to write a small Python snippet to spec-
ify what needs to be changed. As shown in our evaluation of
20 real-world cases from seven widely-used Python software
systems (cf. Table 3), each change specification needs only
7-13 lines of code).

3.2 PYLIVE’s Interfaces
To make it easy to use, PYLIVE allows engineers to write
the specification for dynamic code change in Python code.
To enable dynamic changes for various purposes, PYLIVE
supports two change interfaces: instrument and redefine.

Instrument. The instrument interface can instrument
code to specified locations in certain functions or modules. It
is useful for instrumenting log statements or profiling code to
diagnose bugs or performance issues. The interface is:

instrument(scope, jointpoint_callback, time).

scope is a list of function/module names that need to instru-
ment. When only the module name is given, all functions
in it are instrumented. jointpoint_callback is key-value
dictionary of jointpoints (instrument location) and callback

USENIX Association 2021 USENIX Annual Technical Conference 133

code to instrument. PYLIVE supports different granularity of
jointpoints: coarse-grained, such as function begin/end, and
fine-grained, such as before/after a line and before/after a vari-
able’s definition. This allows engineers to flexibly customize
the instrument locations. time allows engineers to specify
when to perform an instrumentation and when to revert the
instrumentation. time can be either a specific time or a func-
tion that decides if an instrumentation should be performed.
Engineers may want to profile an online service only when it
is lightly-loaded and only for a period of time.

Redefine. The redefine interface is for code changes that
replace the definitions of existing functions and classes (data
structures) with new ones. To perform such code changes,
engineers use the following Python interface:

redefine(prepFunc, old_new_map, safepoint).

prepFunc is a user-defined Python function that engineers
need to provide to execute before making the specified change.
Inside prepFunc, engineers can import new modules and
perform various initialization tasks. old_new_map is a key-
value dictionary that specifies the changes. Each pair

{'old_func/old_class': new_func/new_class}

specifies an old function or class needs to be replaced by a
new function or class. Engineers also need to provide the
new function or class definition. To add a field to a class, just
specify the field name and its initialization code with:

{'class.new_field': field_init}.

safepoint defines at what execution point it is safe to apply
the specified change. It can be either "FUNC_QUIESCENCE" or
a user-specified consistency check function (cf.§3.4).

3.3 Support Dynamic Changes
Change function interface and body. PYLIVE supports
changes on both function interfaces and code bodies. Chang-
ing function interfaces includes altering the number of param-
eters, parameter types, and function names. To make these
changes, PYLIVE utilizes Python’s meta-object protocol and
dynamic typing. For parameter number changes, Python func-
tions’ parameters are defined in a list (i.e. co_varnames), and
PYLIVE directly edits the list to add or remove parameters.
For parameter type changes, Python uses dynamic typing, and
so PYLIVE needs not explicitly change anything. For function
name changes, PYLIVE defines a new function and modifies
the callers to call the new function.

For function body changes, PYLIVE supports two types
of changes: redefine a function body with a new one and
instrument the old function body with extra statements (e.g.,
for logging or profiling). For both types, PYLIVE replaces
functions’ code object (__code__) as a whole, as code objects
are immutable and can only be replaced by reference change.

For instrument changes, PYLIVE first copies the function’s
code object, builds an instrumented version by modifying its
bytecode [10], and then sets the function’s __code__ to point
to the instrumented code object.

PYLIVE may also need to change caller functions when
changing the callee functions. For changes that modify callees’
interfaces, PYLIVE needs to change all the callers’ function
body to call the new interface. PYLIVE expects that engineers
include all changes to callers in the same patch as normal
patching practice. For changes that only modify callees’ func-
tion bodies, PYLIVE needs not to change the callers. This is
because Python function calls are made by function names in-
stead of addresses. Every time a function call happens, Python
interpreters translate its name into address by looking up its
metadata. Therefore, as long as the function metadata is up-
dated (e.g. modify the __code__ as discussed before), func-
tion calls can always be directed to the newest code objects.
Note this differs from dynamic code changes in C/C++—they
may need to update callers’ function body as the function
calls are made by address directly.

Change data structure. Data structure changes include
changes to class attributes, object attributes and methods.

Class attributes are data fields defined in classes and shared
by all the object instances. PYLIVE changes class attributes
by modifying the namespace tables of the target classes. In or-
der to hook class attributes access for profiling or debugging,
PYLIVE adds getter and setter functions for attributes
need to be changed. In Python, getter and setter are auto-
matically called if an attribute is annotated as property.

Object attributes are more difficult to change since they
are individually stored in different objects even though they
are instantiated from the same class. In order to change an
object attribute, it is necessary to go through all objects of the
class and change each individually. Previous works typically
need to refactor a system ahead of time so they can have
Factory objects to keep track of all live objects at runtime [41].
PYLIVE utilizes Python’s garbage collector (GC) to track live
objects and modify each one when a change is requested.
Specifically, PYLIVE calls gc.get_objects() to obtain a
list of all live objects tracked by GC [14]. As Python uses
reference counting to decide objects’ liveness, this does not
trigger a heap walk but returns a list immediately instead.

Methods are just functions defined in classes and so can
be changed in the same way as global functions as described
above. Methods’ code is only stored in their classes instead
of all instantiated objects, and so simply updating the classes’
methods is sufficient to apply a change.

3.4 Identify Safe Change Point

Changing code at run time is not always safe. For instance,
changing a function when it is executing may cause inconsis-
tency problems. Therefore, dynamic code change systems

134 2021 USENIX Annual Technical Conference USENIX Association

Figure 1: An example of unsafe change points for a patch from
Django [11]. it is unsafe to change lock() or unlock() when the
program is executing between line 61 and 67, as the change can
cause that a new unlock() to be called against an old lock, which
can leads to undefined behavior.

need to carefully choose a safe execution point to apply
a change. Unfortunately, choosing a safe point for general
changes has proved to be undecidable [53]. As a result, it
is necessary to have engineers’ knowledge to choose a safe
change point. PYLIVE categorizes safe points into different
types and lets engineers select one based on the changes they
want to make. Note that choosing the safe update point is
only necessary when applying patches. PYLIVE can always
apply code changes for logging and profiling as they only add
code but do not change the existing code. PYLIVE supports
two kinds of safe points:

Quiescence of the changed functions. This requirement
means a change is only applied when the changed functions
are not under execution. This is also the update point used
by many previous dynamic code change systems [38, 38, 39,
86, 91]. It ensures that no function is executed with a mixture
of old and new code during changes. PYLIVE provides auto-
matic support for this safe point. To specify it, engineers only
need to specify safepoint=‘FUNC_QUIESCENCE’.

PYLIVE supports function quiescence for both changing
one function and multiple functions. When changing one
function, PYLIVE directly takes advantage of Python meta-
object protocol to guarantee the quiescence. In Python, when
a function’s code is changed, the change only takes effect
the next time it is called. When changing multiple functions,
PYLIVE checks every thread’s stack for any changed function.
If any changed function is on a stack, PYLIVE defers the
change, retries the checks later and applies the change when
no changed function is on any stack.

Consistent state check. When the changed functions mod-
ify shared states between them, function quiescence may not
be enough for safety. Consider an example shown in Figure 1,
two functions lock and unlock need to be changed, and both
of them modify the lock state. Applying the change when the
program is executing between the calls to lock and unlock
is not safe, even though the functions themselves are not exe-
cuted. The new unlock may be called with an old lock state

def state_check_func():
for fd in all_fds():
if locks.check_lock(fd) != locks.UNLOCK:

return False
return True

Figure 2: An example of state check function for the patch in
figure 1. It returns true when the lock is not currently held.

and the behavior is undefined.
To address this, PYLIVE allows engineers to provide a

customized boolean function to decide when it is safe to
apply a change. This is also noted as state quiescence in
previous work [48]. Engineers can easily write such boolean
functions in normal Python code. Figure 2 shows the state
check function for changing lock and unlock. It checks if no
lock is held before applying the change. PYLIVE periodically
evaluates it and only applies the change when it returns true.

Note for most code changes, it does not require any cus-
tomized consistency check. In our evaluation with 20 real-
world cases from seven widely-used Python programs, only a
few cases require a simple consistency check.

Guidance for engineers. We provide guidance to help en-
gineers identify and specify safe change points for their needs:

First, if the changed functions have no side effects or neg-
ligible side effects on execution state, engineers can specify
function quiescence as the safe change point. For example, if
the changed functions modify no non-local variables, perform
no database write and only write a few logs, it is safe to update
them as long as they are not under execution.

Second, if the changed functions have some non-negligible
side effects on execution states, engineers need to identify the
states that the side effects of the old and new functions will
not affect each other. Specifically, the variables Vold defined
and propagated from old functions fold will not be used by
new functions fnew, and vice versa. To ensure this, the target
consistent states are either no variable in Vold is defined or all
of them are dead. An example of this is shown in Figure 2
that no lock is held at the point of change. Such states may not
exist or may not be easy to express in state check functions,
and in such cases it may be better to perform a restart than to
use PYLIVE.

3.5 Support for Multi-threads and Multi-
processes

Multi-threads. A server program may have multiple
threads to serve different user requests. Different threads have
different program counters while sharing the same code and
global variables. Therefore, it is not straightforward to apply
a change at a given safe change point for multiple threads.

To change multiple threads correctly, PYLIVE applies a
given change synchronously. The synchronous change is en-
sured by Python global interpreter lock (GIL). At any exe-
cution point, only one thread can hold GIL and so can get

USENIX Association 2021 USENIX Annual Technical Conference 135

executed [15]. Therefore, when PYLIVE is actively applying
a dynamic change, all other threads to be changed are blocked.
When applying changes, PYLIVE also explicitly holds GIL
lock to make sure no other threads can preempt it [17].

Based on the type of safe point, PYLIVE applies changes
differently. If the safe point is function quiescence, PYLIVE
either immediately applies the change when only one function
needs to change or check program stacks to make sure no
target function on stacks when multiple functions need to
change. Applying one function change is simpler because
Python’s meta-object protocol ensures the change to not take
effect during its execution. If the safe point is a consistent state
check, PYLIVE first executes the check function provided by
engineers. If the consistent check succeeds, PYLIVE then
applies the change. If it fails, PYLIVE sets a timer t and goes
to sleep to let other threads execute. The timer will wake up
PYLIVE later to perform a state check again. The timer t is
configurable by engineers. After several attempts, if it still
fails, PYLIVE will give up and report an error to engineers.

Multi-processes. Online services may use multiple pro-
cesses, and dynamic code change needs to be applied to all of
them. Different Python processes reside in different address
spaces and share code through copy-on-write. When code
is changed in a process, a copy-on-write happens and other
processes will continue to use the old code. As such, dynamic
code change needs to be performed explicitly in all processes.
PYLIVE adopts a controller-stub architecture to communicate
changes to all processes. A stub is a change thread residing
in a target process. PYLIVE starts one stub thread for each
target process at its starting time. A stub thread listens to
a controller for patches and applies the received patches at
a safe change point. A PYLIVE controller is a standalone
process that accepts engineers’ change input and sends the
specified code change to the stub thread in each process.

4 Use Cases
PYLIVE enables three types of use cases that require a running
system to be dynamically changed.

4.1 On-the-fly Logging for diagnosis
Systems may exhibit abnormal behavior during running. To
collect run time info for diagnosis, engineers may want to add
new log messages dynamically without restarting services.

An example of this is the diagnosis of a bug [28] from
the Shuup [24] e-commerce system. This bug is related to
its shopping cart: when some users click “add to cart”, the
product is not added to the cart. This prevents users from pur-
chasing products and causes direct revenue loss to businesses.
Since the bug has no error logs, it is quite challenging for
engineers to diagnose it off-line.

Figure 3 shows how engineers can use PYLIVE to add log
messages to diagnose the issue. Engineers direct PYLIVE

callbacks to instrument
logging right/left-hand variables in each line
def call_b(_righthands):
logging.info(_righthands)

def call_a(_lefthands):
logging.info(_lefthands)

instrument code to every line in two functions
instrument(scope=['...add_product',

'..._find_product_line_data'],
jointpoint_callback={line_before: call_b,

line_after: call_a},
time='24:00-2:00')

Figure 3: PYLIVE’s dynamic logging spec for an urgent, real
world bug in Shuup e-commerce system [28]. This spec tells
PYLIVE to dynamically instrument code to log some variable values
in two functions add_product and _find_product_line_data
for a period of time. line_before and line_after are two joint-
points PYLIVE provides to instrument code before and after each
line in functions.

to add line-by-line logs in two functions add_product and
_find_product_line_data. Engineers also specify to only
collect logs during light-load time (24:00-2:00).

4.2 On-the-fly Profiling

Performance issues often occur in production as systems have
more and more features and scale up to a larger size. When
such an issue emerges, engineers may want to enable profiling
to certain parts of a system during production run.

An example [21] of such issues is from the Oscar e-
commerce system. This issue happens when there are a lot of
product categories in Oscar. The issue causes a performance
downgrade in many pages displayed to customers in Oscar,
preventing customers from buying products.

Figure 4 shows how to use PYLIVE to dynamically instru-
ment code to profile the system. Engineers instruct PYLIVE
to instrument customized profiling code into the methods in
two classes, AbstractCatagory and CatalogueView, that
are speculated to be related to the issue.

4.3 Dynamic Patching

Online services frequently have urgent bugs (e.g., security
bugs) that need to be patched as quickly as possible to mini-
mize damages since they may cause information leakage/sys-
tem compromise and prevent customers using online services.

An example [1] of such patches is from Django. It fixes
a severe cross-site scripting (XSS) [8] issue, CVE-2019-
12308 [9]. The issue is scored as “6.1” since it can expose
malicious URLs as clickable links to victim users and direct
them to vulnerable sites. Django developers quickly post a
security release [12] to fix the vulnerability and encourage all
online services that use Django to apply it as soon as possible.

136 2021 USENIX Annual Technical Conference USENIX Association

profiling code to instrument
def call_b(start):
start = time.time()

def call_a(start):
logging.info(time.time()-start)

instrument code to all functions of two classes
instrument(scope=['...AbstractCatagory.*',

'...CatalogueView.*'],
jointpoint_callback={func_before: call_b,

func_end: call_a},
time='24:00-2:00')

Figure 4: On-the-fly profiling using PYLIVE to diagnose a criti-
cal performance issue occurred in Oscar eccomerce system [21].
This example requires PYLIVE to instrument code to profile the
execution of every method in two classes AbstractCategory and
CatagolueView for a period of time.

Figure 5 shows part of the patch and the change spec
that engineers need to provide for PYLIVE to dynami-
cally apply it. This patch is non-trivial to be dynami-
cally applied, as it changes both function interfaces and
data structures. It adds a new parameter validator_class
to the __init__ function and adds a new attribute
self.validator to AdminURLFieldWidget. The change
spec calls the redefine interface with three arguments:
preupdate specifies that PYLIVE needs to import a new class
URLValidator before applying the change; old_new_map in-
dicates that the original __init__ will be replaced with the
new code. safepoint='FUNC_QUIESCENCE' tells PYLIVE
to apply the change when the changed functions are quiescent.
This requirement is safe enough in the case as there is no
inter-dependency between the changed functions.

5 Evaluation

5.1 Methodology
We evaluate PYLIVE with 20 cases from seven Python-based
real-world applications, as shown in Table 2. These applica-
tions are deployed in many companies, serving millions of
customers [5, 13, 23, 34]. Django is a popular web framework
that powered over 94,319 websites, of which many are for
e-commerce [85]. Gunicorn is a production web server used
by many big companies for their main services, such as Insta-
gram [35]. All the online services need to be almost non-stop
since any downtime can result in revenue loss.

To evaluate PYLIVE’s benefit, we compare PYLIVE with
a typical restart approach: modify code for logging/profil-
ing/patching offline, stop the services and restart the services
immediately. To precisely measure the restart impact, we only
restart the Python part of a service, which does not restart
other parts (e.g., database) to avoid the impact of warming up
their cache. For profiling, we also compare PYLIVE with cPro-
file [47], which is Python’s official profiling tool for collect-
ing comprehensive profiling information in test environments.

patch: add a parameter validator_class
add an object attribute validator
class AdminURLFieldWidget(...):
def __init__(self, attrs=None,

validator_class=URLValidator):
self.validator = validator_class()
...

change specs.
def preupdate_call():
from django.core.validators import URLValidator

redefine(
preupdate = preupdate_call,
old_new_map={

'...AdminURLFieldWidget.__init__':__init__},
safepoint='FUNC_QUIESCENCE')

Figure 5: A real world security patch to Django [1] and
PYLIVE’s dynamic change spec for it. This patch adds a param-
eter to function __init__ and adds an object attribute validator
to class AdminURLFieldWidget. Other part of the patch is omit-
ted due to space limit. The change spec indicates: preupdate —
import URLValidator before the change; old_new_map — replace
AdminURLFieldWidget.__init__ with a new one; safepoint — ap-
ply the change when the changed function is quiescent.

Applications Category Logging Profiling Patching

Django [33] Web framework 1 0 2
Gunicorn [16] Web server 0 0 1
Oscar [6] E-commerce 1 2 1
Odoo [25] E-commerce 1 1 2
Shuup [24] E-commerce 1 0 1
Pretix [27] E-commerce 1 0 1
Saleor [61] E-commerce 1 1 2
Total 6 4 10

Table 2: 20 real-world cases evaluated in our experiments. They
are from seven widely used Python-based server applications that
have powered many commercial e-commerce and ad-based web
services including Instagram, serving millions of customers.

Note PYLIVE is not a substitute for cProfile as it collects less
information than cProfile. However, as we will present in the
results, some cases only need little dynamic information to
diagnose. We conduct this comparison to study the benefit
that PYLIVE can bring for such cases.

Each application is set up on a machine with a 2.30GHz
CPU (6 core), 16GB Memory and 256GB SSD. Each ap-
plication runs with 2 processes and 4 threads/process. Each
application is initialized with ~2000 web pages. To mimic
real-world workloads, JMeter [4] is used to generate random
web page accesses. The JMeter client is started with 8 threads
and can generate up to 15K requests/second.

We use throughput as the performance metric and normal-
ize it to the max throughput of normal service run (41-752
requests/second). All the experiments are conducted within a
LAN, which ensures that network is not the bottleneck.

USENIX Association 2021 USENIX Annual Technical Conference 137

5.2 Overall Performance Results
Overall, PYLIVE avoids 2-17 seconds downtime and avoid
up to 4.5 minutes warmup time, during which the perfor-
mance downgrade can be 55%-90%. PYLIVE causes negligi-
ble (<0.1%) overhead during normal run as well as applying
changes. PYLIVE causes 0.1%-1.4% overhead during profil-
ing. Compared with cProfile, PYLIVE’s selective instrumen-
tation avoids 10.5%-33.6% overhead.

Figure 6,7 show the results of eight representative cases.
Two newly identified performance issues and the other twelve
existing real-world cases have similar results and due to space
limit are put online [3].

For logging cases, PYLIVE’s benefits mainly come from
avoiding the time to restart and warm up. The service restart
is relatively fast (2-17 seconds), but the warmup takes much
longer time. Our experiments set up applications with only
~2000 web pages, but the warmup still takes 2.3-3 minutes.

For profiling cases, PYLIVE makes the performance im-
pact caused by profiling affordable in production-run systems.
The benefit comes from two aspects. First, PYLIVE allows en-
gineers to perform customized profiling, so they need not pro-
file applications in a whole as with cProfile. The customized
profiling is not a substitute for comprehensive profiling with
cProfile because it collects less information. However, it’s
sufficient to diagnose many cases that only needs limited tim-
ing information, as shown later in our case studies (cf. §5.3).
Second, PYLIVE avoids restart and warmup time (up to 4.5
minutes), which is needed by cProfile. With PYLIVE, the per-
formance downgrade during profiling is 0.1%-1.4%. While
with cProfile, the performance downgrade can be 11%-39%.

For patching cases, PYLIVE can apply them dynamically
with almost no performance downgrades. This benefits urgent
security patches, for which waiting for the next rollout can
be dangerous. Our evaluation includes 5 security patches and
PYLIVE successfully applied them on-the-fly.

5.3 Case Studies
This section dives into the details of eight representative cases.
The remaining twelve cases evaluated are similar and due to
space limit we put them online [3].

Case 1: Diagnose a purchase bug in Shuup [28]. This case
is about diagnosing a bug related to the shopping carts of
Shuup [24], a widely-deployed e-commerce website. As men-
tioned in §4.1, the bug causes an error in production and
prevents customers from adding new items to shopping carts.
To help diagnose it, PYLIVE dynamically instruments logging
statements on the running application. Figure 6a shows that
PYLIVE avoids 3 seconds downtime and 2.3 minutes warmup
time. It imposes only < 0.1% performance overhead.

Case 2: Diagnose a payment bug in Odoo [74]. Odoo [25]
is an e-commerce website and this bug prevents customers
from paying an order. It is an “urgent” bug as it results in

business loss. Odoo engineers diagnosed it by adding two
logging statements and restarting the service. With PYLIVE,
the logging statement can be added on-the-fly with 11 LOC.
As shown in Figure 6b, PYLIVE avoids 4 seconds service
downtime with < 0.1% overhead. Differing from other appli-
cations, Odoo does not have much cache and so requires little
warmup time.

Case 3: Diagnose a purchase bug in Pretix [20]. Pretix [27]
is an ticket-booking website that allows event organizers to
sell event tickets online. In this case, when customers re-
quest a PayPal refund, it fails silently with no error mes-
sages. PYLIVE can dynamically instrument logging code
to diagnose the reason. Figure 6c shows that PYLIVE success-
fully avoids 17 seconds downtime and 3 minutes warmup (by
restarting Pretix) with < 0.1% performance overhead.

Case 4: Profile a main web page in Saleor [83]. This case is
about diagnosing a slowly-loaded web page. This case is diffi-
cult to reproduce in testing as it only emerges when the prod-
uct category grows to large. Currently, engineers use cProfile
to profile the whole application [83]. Enabling cProfile needs
an application restart, causing downtime and warmup time as
shown in Figure 6d. Also, cProfile profiles every function, so
after warmup it still imposes 35% performance downgrade.

PYLIVE can benefit the diagnosis in two ways. First, it can
dynamically instrument profiling code into a running appli-
cation. Figure 6d shows this can avoid 3 seconds downtime
and 4.5 minutes warmup of Saleor services. Second, it can be
customized to only profile the relevant functions suspected by
engineers and thus reduces profiling overhead to only 1.4%.

Case 5: Profile a slowly-loaded web page in Oscar [21].
This case is about diagnosing a slowly-loaded product-listing
page. It happens when the number of products grows to large.
PYLIVE enables dynamic profiling to Oscar with 9 LOC to
specify the change. As shown in Figure 6e, PYLIVE causes
only 0.5% performance overhead during profiling and nearly
no overhead during normal run. In contrast, cProfile causes as
much as 11% performance downgrades as well as 2 seconds
of downtime and 3 minutes warmup time.

Case 6: Profile a slow action in Odoo [75]. This case is
about diagnosing a slow receipt-validating action. It is hard to
reproduce in testing as it only emerges when the database con-
tains a large number of products and orders. PYLIVE enables
dynamic profiling with 9 LOC. Figure 6f shows PYLIVE’s
performance benefit. PYLIVE causes only 0.1% performance
overhead during profiling and nearly no overhead during nor-
mal run. In contrast, cProfile causes as much as 38.5% perfor-
mance downgrades as well as 9 seconds of service downtime.

Case 7: Patch CVE-2019-12308 security vulnerability in
Django [1]. This patch fixes a severe XSS security issue
CVE-2019-12308 [9]. As we discussed in §4.3, it may lead
users to click into malicious websites and can possibly affect

138 2021 USENIX Annual Technical Conference USENIX Association

0 1 2 3 4 5
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with logging

Restart with logging

(a) Shuup: on-the-fly logging to diagnose a payment
bug [28]. PYLIVE causes < 0.1% overhead only when adding
logs. In comparison, restarting causes 3 seconds of downtime
and needs 2.3 minutes to warmup.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with logging

Restart with logging

(b) Odoo: on-the-fly logging to diagnose a shopping-cart
bug [74]. PYLIVE causes < 0.1% overhead only when adding
logs. In comparison, restarting causes 4 seconds of downtime.
Odoo does not have much cache so has a short warmup time.

0 2 4 6 8
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with logging

Restart with logging

(c) Pretix: on-the-fly logging to diagnose a payment
bug [20]. PYLIVE causes < 0.1% overhead only when adding
logs. In comparison, restarting causes 17 seconds of downtime
and needs 3 minutes to warmup.

0 2 4 6 8 10 12
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

(d) Saleor: on-the-fly profiling a long-loaded web page [83].
PYLIVE causes 1.4% overhead only during profiling. In com-
parison, restarting causes 3 seconds of downtime and needs
4.5 minutes to warmup. Using cProfile causes 35% overhead.

0 2 4 6 8
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

(e) Oscar: on-the-fly profiling a long-loaded web page [21].
PYLIVE causes 0.5% overhead only during profiling. In com-
parison, restarting causes 2 seconds of downtime and needs 3
minutes to warmup. Using cProfile causes 11% overhead.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

(f) Odoo: on-the-fly profiling a long-loaded web page [75].
PYLIVE causes 0.1% overhead only during profiling. In com-
parison, restarting causes 9 seconds of downtime. Using cPro-
file to profile causes 38.5% overhead.

Figure 6: Throughput comparison of three on-the-fly logging cases and three on-the-fly profiling cases with PYLIVE in
comparison with today’s practices—stop and restart with logging added and profiling enabled.

many users. This patch is non-trivial to be dynamically ap-
plied, as it involves adding a parameter to a method interface
and adding a new class attribute [1]. With PYLIVE, this patch
is allowed to be applied safely with 8 additional LOC. Fig-
ure 7a shows the performance benefit of PYLIVE and PYLIVE
avoids 2 seconds of downtime and 2.8 minutes warmup time.
PYLIVE dynamically applies the patch with < 0.1% overhead.

Case 8: Patch CVE-2018-1000164 in Gunicorn [52]. This
patch fixes a HTTP Response Splitting Vulnerability [73]. It

has a severity score of “7.5 High” in the CVE system [72]. It
can be exploited by various attacks, such as Cross-site Script-
ing (XSS), Cross-User Defacement, Hijacking [73]. The patch
requires a modification to a function body. It can be dynam-
ically applied with PYLIVE with only 13 additional LOC.
As shown in Figure 7b, PYLIVE avoids 4 seconds of down-
time, when a non-cached service runs on Gunicorn. PYLIVE
introduces < 0.1% overhead while applying the patch.

USENIX Association 2021 USENIX Annual Technical Conference 139

0 2 4 6 8
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with patching

Restart with patching

(a) Django: urgent security patching for CVE-2019-12308 [1].
Compared with restarting, PYLIVE avoids 2 seconds of downtime
and 2.8 minutes warmup time, with < 0.1% performance overhead
during patching.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with patching

Restart with patching

(b) Gunicorn: security patching for CVE-2018-1000164 [72].
Compared with restarting, PYLIVE avoids 4 seconds of service down-
time, with negligible overhead during patching. Gunicorn’s workload
is Odoo, which has little cache, so it takes a short time to warmup.

Figure 7: Throughput comparison of two representative patching cases with PYLIVE and restarting services.

Use Case Software LOC Use Case Software LOC
Case1 Shuup 7 Case5 Oscar 9
Case2 Odoo 11 Case6 Odoo 9
Case3 Pretix 9 Case7 Django 8
Case4 Saleor 9 Case8 Gunicorn 13

Table 3: Lines of code (LOC) of change specification for
PYLIVE. For patches, this only count extra code for PYLIVE.

5.4 Human Effort

PYLIVE requires only a little human effort to adopt it in real-
world applications. To enable PYLIVE in a Python-based
application, it only needs to add two lines of code in the ap-
plication’s initialization stage. To apply dynamic change for
different purposes, PYLIVE allows engineers to write Python
code to specify the intended changes. Table 3 shows the lines
of code (LOC) to specify the changes in the eight representa-
tive cases. For all cases, it requires only 7-13 lines of code to
specify each change.

6 Limitations and Discussion

There are many kinds of code changes that PYLIVE cannot
apply. First, PYLIVE cannot apply changes to long-running
functions because dynamic changes only take effect next time
when the functions are called. Fortunately, online services
are usually request based and the major part is the request
handling functions, which finish running in a short amount of
time. Second, PYLIVE cannot apply patches that assume an
initial program state. Patches for memory-leak bugs may need
to reinitialize the program state to free the leaked memory,
which needs a restart of the target program. Third, PYLIVE
is not suitable for applying major changes to a target pro-
gram. Such changes include adding new features, updating
library versions, and refactoring the program structure. These
changes may involve major changes to program states and

code logic of many functions. Therefore, it is hard for engi-
neers to write code to initialize the states and to specify a safe
update point that considers all the dependencies between the
changed functions.

PYLIVE relies on engineers to specifies the safe update
points for dynamic patching. PYLIVE targets on simple bug-
fixing and security patches that only update a few functions
and data structures. For these patches, the safe update points
can be specified as when the targeted functions are not execut-
ing or when a customized state check passes (e.g. a lock is not
held as in Figure 1). However, for more complex patches that
change many interdependent functions and data structures, the
safe update point may not be easy to specify. For such cases, it
is safer to restart the target program than to use PYLIVE. Note
the safe update point is only necessary for applying patches
but not for logging or profiling. Code changes for profiling
and logging can always be safely applied as they only add
code but do not change the existing code.

PYLIVE cannot prevent errors introduced by buggy patches.
PYLIVE expects that engineers thoroughly test their patches
in a testing environment before dynamically applying them
to production-run systems. For logging and profiling cases,
PYLIVE wraps the instrumented code in try-catch blocks so
that buggy logging or profiling code does not affect the normal
program execution.

PYLIVE has two security implications. First, in terms of the
type of code changes that can be made dynamically, PYLIVE
does not expand the attack surface of Python’s own meta-
object protocol. PYLIVE does not modify the Python inter-
preter to enable more types of code changes but just provides
convenient interfaces purely based on Python’s meta-object
protocol. Second, the introduction of a change controller (cf.
§3.5) expands the attack surface from one single process to
two processes. The change controller is an additional process
that commands a target program process to apply a change
dynamically. Therefore, it would be dangerous if attackers
gain access to the change controller. It can be mitigated by

140 2021 USENIX Annual Technical Conference USENIX Association

setting the change controller’s permission to make it only
executable by a privileged user. We also plan to implement
PYLIVE’s own access control for the change controller in
future work.

PYLIVE’s design and implementation are generally appli-
cable to Python variants and other interpreted languages as
long as they support three language features:

• Meta-object protocol—PYLIVE uses this to modify a pro-
gram’s code at running time (cf. §2);

• Dynamic typing—PYLIVE relies on this to modify vari-
able types at running time (cf. §2);

• Interpreter interfaces to freeze non-current threads—
PYLIVE uses them to pause the execution of any other
threads to safely apply changes (cf. §3.5).

All three features are supported by popular python variants
including Pypy [29] and Pyston [2], and so PYLIVE can be
easily ported to them. PYLIVE can also potentially be ported
to two other popular interpreted languages: JavaScript [19]
and Ruby [30]. The first two features are directly supported
by JavaScript and Ruby. The third feature can also be imple-
mented in JavaScript and Ruby in different ways. JavaScript
uses a single-threaded event loop model—at any time only
one event handler is running and it cannot be preempted be-
fore its completion. Therefore, when PYLIVE is running in
JavaScript, any other thread is ensured not running at the same
time. Ruby’s official interpreter YARV [31] has a similar GIL
lock as Python’s GIL, which allows PYLIVE to hold GIL in
Ruby to prevent preemption as in Python (cf. §3.5).

7 Related Work
Dynamic Code Change for C/C++ and Java. Many
works have been done for dynamic changing C/C++-based
operating systems [39–41,45,49,64,86] and applications [38,
46, 54, 56, 63, 69, 82, 89]. While simple dynamic change (e.g.
patch only function bodies) to OS kernels has been used in
production, more general change to applications has not been
widely adopted. General dynamic change usually requires
many unsafe transformations to target programs including
modifying both machine code and memory layout. This may
introduce safety concerns in production. Contrarily, PYLIVE
realizes general changes by utilizing Python’s standard lan-
guage features—meta-object protocol and dynamic typing,
making it safer to be adopted in production.

Works on dynamic changing Java either need to modify
JVM [71, 90] or rely on some unsafe operations of JVM [78],
introducing portability and safety concerns in production.
When running a Java program, JVM maintains many metadata
such as method signatures and class attributes as internal data
but provides no safe operations to modify them. However,
it is necessary to modify these metadata in order to support
general dynamic change. In comparison, PYLIVE makes use
of Python’s meta-object protocol to safely modify related
metadata when dynamically changing Python programs. This

imposes no modification to a standard Python interpreter and
so can be easily adopted in existing production systems.

Dynamic Code Change for Python. Pymoult [66] made
a preliminary exploration on the feasibility of dynamically
changing Python programs. As a preliminary proposal, it has
no experimental result. More importantly, Pymoult relies on a
special Python interpreter, Pypy, which is not fully compatible
with the standard Python interpreter (i.e. CPython [32]). In
order to use Pymoult, engineers need to port their systems
to Pypy interpreter, which requires considerable human ef-
forts. Contrarily, PYLIVE is based on the standard Python
interpreter and so can be easily adopted in the field.

PyReload [93] is a dynamic code change tool based on
the standard Python interpreter. However, it has two key limi-
tations that prevent it to be practical. First, PyReload needs
engineers to refactor a target program into modules, which
requires huge human efforts. Second, PyReload only supports
single-threaded programs. Considering that servers usually
have multiple threads, PyReload is not suitable for server sys-
tems. In contrast, PYLIVE requires no refactor to the target
program and supports updating multi-thread server programs.

Language level support for dynamic code change. Lan-
guage level support for dynamic code change is not new.
Besides Python, many other dynamically-typed program-
ming languages, such as Common Lisp [88], Smalltalk [50],
JavaScript [19] and Ruby [30], have provided support for
meta-object protocol. Meta-object protocol can be directly
used to update a single function/class; however, there are still
many challenges in using meta-object protocol to practically
update server programs, which usually needs to update multi-
ple functions/classes and threads/processes. Very few works
have been done on these challenges. Rivet [67] proposes inter-
esting ideas to leverage JavaScript’s reflection capabilities to
debug single-threaded browser-side programs. But the ideas
cannot be directly borrowed to update server programs, which
usually have multiple threads/processes.

Focusing on Python, PYLIVE addresses three challenges
of leveraging meta-object protocol to update server programs.
First, to make it easy to update multiple functions and classes,
PYLIVE provides two APIs: Redefine and Instrument
(§3.2) and adopts the meta-object protocol and bytecode in-
strumentation to implement them (§3.3). Second, to make it
safe to update multiple functions and classes, PYLIVE bor-
rows ideas from previous works [38, 39, 48] and provides two
different safe points (§3.4). Third, to support updating pro-
grams with multiple-threads and multiple-processes, PYLIVE
proposes new synchronous update mechanisms based on
Python GIL and a controller-stub architecture (§3.5).

Aspect-oriented programming. PYLIVE’s Instrument
interface is a type of aspect-oriented programming (AOP) [60].
AOP is a programming paradigm to break down independent
program logic into different modules. A common usage of

USENIX Association 2021 USENIX Annual Technical Conference 141

AOP is to allow developers to write a function’s main logic
and its logging code separately. The AOP framework then
“weaves” the code together at compile time or load time. Sev-
eral works also aim to enable dynamic weaving at run time
for AOP [79, 80, 92]. PYLIVE’s Instrument interface is an
AOP support for Python and is inspired by previous work
on AOP interfaces for Java [59, 65]. However, AOP’s main
target is to insert additional code without modifying the ex-
isting code. PYLIVE also provides a Redefine interface to
modify the existing code of a running program, which is
challenging especially when the target program has multiple
threads/processes. To realize Redefine, PYLIVE further con-
sidered the challenge of supporting safe update points and
multiple-threads/processes programs.

Dynamic Instrumentation. PYLIVE’s Instrument inter-
face is related to previous works on dynamic binary instru-
mentation (DBI), including Pin [62], Valgrind [70], and Dy-
namoRIO [43]. DBI enables modifying a running binary pro-
gram at the machine instruction level and is usually used for
logging and profiling a compiled program. However, DBI
cannot be directly adopted for profiling a Python program in
production. When DBI is used for a Python program, DBI
is instrumenting the Python interpreter instead of the Python
program. This can cause two folds of problems. First, the
logging and profiling results are verbose and hard to under-
stand by Python developers as they are mostly about the ex-
ecution of the Python interpreter but not about the Python
program. Second, this can introduce an unacceptable perfor-
mance downgrade to the Python program as interpreting one
line of Python code may need to run multiple lines of inter-
preter code. PYLIVE addresses these problems by instrument-
ing code at the granularity of Python bytecode. Therefore, the
logging and profiling results can be directly mapped back to
the Python program and so are easy to understand by Python
developers. In addition, much less code is instrumented and
so much less performance downgrade.

PYLIVE complements DTrace [44] on dynamic instrumen-
tation. DTrace is a dynamic instrumentation framework for
production systems. To enable DTrace for Python, it needs
to embed “markers” in Python interpreters. This introduces
additional compatibility requirements for Python interpreters
to use DTrace. As noted by the official Python document [18],
“DTrace scripts can stop working or work incorrectly without
warning when changing CPython versions.” PYLIVE takes a
complementary approach to instrument Python application
code without modifying Python interpreters, avoiding the
compatibility concerns.

Rollout Update. An alternative way to avoid whole system
downtime is rollout update [7,42,84]. In rollout update, a clus-
ter of servers are restarted one by one or batches by batches
so that during an update there are still servers alive to serve
users’ requests. However, for just collecting logging/profil-
ing information, rolling out patches to a whole cluster at the

next deployment is heavyweight and an overkill. It would be
handy to quickly apply a simple patch that temporarily logs
extra information or collects extra metrics to some servers
on-the-fly. Furthermore, rollout update is less effective for
collecting diagnostic or profiling information for certain types
of issues because rollout update still requires restarting every
service instance. As a result, errors that appear only after a
long running time, such as resource leaks and concurrency
issues, may not reappear quickly after restarting to provide
diagnostic information [95]. Finally, rollout update can still
result in a subset of servers restarting and warming up before
providing service at their full capacity. This means during
the rollout update, the entire system will suffer from certain
levels of throughput degradation.

8 Conclusions

In this paper, we proposed a framework called PYLIVE that
leverages Python’s unique language features, meta-object pro-
tocol and dynamic typing, to support dynamic code change for
on-the-fly logging, profiling and patching in production-run
systems. PYLIVE only relies on standard Python interpreters
and can be easily adopted by existing systems. We evaluated
PYLIVE with seven widely-deployed Python-based systems
for online services. PYLIVE successfully helped resolve 20
existing real-world cases from these systems with dynami-
cally logging, profiling and patching. PYLIVE also helped
two of the systems diagnose two new performance issues.
In comparison to restart, PYLIVE avoids service downtime
and warmup. PYLIVE imposes no overhead during normal
run and negligible overhead during the change. For profiling,
PYLIVE adds only 0.1%-1.4% overhead.

Acknowledgments

We greatly appreciate our shepherd, Larry Rudolph, and the
anonymous reviewers for their insightful comments and feed-
back. We thank Stewart Grant, Rajdeep Das, Keegan Ryan,
the Opera group as well as the Systems and Networking group
at UCSD for helpful discussions and paper proofreading. This
work is supported in part by NSF grants (CNS-1814388, CNS-
1526966) and the Qualcomm Chair Endowment.

142 2021 USENIX Annual Technical Conference USENIX Association

References

[1] [2.2.x] Fixed CVE-2019-12308 – Made
AdminURLFieldWidget validate URL be-
fore rendering clickable link. https:
//github.com/django/django/commit/
afddabf8428ddc89a332f7a78d0d21eaf2b5a673.

[2] A faster and highly-compatible implementation of the
Python programming language. https://github.com/
pyston/pyston.

[3] Anonymous repo for Pylive evaluation result. https:
//github.com/pyupdate/evaluation.

[4] Apache JMeter - Apache JMeter. https://
jmeter.apache.org/.

[5] Butterfly Network Case Study – Saleor Commerce.
https://saleor.io/case-study/butterfly-
network/.

[6] Cases / Oscar - Domain-driven e-commerce for Django.
http://oscarcommerce.com/cases.html.

[7] Continuous Deployment at Instagram. https:
//instagram-engineering.com/continuous-
deployment-at-instagram-1e18548f01d1.

[8] Cross Site Scripting (XSS) Software Attack | OWASP
Foundation. https://owasp.org/www-community/
attacks/xss/.

[9] CVE-2019-12308 Detail. https://nvd.nist.gov/
vuln/detail/CVE-2019-12308.

[10] Disassembler for Python bytecode. https://
docs.python.org/3/library/dis.html.

[11] Django patch: Changed the use of fc-
ntl.flock() to fcntl.lockf(). https:
//github.com/django/django/commit/
195420259a5286cbeface8ef7d0570e5e8d651e0.

[12] Django security releases issued: 2.2.2, 2.1.9 and
1.11.21. https://www.djangoproject.com/weblog/
2019/jun/03/security-releases/.

[13] edX. https://open.edx.org/blog/using-open-
edx-ecommerce-module/.

[14] Garbage Collector interface. https:
//docs.python.org/3/library/
gc.html#gc.get_objects.

[15] GlobalInterpreterLock - Python Wiki. https://
wiki.python.org/moin/GlobalInterpreterLock.

[16] Gunicorn - Python WSGI HTTP Server for UNIX.
https://gunicorn.org/.

[17] Initialization, Finalization, and Threads
. https://docs.python.org/3/c-api/
init.html#c.PyGILState_Ensure.

[18] Instrumenting CPython with DTrace and Sys-
temTap. https://docs.python.org/3/howto/
instrumentation.html.

[19] Javascript Programming Language. https://
www.javascript.com/.

[20] Log the reason for failed PayPal refunds.
https://github.com/pretix/pretix/commit/
5400d26c60b7a4fceab2c832419e63abfd785f0d.

[21] Long rendered page when a lot of categories products
1910. https://github.com/django-oscar/django-
oscar/issues/1910.

[22] Metaobject. https://en.wikipedia.org/wiki/
Metaobject.

[23] Multivendor Marketplace Platform - Enterprise Com-
merce Software. https://www.shuup.com/.

[24] Multivendor Marketplace Platform - Enterprise Com-
merce Software. https://www.shuup.com/.

[25] Odoo. https://www.odoo.com/.

[26] Odoo Customer Reviews | Success Stories. https://
www.odoo.com/blog/customer-reviews-6.

[27] pretix – Reinventing ticket sales for conferences, festi-
vals, exhibitions, ... https://pretix.eu/about/en/.

[28] Product does not get added to basket if force_new_line
= True #291. https://github.com/shuup/shuup/
issues/291.

[29] Pypy. https://www.pypy.org/.

[30] Ruby Programming Language. https://www.ruby-
lang.org/en/.

[31] ruby.git - The Ruby Programming Language. https:
//git.ruby-lang.org/ruby.git.

[32] The Python programming language. https://
github.com/python/cpython.

[33] The Web framework for perfectionists with deadlines |
Django. https://www.djangoproject.com/.

[34] Web Service Efficiency at Instagram with Python
- Instagram Engineering. https://instagram-
engineering.com/web-service-efficiency-at-
instagram-with-python-4976d078e366.

USENIX Association 2021 USENIX Annual Technical Conference 143

https://github.com/django/django/commit/afddabf8428ddc89a332f7a78d0d21eaf2b5a673
https://github.com/django/django/commit/afddabf8428ddc89a332f7a78d0d21eaf2b5a673
https://github.com/django/django/commit/afddabf8428ddc89a332f7a78d0d21eaf2b5a673
https://github.com/pyston/pyston
https://github.com/pyston/pyston
https://github.com/pyupdate/evaluation
https://github.com/pyupdate/evaluation
https://jmeter.apache.org/
https://jmeter.apache.org/
https://saleor.io/case-study/butterfly-network/
https://saleor.io/case-study/butterfly-network/
http://oscarcommerce.com/cases.html
https://instagram-engineering.com/continuous-deployment-at-instagram-1e18548f01d1
https://instagram-engineering.com/continuous-deployment-at-instagram-1e18548f01d1
https://instagram-engineering.com/continuous-deployment-at-instagram-1e18548f01d1
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://nvd.nist.gov/vuln/detail/CVE-2019-12308
https://nvd.nist.gov/vuln/detail/CVE-2019-12308
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html
https://github.com/django/django/commit/195420259a5286cbeface8ef7d0570e5e8d651e0
https://github.com/django/django/commit/195420259a5286cbeface8ef7d0570e5e8d651e0
https://github.com/django/django/commit/195420259a5286cbeface8ef7d0570e5e8d651e0
https://www.djangoproject.com/weblog/2019/jun/03/security-releases/
https://www.djangoproject.com/weblog/2019/jun/03/security-releases/
https://open.edx.org/blog/using-open-edx-ecommerce-module/
https://open.edx.org/blog/using-open-edx-ecommerce-module/
https://docs.python.org/3/library/gc.html#gc.get_objects
https://docs.python.org/3/library/gc.html#gc.get_objects
https://docs.python.org/3/library/gc.html#gc.get_objects
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://gunicorn.org/
https://docs.python.org/3/c-api/init.html#c.PyGILState_Ensure
https://docs.python.org/3/c-api/init.html#c.PyGILState_Ensure
https://docs.python.org/3/howto/instrumentation.html
https://docs.python.org/3/howto/instrumentation.html
https://www.javascript.com/
https://www.javascript.com/
https://github.com/pretix/pretix/commit/5400d26c60b7a4fceab2c832419e63abfd785f0d
https://github.com/pretix/pretix/commit/5400d26c60b7a4fceab2c832419e63abfd785f0d
https://github.com/django-oscar/django-oscar/issues/1910
https://github.com/django-oscar/django-oscar/issues/1910
https://en.wikipedia.org/wiki/Metaobject
https://en.wikipedia.org/wiki/Metaobject
https://www.shuup.com/
https://www.shuup.com/
https://www.odoo.com/
https://www.odoo.com/blog/customer-reviews-6
https://www.odoo.com/blog/customer-reviews-6
https://pretix.eu/about/en/
https://github.com/shuup/shuup/issues/291
https://github.com/shuup/shuup/issues/291
https://www.pypy.org/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://git.ruby-lang.org/ruby.git
https://git.ruby-lang.org/ruby.git
https://github.com/python/cpython
https://github.com/python/cpython
https://www.djangoproject.com/
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366

[35] What Powers Instagram: Hundreds of In-
stances, Dozens of Technologies. https:
//instagram-engineering.com/what-powers-
instagram-hundreds-of-instances-dozens-of-
technologies-adf2e22da2ad.

[36] Adam D’Angelo. Why did Quora choose Python for
its development? https://www.quora.com/Why-did-
Quora-choose-Python-for-its-development-
What-technological-challenges-did-the-
founders-face-before-they-decided-to-go-
with-Python-rather-than-PHP, Sep. 2014.

[37] Alex Martelli. Heavy usage of Python at Google?
https://stackoverflow.com/questions/
2560310/heavy-usage-of-python-at-google,
Apr. 2010.

[38] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew
Schultz. Opus: Online patches and updates for security.
In USENIX Security Symposium, pages 287–302, 2005.

[39] Jeff Arnold and M Frans Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Proceedings of the 4th
ACM European conference on Computer systems, pages
187–198. ACM, 2009.

[40] Andrew Baumann, Jonathan Appavoo, Robert W Wis-
niewski, Dilma Da Silva, Orran Krieger, and Gernot
Heiser. Reboots are for hardware: Challenges and so-
lutions to updating an operating system on the fly. In
USENIX Annual Technical Conference, pages 337–350,
2007.

[41] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, Robert W Wisniewski,
and Jeremy Kerr. Providing dynamic update in an oper-
ating system. In USENIX Annual Technical Conference,
General Track, pages 279–291, 2005.

[42] Eric A Brewer. Lessons from giant-scale services. IEEE
Internet Computing, 5(4):46–55, 2001.

[43] Derek Bruening and Saman Amarasinghe. Efficient,
transparent, and comprehensive runtime code manipula-
tion. PhD thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering . . . , 2004.

[44] Bryan Cantrill, Michael W Shapiro, Adam H Leven-
thal, et al. Dynamic instrumentation of production sys-
tems. In USENIX Annual Technical Conference, Gen-
eral Track, pages 15–28, 2004.

[45] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,
and Pen-Chung Yew. Live updating operating systems
using virtualization. In Proceedings of the 2nd inter-
national conference on Virtual execution environments,
pages 35–44, 2006.

[46] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-
Chung Yew. Polus: A powerful live updating system. In
29th International Conference on Software Engineering
(ICSE’07), pages 271–281. IEEE, 2007.

[47] Python Software Foundation. The python pro-
filers. https://docs.python.org/3.5/library/
profile.html, 2019.

[48] Cristiano Giuffrida, Anton Kuijsten, and Andrew S.
Tanenbaum. Safe and automatic live update for op-
erating systems. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’13, page 279–292, New York, NY, USA, 2013. Associ-
ation for Computing Machinery.

[49] Cristiano Giuffrida, Anton Kuijsten, and Andrew S.
Tanenbaum. Safe and automatic live update for op-
erating systems. SIGPLAN Not., 48(4):279–292, March
2013.

[50] Adele Goldberg and David Robson. Smalltalk-80: the
language and its implementation. Addison-Wesley
Longman Publishing Co., Inc., 1983.

[51] Quinta group. Python at google. https://
quintagroup.com/cms/python/google.

[52] gunicorn. Potential http response splitting vulner-
ability. https://github.com/benoitc/gunicorn/
issues/1227, 2016.

[53] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A
formal framework for on-line software version change.
IEEE Transactions on Software engineering, 22(2):120–
131, 1996.

[54] Christopher M. Hayden, Edward K. Smith, Michail
Denchev, Michael Hicks, and Jeffrey S. Foster. Kitsune:
Efficient, general-purpose dynamic software updating
for c. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’12, page 249–264,
New York, NY, USA, 2012. Association for Computing
Machinery.

[55] Michael Hicks, Jonathan T. Moore, and Scott Nettles.
Dynamic software updating. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language
Design and Implementation, PLDI ’01, page 13–23, New
York, NY, USA, 2001. Association for Computing Ma-
chinery.

[56] Gisli Hjalmtysson and Robert Gray. Dynamic c++
classes-a lightweight mechanism to update code in a
running program. In USENIX Annual Technical Confer-
ence, volume 98, 1998.

144 2021 USENIX Annual Technical Conference USENIX Association

https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad
https://www.quora.com/Why-did-Quora-choose-Python-for-its-development-What-technological-challenges-did-the-founders-face-before-they-decided-to-go-with-Python-rather-than-PHP
https://www.quora.com/Why-did-Quora-choose-Python-for-its-development-What-technological-challenges-did-the-founders-face-before-they-decided-to-go-with-Python-rather-than-PHP
https://www.quora.com/Why-did-Quora-choose-Python-for-its-development-What-technological-challenges-did-the-founders-face-before-they-decided-to-go-with-Python-rather-than-PHP
https://www.quora.com/Why-did-Quora-choose-Python-for-its-development-What-technological-challenges-did-the-founders-face-before-they-decided-to-go-with-Python-rather-than-PHP
https://www.quora.com/Why-did-Quora-choose-Python-for-its-development-What-technological-challenges-did-the-founders-face-before-they-decided-to-go-with-Python-rather-than-PHP
https://stackoverflow.com/questions/2560310/heavy-usage-of-python-at-google
https://stackoverflow.com/questions/2560310/heavy-usage-of-python-at-google
https://docs.python.org/3.5/library/profile.html
https://docs.python.org/3.5/library/profile.html
https://quintagroup.com/cms/python/google
https://quintagroup.com/cms/python/google
https://github.com/benoitc/gunicorn/issues/1227
https://github.com/benoitc/gunicorn/issues/1227

[57] Information Technology Intelligence Consulting Corp.
ITIC 2020 Global Server Hardware, Server OS Reliabil-
ity Report. https://www.ibm.com/downloads/cas/
DV0XZV6R, April 2020.

[58] Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko
Bobrow. The art of the metaobject protocol. MIT press,
1991.

[59] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Ker-
sten, Jeffrey Palm, and William G Griswold. An
overview of aspectj. In European Conference on Object-
Oriented Programming, pages 327–354. Springer, 2001.

[60] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In European
conference on object-oriented programming, pages 220–
242. Springer, 1997.

[61] Mirumee Labs. A modular, high performance, head-
less e-commerce storefront built with python, graphql,
django, and reactjs. https://saleor.io/, 2020.

[62] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. Acm sigplan notices, 40(6):190–200, 2005.

[63] Kristis Makris and Rida A Bazzi. Immediate multi-
threaded dynamic software updates using stack recon-
struction. In USENIX annual technical conference, vol-
ume 2009. San Diego, CA, 2009.

[64] Kristis Makris and Kyung Dong Ryu. Dynamic and
adaptive updates of non-quiescent subsystems in com-
modity operating system kernels. In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pages 327–340, 2007.

[65] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansa-
loni, Walter Binder, and Zhengwei Qi. Disl: a domain-
specific language for bytecode instrumentation. In Pro-
ceedings of the 11th annual international conference on
Aspect-oriented Software Development, pages 239–250,
2012.

[66] Sebastien Martinez, Fabien Dagnat, and Jérémy Buisson.
Pymoult : On-Line Updates for Python Programs. In
ICSEA 2015, 2015.

[67] James Mickens. Rivet: browser-agnostic remote de-
bugging for web applications. In Presented as part
of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), pages 333–345, 2012.

[68] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and
Manuel Oriol. Practical dynamic software updating
for c. In Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI ’06, page 72–83, New York, NY, USA,
2006. Association for Computing Machinery.

[69] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and
Manuel Oriol. Practical dynamic software updating
for c. ACM SIGPLAN Notices, 41(6):72–83, 2006.

[70] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. ACM Sigplan notices, 42(6):89–100, 2007.

[71] Angela Nicoara, Gustavo Alonso, and Timothy Roscoe.
Controlled, systematic, and efficient code replacement
for running java programs. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, pages 233–246, 2008.

[72] NVD. Cve-2018-1000164 detail. https:
//nvd.nist.gov/vuln/detail/CVE-2018-1000164,
2018.

[73] NVD. Cve-2018-1000164 detail. https:
//owasp.org/www-community/attacks/
HTTP_Response_Splitting, 2018.

[74] odoo. [payment_paypal] 500 error when process
order. https://github.com/odoo/odoo/issues/
39406, 2019.

[75] odoo. [13.0] performance issue on validating re-
ceipts. https://github.com/odoo/odoo/issues/
46900, 2020.

[76] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Ama-
rasinghe, Jonathan Bachrach, Michael Carbin, Carlos
Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sul-
livan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,
and Martin Rinard. Automatically patching errors
in deployed software. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Prin-
ciples, SOSP ’09, page 87–102, New York, NY, USA,
2009. Association for Computing Machinery.

[77] Luís Pina, Anastasios Andronidis, Michael Hicks, and
Cristian Cadar. Mvedsua: Higher availability dynamic
software updates via multi-version execution. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 573–585. ACM, 2019.

[78] Luís Pina, Luís Veiga, and Michael Hicks. Rubah: Dsu
for java on a stock jvm. In Proceedings of the 2014 ACM
International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14,

USENIX Association 2021 USENIX Annual Technical Conference 145

https://www.ibm.com/downloads/cas/DV0XZV6R
https://www.ibm.com/downloads/cas/DV0XZV6R
https://saleor.io/
https://nvd.nist.gov/vuln/detail/CVE-2018-1000164
https://nvd.nist.gov/vuln/detail/CVE-2018-1000164
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://github.com/odoo/odoo/issues/39406
https://github.com/odoo/odoo/issues/39406
https://github.com/odoo/odoo/issues/46900
https://github.com/odoo/odoo/issues/46900

page 103–119, New York, NY, USA, 2014. Association
for Computing Machinery.

[79] Andrei Popovici, Gustavo Alonso, and Thomas Gross.
Just-in-time aspects: efficient dynamic weaving for java.
In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 100–109,
2003.

[80] Andrei Popovici, Thomas Gross, and Gustavo Alonso.
Dynamic weaving for aspect-oriented programming.
In Proceedings of the 1st international conference on
Aspect-oriented software development, pages 141–147,
2002.

[81] Romain Komorn. Python in production engineer-
ing. https://engineering.fb.com/production-
engineering/python-in-production-
engineering/, May 2016.

[82] Florian Rommel, Christian Dietrich, Peng Huang,
Daniel Friesel, Sangeetha Abdu Jyothi, Karan Grover,
Marcel Köppen, Nina Narodytska, Muthian Sivathanu,
Christoph Borchert, et al. From global to local quies-
cence: Wait-free code patching of multi-threaded pro-
cesses. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20), pages
651–666, 2020.

[83] saleor. Category index renders extremely slow when
there are many discounts. https://github.com/
mirumee/saleor/issues/1314, 2017.

[84] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie
Williams, Kent Beck, and Michael Stumm. Continuous
deployment at facebook and oanda. In 2016 IEEE/ACM
38th International Conference on Software Engineering
Companion (ICSE-C), pages 21–30. IEEE, 2016.

[85] similartech. Market share and web usage statis-
tics of Django. https://www.similartech.com/
technologies/django, Jan. 2020.

[86] Craig AN Soules, Jonathan Appavoo, Kevin Hui,
Robert W Wisniewski, Dilma Da Silva, Gregory R
Ganger, Orran Krieger, Michael Stumm, Marc A Aus-
lander, Michal Ostrowski, et al. System support for
online reconfiguration. In USENIX Annual Technical
Conference, General Track, pages 141–154, 2003.

[87] Statista Inc. Average cost per hour of enterprise server
downtime worldwide. https://www.statista.com/
statistics/753938/worldwide-enterprise-
server-hourly-downtime-cost/, 2021.

[88] Guy Steele. Common LISP: the language. Elsevier,
1990.

[89] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter
Sewell, and Iulian Neamtiu. Mutatis mutandis: Safe and
predictable dynamic software updating. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’05, page
183–194, New York, NY, USA, 2005. Association for
Computing Machinery.

[90] Suriya Subramanian, Michael Hicks, and Kathryn S.
McKinley. Dynamic software updates: A vm-centric ap-
proach. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI ’09, page 1–12, New York, NY, USA,
2009. Association for Computing Machinery.

[91] Suriya Subramanian, Michael Hicks, and Kathryn S
McKinley. Dynamic software updates: a vm-centric
approach. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 1–12, 2009.

[92] Davy Suvée, Wim Vanderperren, and Viviane Jonckers.
Jasco: an aspect-oriented approach tailored for compo-
nent based software development. In Proceedings of the
2nd international conference on Aspect-oriented soft-
ware development, pages 21–29, 2003.

[93] Wei Tang and Min Zhang. Pyreload: Dynamic updat-
ing of python programs by reloading. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC),
pages 229–238. IEEE, 2018.

[94] thenewstack.io. Instagram Makes a Smooth Move
to Python 3. https://thenewstack.io/instagram-
makes-smooth-move-python-3/, Jun. 2017.

[95] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xan-
thos, and Yuanyuan Zhou. Triage: diagnosing produc-
tion run failures at the user’s site. ACM SIGOPS Oper-
ating Systems Review, 41(6):131–144, 2007.

[96] Wikipedia. Youtube. https://en.wikipedia.org/
wiki/YouTube, 2020.

146 2021 USENIX Annual Technical Conference USENIX Association

https://engineering.fb.com/production-engineering/python-in-production-engineering/
https://engineering.fb.com/production-engineering/python-in-production-engineering/
https://engineering.fb.com/production-engineering/python-in-production-engineering/
https://github.com/mirumee/saleor/issues/1314
https://github.com/mirumee/saleor/issues/1314
https://www.similartech.com/technologies/django
https://www.similartech.com/technologies/django
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://thenewstack.io/instagram-makes-smooth-move-python-3/
https://thenewstack.io/instagram-makes-smooth-move-python-3/
https://en.wikipedia.org/wiki/YouTube
https://en.wikipedia.org/wiki/YouTube

	Introduction
	Background
	PyLive Framework
	Design Objectives
	PyLive's Interfaces
	Support Dynamic Changes
	Identify Safe Change Point
	Support for Multi-threads and Multi-processes

	Use Cases
	On-the-fly Logging for diagnosis
	On-the-fly Profiling
	Dynamic Patching

	Evaluation
	Methodology
	Overall Performance Results
	Case Studies
	Human Effort

	Limitations and Discussion
	Related Work
	Conclusions

