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Abstract
Modern online services rely on data stores that replicate their
data across geographically distributed data centers. Providing
strong consistency in such data stores results in high latencies
and makes the system vulnerable to network partitions. The
alternative of relaxing consistency violates crucial correctness
properties. A compromise is to allow multiple consistency
levels to coexist in the data store. In this paper we present
UNISTORE, the first fault-tolerant and scalable data store that
combines causal and strong consistency. The key challenge
we address in UNISTORE is to maintain liveness despite data
center failures: this could be compromised if a strong transac-
tion takes a dependency on a causal transaction that is later
lost because of a failure. UNISTORE ensures that such situa-
tions do not arise while paying the cost of durability for causal
transactions only when necessary. We evaluate UNISTORE
on Amazon EC2 using both microbenchmarks and a sample
application. Our results show that UNISTORE effectively and
scalably combines causal and strong consistency.

1 Introduction

Many of today’s Internet services rely on geo-distributed data
stores, which replicate data in different geographical loca-
tions. This improves user experience by allowing accesses
to the closest site and ensures disaster-tolerance. However,
geo-distribution also makes it more challenging to keep the
data consistent. The classical approach is to make replication
transparent to clients by providing strong consistency models,
such as linearizability [33] or serializability [70]. The down-
side is that this approach requires synchronization between
data centers in the critical path. This significantly increases
latency [1] and makes the system unavailable during network
partitionings [28]. Thus, even though several commercial geo-
distributed systems follow this approach [18, 20, 26, 63, 71],
the associated cost has prevented it from being adopted more
widely.
∗Also with the State Key Laboratory for Novel Software Technology,

Software Institute.

An alternative approach is to relax synchronization: the
data store executes an operation at a single data center, with-
out any communication with others, and propagates updates
to other data centers in the background [21, 66]. This min-
imizes the latency and makes the system highly available,
i.e., operational even during network partitionings. But on
the downside, the systems following this approach provide
weaker consistency models: e.g., eventual consistency [66,69]
or causal consistency [2]. The latter is particularly appealing:
it guarantees that clients see updates in an order that respects
the potential causality between them. For example, assume
that in a banking application Alice deposits $100 into Bob’s
account (u1) and then posts a notification about it into Bob’s
inbox (u2). Under causal consistency, if Bob sees the notifica-
tion (u3), and then checks his account balance (u4), he will see
the deposit. This is not guaranteed under eventual consistency,
which does not respect causality relationships, such as those
between u1 and u2. In some settings, causal consistency has
been shown to be the strongest model that allows availability
during network partitionings [7, 45]. It has been a subject
of active research in recent years, with scalable implementa-
tions [3, 43, 48] and some industrial deployments [55, 67].

However, even causal consistency is often too weak to
preserve critical application invariants. For example, con-
sider a banking application that disallows overdrafts and
thus maintains an invariant that an account balance is always
non-negative. Assume that the balance of an account stored
at two replicas is 100, and clients concurrently issue two
withdraw(100) operations (u5 and u6) at different replicas.
Since causal consistency executes operations without syn-
chronization, both withdrawals will succeed, and once the
replicas exchange the updates, the balance will go negative.
To ensure integrity invariants in examples such as this, the pro-
grammer has to introduce synchronization between replicas,
and, since synchronization is expensive, it pays off to do this
sparingly. To this end, several research [9,41,42,65] and com-
mercial [5, 6, 29, 49, 58] data stores allow the programmer to
choose whether to execute a particular operation under weak
or strong consistency. For example, to preserve the integrity
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invariant in our banking application, only withdrawals need to
use strong consistency, and hence, synchronize; deposits may
use weaker consistency and proceed without synchronization.

Given the benefits of causal consistency, it is particularly ap-
pealing to marry it with strong consistency in a geo-distributed
data store. But like real-life marriages, to be successful this
one needs to hold together both in good times and in bad –
when data centers fail due to catastrophic events or power out-
ages. Unfortunately, none of the existing data stores meant for
geo-replication combine causal and strong consistency while
providing such fault tolerance [9, 41, 42]. In this paper we
present UNISTORE – the first fault-tolerant and scalable data
store that combines causal and strong consistency. More pre-
cisely, UNISTORE implements a transactional variant of Par-
tial Order-Restrictions consistency (PoR consistency) [31,42].
This guarantees transactional causal consistency by default [3]
and allows the programmer to additionally specify which pairs
of transactions conflict, i.e., have to synchronize. For instance,
to preserve the integrity invariant in our previous example, the
programmer should declare that withdrawals from the same
account conflict. Then one of the withdrawals u5 and u6 will
observe the other and will fail.

The key challenge we have to address in UNISTORE is to
maintain liveness despite data center failures. Just adding a
Paxos-based commit protocol for strong transactions [19, 20,
35] to an existing causally consistent protocol does not yield
a fault-tolerant data store. In such a data store, a committed
strong transaction t2 may never become visible to clients if
a causal transaction t1 on which it depends is lost due to a
failure of its origin data center. This compromises the liveness
of the system, because no transaction t3 conflicting with t2
can commit from now on: according to the PoR model, one
of the transactions t2 and t3 has to observe the other, but t2
will never be visible and t2 did not observe t3.

UNISTORE addresses this problem by ensuring that, be-
fore a strong transaction commits, all its causal dependencies
are uniform, i.e., will eventually become visible at all correct
data centers. This adapts the classical notion of uniformity
in distributed computing to causal consistency [16]. UNI-
STORE does so without defeating the benefits of causal con-
sistency. Causal transactions remain highly available at the
cost of increasing the latency of strong transactions: a strong
transaction may have to wait for some of its dependencies to
become uniform before committing. To minimize this cost,
UNISTORE executes causal transactions on a snapshot that is
slightly in the past, such that a strong transaction will mostly
depend on causal transactions that are already uniform before
committing. Furthermore, UNISTORE reuses the mechanism
for tracking uniformity to let clients make causal transaction
durable on demand and to enable consistent client migration.

In addition to being fault tolerant, UNISTORE scales hori-
zontally, i.e., with the number of machines in each data center;
this also goes beyond previous proposals [9, 41, 42]. To this
end, UNISTORE builds on Cure [3] – a scalable implementa-

tion of transactional causal consistency. Our protocol extends
Cure with a novel mechanism that distributes the task of track-
ing the set of uniform transactions among the machines of a
data center. We also add the ability for data centers to forward
transactions they receive from others, so that a transaction can
propagate through the system even if its origin data center
fails. Finally, we carefully integrate an existing fault-tolerant
atomic commit for strong transactions [19] into the protocol
for causal consistency.

We have rigorously proved the correctness of the UNI-
STORE protocol (§7 and [12, §D]). We have also evaluated
it on Amazon EC2 using both microbenchmarks and a more
realistic RUBiS benchmark. Our evaluation demonstrates that
UNISTORE scalably combines causal and strong transactions,
with the latter not affecting the performance of the former.
Under the RUBiS mix workload, causal transactions exhibit
a low latency (1.2ms on average), and the overall average la-
tency is 3.7× lower than that of a strongly consistent system.

2 System Model

We consider a geo-distributed system consisting of a set of
data centers D = {1, . . . ,D} that manage a large set of data
items. A data item is uniquely identified by its key. For scal-
ability, the key space is split into a set of logical partitions
P = {1, . . . ,N}. Each data center stores replicas of all parti-
tions, scattered among its servers. We let pm

d be the replica
of partition m at data center d, and we refer to replicas of the
same partition as sibling replicas. As is standard, we assume
that D = 2 f +1 and at most f data centers may fail. We call a
data center that does not fail correct. If a data center fails, all
partition replicas it stores become unavailable. For simplicity,
we do not consider the failures of individual replicas within a
data center: these can be masked using standard state-machine
replication protocols executing within a data center [38, 56].

Replicas have physical clocks, which are loosely synchro-
nized by a protocol such as NTP. The correctness of UNI-
STORE does not depend on the precision of clock synchroniza-
tion, but large drifts may negatively impact its performance.
Any two replicas are connected by a reliable FIFO channel,
so that messages between correct data centers are guaranteed
to be delivered. As is standard, to implement strong consis-
tency we require the network to be eventually synchronous, so
that message delays between sibling replicas in correct data
centers are eventually bounded by some constant [24].

3 Consistency Model

A client interacts with UNISTORE by executing a stream of
transactions at the data center it is connected to. A transaction
consists of a sequence of operations, each on a single data
item, and can be interactive: the data items it accesses are not
known a priori. A transaction that modifies at least one data
item is an update transaction; otherwise it is read-only.
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A consistency model defines a contract between the data
store and its clients that specifies which values the data store
is allowed to return in response to client operations. UNI-
STORE implements a transactional variant of Partial Order-
Restrictions consistency (PoR consistency) [31,42], which we
now define informally; we give a formal definition in [12, §B].
The PoR model enables the programmer to classify transac-
tions as either causal or strong. Causal transactions satisfy
transactional causal consistency, which guarantees that clients
see transactions in an order that respects the potential causal-
ity between them [2,3]. However, clients can observe causally
independent transactions in arbitrary order. Strong transac-
tions give the programmer more control over their visibility.
To this end, the programmer provides a symmetric conflict
relation ./ on operations that is lifted to strong transactions as
follows: two transactions conflict if they perform conflicting
operations on the same data item. Then the PoR model guar-
antees that, out of two conflicting strong transactions, one has
to observe the other.

More precisely, a transaction t1 precedes a transaction t2 in
the session order if they are executed by the same client and
t1 is executed before t2. A set of transactions T committed by
the data store satisfies PoR consistency if there exists a causal
order relation ≺ on T such that the following properties hold:

Causality Preservation. The relation ≺ is transitive, ir-
reflexive, and includes the session order.

Return Value Consistency. Consider an operation u on a
data item k in a transaction t ∈ T . The return value of u can
be computed from the state of k obtained as follows: first
execute all operations on k by transactions preceding t in≺
in an order consistent with ≺; then execute all operations
on k that precede u in t.

Conflict Ordering. For any distinct strong transactions
t1, t2 ∈ T , if t1 ./ t2, then either t1 ≺ t2 or t2 ≺ t1.

Eventual Visibility. A transaction t ∈ T that is either strong
or originates at a correct data center eventually becomes
visible at all correct data centers: from some point on, t
precedes in ≺ all transactions issued at correct data centers.

If all transactions are causal, then the above definition special-
izes to transactional causal consistency [3, 17]. If all transac-
tions are strong and all pairs of operations conflict, then we
obtain (non-strict) serializability.

When t1 ≺ t2, we say that t1 is a causal dependency of
t2. Return Value Consistency ensures that all operations in a
transaction t execute on a snapshot consisting of its causal de-
pendencies (as well as prior operations by t). Transactions are
atomic, so that either all of their operations are included into
the snapshot or none at all. The transitivity of ≺, mandated
by Causality Preservation, ensures that the snapshot a trans-
action executes on is causally consistent: if a transaction t1 is
included into the snapshot, then so is any other transaction t2
on which t1 depends (i.e., t2 ≺ t1). The inclusion of the ses-
sion order into ≺, also mandated by Causality Preservation,

ensures session guarantees such as read your writes [64]. The
consistency model disallows the causality violation anomaly
from §1. Indeed, since ≺ includes the session order, we have
u1 ≺ u2 and u3 ≺ u4. Moreover, Bob sees Alice’s message,
and by Return Value Consistency this can only happen if
u2 ≺ u3. Then since ≺ is transitive, u1 ≺ u4, and by Return
Value Consistency, Bob has to see Alice’s deposit.

Causal consistency nevertheless allows the overdraft
anomaly from §1: the withdrawals u5 and u6 may not be
related by ≺, and thus may both execute on the balance 100
and succeed. The Conflict Ordering property can be used to
disallow this anomaly by declaring that withdraw operations
on the same account conflict and labeling transactions contain-
ing these as strong. Then one of the withdrawal transactions
will be guaranteed to causally precede the other. The latter
will be executed on the account balance 0 and will fail.

Finally, Eventual Visibility ensures that strong transactions
and those causal ones that originate at correct data centers are
durable, i.e., will eventually propagate through the system.

To facilitate the use of causal transactions, UNISTORE in-
cludes replicated data types (aka CRDTs), which implement
policies for merging concurrent updates to the same data
item [57]. Each data item in the store is associated with a type
(e.g., counter, set), which is backed by a CRDT implementa-
tion managing updates to it. For example, the programmer can
use a counter CRDT to represent an account balance. Then if
two clients concurrently deposit 100 and 200 into an empty
account using causal transactions, eventually the balance at
all replicas will be 300. Using ordinary writes here would
yield 100 or 200, depending on the order in which the writes
are applied. More generally, CRDTs ensure that two replicas
receiving the same set of updates are in the same state, regard-
less of the receipt order. Together with Eventual Visibility, this
implies the expected guarantee of eventual consistency [66].
Due to space constraints, we omit details about the use of
CRDTs from our protocol descriptions.

4 Key Design Decisions in UNISTORE

Baseline causal consistency. A causal transaction in UNI-
STORE first executes at a single data center on a causally
consistent snapshot. After this it immediately commits, and
its updates are replicated to all other data centers in the back-
ground. This minimizes the latency of causal transactions and
makes them highly available, i.e., they can be executed even
when the network connections between data centers fail.

As is common in causally consistent data stores [3, 23, 43],
to ensure that causal transactions execute on consistent snap-
shots, a data center exposes a remote transaction to clients
only after exposing all its dependencies. Then to satisfy the
Eventual Visibility property under failures, a data center re-
ceiving a remote causal transaction may need to forward it
to other data centers, as in reliable broadcast [11] and anti-
entropy protocols for replica reconciliation [54].
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Figure 1: Why UNISTORE may need to for-
ward remote causal transactions.
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Figure 2: Why UNISTORE needs to ensure that the dependencies of a strong transaction are
uniform before committing it.

Figure 1 depicts a scenario that demonstrates how Eventual
Visibility could be violated in the absence of this mechanism.
Let t1 be a causal transaction submitted at a data center d1
(event 1 ). Assume that d1 replicates t1 to a correct data center
d2 (event 2 ) and then fails (event 3 ), so that t1 does not get
replicated anywhere else. Let t2 be a transaction submitted
at d2 after t1 becomes visible there, so that t2 depends on t1
(event 4 ). Transaction t2 will eventually be replicated to all
correct data centers (event 5 ). But it will never be exposed
at any of them, because its dependency t1 is missing. If data
centers can forward remote causal transactions, then d2 can
eventually replicate t1 to all correct data centers, preventing
this problem.

On-demand strong consistency. UNISTORE uses optimistic
concurrency control for strong transactions: they are first ex-
ecuted speculatively and the results are then certified to de-
termine whether the transaction can commit, or must abort
due to a conflict with a concurrent strong transaction [70].
Certifying a strong transaction requires synchronization be-
tween the replicas of partitions it accessed, located in different
data centers. UNISTORE implements this using an existing
fault-tolerant protocol that combines two-phase commit and
Paxos [19] while minimizing commit latency. However, just
using such a protocol is not enough to make the overall system
fault tolerant: for this, before a strong transaction commits,
all its causal dependencies must be uniform in the following
sense.

DEFINITION 1. A transaction is uniform if both the transac-
tion and its causal dependencies are guaranteed to be eventu-
ally replicated at all correct data centers.

This adapts the classical notion of uniformity in distributed
computing to causal consistency [16]. UNISTORE considers
a transaction to be uniform once it is visible at f + 1 data
centers, because at least one of these must be correct, and data
centers can forward causal transactions to others.

The following scenario, depicted in Figure 2, demonstrates
why committing a strong transaction before its dependencies
become uniform can compromise the liveness of the system.
Assume that a causal transaction t1 and a strong transaction
t2 are submitted at a data center d1 in such a way that t1
becomes a dependency of t2 (events 1 and 2 ). Assume also
that t2 is certified, committed and delivered to all relevant
replicas (events 3 and 4 ) before t1 is replicated to any data
center, and thus before it is uniform. Now if d1 fails before

replicating t1 (event 5 ), no remote data center will be able to
expose t2, because its dependency t1 is missing. This violates
the Eventual Visibility property, and even worse, no strong
transaction conflicting with t2 can commit from now on. For
instance, let t3 be such a transaction, submitted at d3 (event
6 ). Because d3 cannot expose t2, transaction t3 executes on a

snapshot excluding t2. Hence, t3 will abort during certification
(events 7 and 8 ): committing it would violate the Conflict
Ordering property, since transactions t2 and t3 conflict, but
neither of them is visible to the other. Ensuring that t1 is
uniform before committing t2 prevents this problem, because
it guarantees that t1 will eventually be replicated at d3. After
this t2 will be exposed to conflicting transactions at this data
center, which will allow them to commit.

Minimizing the latency of strong transactions. Ensuring
that all the causal dependencies of a strong transaction are
uniform before committing it may significantly increase its
latency, since this requires additional communication between
data centers. UNISTORE mitigates this problem by executing
causal transactions on a snapshot that is slightly in the past,
which is allowed by causal consistency. Namely, UNISTORE
makes a remote causal transaction visible to the clients only
after it is uniform. This minimizes the latency of a strong
transaction, since to commit it only needs to wait for causal
transactions originating at the local data center to become uni-
form. We cannot delay the visibility of the latter transactions
due to the need to guarantee read your writes to local clients.

On-demand durability of causal transactions. Client ap-
plications interacting with the external world require hard
durability guarantees: e.g., a banking application has to en-
sure that a withdrawal is durably recorded before authoriz-
ing the operation. UNISTORE guarantees that, once a strong
transaction commits, the transaction and its dependencies are
durable. However, UNISTORE returns from a causal transac-
tion before it is replicated, and thus the transaction may be
lost if its origin data center fails. Ensuring the durability of
every single causal transaction would require synchronization
between data centers on its critical path, defeating the benefits
of causal consistency. Instead, UNISTORE reuses the mech-
anism for tracking uniformity to let the clients pay the cost
of durability only when necessary. Even though UNISTORE
replicates causal transactions asynchronously, it allows clients
to execute a uniform barrier, which ensures that the transac-
tions they have observed so far are uniform, and thus durable.
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Client migration. Clients may need to migrate between data
centers, e.g., because of roaming or for load balancing. UNI-
STORE also uses the uniformity mechanism to preserve ses-
sion guarantees during migration. A client wishing to migrate
from its local data center d to another data center i first invokes
a uniform barrier at d. This guarantees that the transactions
the client has observed or issued at d are durable and will
eventually become visible at i, even if d fails. The client then
makes an attach call at the destination data center i that waits
until i stores all the above transactions. After this, the client
can operate at i knowing that the state of the data center is
consistent with the client’s previous actions.

Currently UNISTORE does not support consistent client
migration in response to a data center failure: if the data center
a client is connected to fails, the client will have to restart
its session when connecting to a different data center. As
shown in [72], this limitation can be lifted without defeating
the benefits of causal consistency. We leave integrating the
corresponding mechanisms into UNISTORE for future work.

5 Fault-Tolerant Causal Consistency Protocol

We first describe the UNISTORE protocol for the case when
all transactions are causal. We give its pseudocode in Algo-
rithms 1 and 2; for now the reader should ignore highlighted
lines, which are needed for strong transactions. For simplic-
ity, we assume that each handler in the algorithms executes
atomically (although our implementation is parallelized). We
reference pseudocode lines using the format algorithm#:line#.

5.1 Metadata
Most metadata in our protocol are represented by vectors
with an entry per each data center, where each entry stores a
scalar timestamp. However, different pieces of metadata use
the vectors in different ways, which we now describe.

Tracking causality. The first use of the vectors is as vector
clocks [27,47], to track causality between transactions. Given
vectors V1 and V2, we write V1 < V2 if each entry of V1 is
no greater than the corresponding entry of V2, and at least
one is strictly smaller. Each update transaction is tagged with
a commit vector commitVec. The order on these vectors is
consistent with the causal order≺ from §3: if commitVec1 and
commitVec2 are the commit vectors of two update transactions
t1 and t2 such that t1 ≺ t2, then commitVec1 < commitVec2.
For a transaction originating at a data center d with a commit
vector commitVec, we call commitVec[d] its local timestamp.

Each replica pm
d maintains a log opLog[k] of update oper-

ations performed on each data item k stored at the replica.
Each log entry stores, together with the operation, the com-
mit vector of the transaction that performed it. This allows
reconstructing different versions of a data item from its log.

Representing causally consistent snapshots. The protocol
also uses a vector to represent a snapshot of the data store

on which a transaction operates: a snapshot vector V repre-
sents all transactions with a commit vector ≤ V . This snap-
shot is causally consistent. Indeed, consider a transaction t1
included into it, i.e., commitVec1 ≤ V . Since any causal de-
pendency t0 of t1 is such that commitVec0 < commitVec1, we
have commitVec0 <V , so that t0 is also included into the snap-
shot. A client also maintains a vector pastVec that represents
its causal past: a causally consistent snapshot including the
update transactions the client has previously observed.

Tracking what is replicated where. Each replica pm
d main-

tains three vectors that are used to compute which transactions
are uniform. These respectively track the sets of transactions
replicated at pm

d , the local data center d, and f +1 data centers.
Each of these vectors V represents the set of update transac-
tions originating at a data center i with a local timestamp
≤V [i]. Note that this set may not form a causally consistent
snapshot. The first vector maintained by pm

d is knownVec. For
each data center i, it defines the prefix of update transactions
originating at i (in the order of local timestamps) that pm

d
knows about.

PROPERTY 1. For each data center i, the replica pm
d stores the

updates to partition m by all transactions originating at i with
local timestamps ≤ knownVec[i].

Our protocol ensures that knownVec[d] ≤ clock at any
replica in data center d. The vector knownVec at pm

d records
whether the updates to partition m by a given transaction are
stored at this replica. In contrast, the next vector stableVec
records whether the updates to all partitions by a transaction
are stored at the local data center d.

PROPERTY 2. For each data center i, the data center d stores
the updates by all transactions originating at i with local times-
tamps ≤ stableVec[i]. More precisely, we are guaranteed that
knownVec[i] at any replica of d ≥ stableVec[i] at any pm

d .

Finally, the last vector uniformVec defines the set of update
transactions that pm

d knows to have been replicated at f +1
data centers, including d.

PROPERTY 3. Consider uniformVec[i] at pm
d . All update trans-

actions originating at i with local timestamps≤ uniformVec[i]
are replicated at f + 1 datacenters including d. More pre-
cisely: knownVec[i] at any replica of these data centers
≥ uniformVec[i] at pm

d .

When uniformVec is reinterpreted as a causally consistent
snapshot, it defines transactions that pm

d knows to be uniform
according to Definition 1:

PROPERTY 4. Consider uniformVec at pm
d . All update trans-

actions with commit vectors ≤ uniformVec are uniform.

Proof sketch. Consider a transaction t1 that originates at a
data center i with a commit vector commitVec1 ≤ uniformVec
at pm

d . In particular, commitVec1[i] ≤ uniformVec[i], and by
Property 3, t1 is replicated at f + 1 data centers. We as-
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sume at most f failures. Then the transaction forwarding
mechanism of our protocol (§4) guarantees that t1 will even-
tually be replicated at all correct data centers. Consider
now any causal dependency t2 of t1 with a commit vector
commitVec2. Since commit vectors are consistent with causal-
ity, commitVec2 < commitVec1 ≤ uniformVec. Then as above,
we can again establish that t2 will be replicated at all correct
data centers, as required by Definition 1.

5.2 Causal Transaction Execution
Starting a transaction. A client can submit a transaction to
any replica in its local data center by calling START_TX(V ),
where V is the client’s causal past pastVec (line 1:1, for
brevity, we omit the pseudocode of the client). A replica pm

d
receiving such a request acts as the transaction coordinator.
It generates a unique transaction identifier tid, computes a
snapshot snapVec[tid] on which the transaction will execute,
and returns tid to the client (we explain lines 1:2-3 and similar
ones later). The snapshot is computed by combining uniform
transactions from uniformVec (line 1:5) with the transactions
from the client’s causal past originating at d (line 1:6). The
former is crucial to minimize the latency of strong transac-
tions (§4), while the latter ensures read your writes.

Transaction execution. The client proceeds to execute the
transaction tid by issuing a sequence of operations at its coor-
dinator via DO_OP (line 1:9). When the coordinator receives
an operation op on a data item k, it sends a GET_VERSION
message with the transaction’s snapshot snapVec[tid] to the
local replica responsible for k (line 1:11). Upon receiving
the message (line 1:18), the replica first ensures that it is as
up-to-date as required by the snapshot (line 1:21). It then com-
putes the latest version of k within the snapshot by applying
the operations from opLog[k] by all transactions with commit
vectors≤ snapVec[tid]. The result is sent to the coordinator in
a VERSION message. After receiving it (line 1:12), the coordi-
nator further applies the operations on k previously executed
by the transaction, which are stored in a buffer wbuff[tid]; this
ensures read your writes within the transaction. If the opera-
tion is an update, the coordinator then appends it to wbuff[tid].
Finally, the coordinator executes the desired operation op and
forwards its return value to the client.

Commit. A client commits a causal transaction by calling
COMMIT_CAUSAL (line 1:26). This returns immediately if
the transaction is read-only, since it already read a consistent
snapshot (line 1:28). To commit an update transaction, UNI-
STORE uses a variant of two-phase commit protocol (recall
that for simplicity we only consider whole-data center fail-
ures, not those of individual replicas, §2). The coordinator
first sends a PREPARE message to the replicas in the local
data center storing the data items updated by the transaction
(line 1:29). The message to each replica contains the part
of the write buffer relevant to that replica. When a replica
receives the message (line 1:36), it computes the transaction’s

Algorithm 1 Transaction execution at pm
d .

1: function START_TX(V )
2: for i ∈D \{d} do
3: uniformVec[i]←max{V [i], uniformVec[i]}
4: var tid← generate_tid()
5: snapVec[tid]← uniformVec
6: snapVec[tid][d]←max{V [d], uniformVec[d]}
7: snapVec[tid][strong]←max{V [strong], stableVec[strong]}
8: return tid

9: function DO_OP(tid, k, op)
10: var l← partition(k)
11: send GET_VERSION(snapVec[tid], k) to pl

d
12: wait receive VERSION(state) from pl

d
13: for all 〈k,op′〉 ∈wbuff[tid][l] do state← apply(op′,state)
14: rset[tid]← rset[tid]∪{〈k,op〉}
15: if op is an update then
16: wbuff[tid][l]← wbuff[tid][l] · 〈k,op〉
17: return retval(op,state)

18: when received GET_VERSION(snapVec, k) from p
19: for i ∈D \{d} do
20: uniformVec[i]←max{snapVec[i], uniformVec[i]}
21: wait until knownVec[d]≥ snapVec[d]∧

knownVec[strong]≥ snapVec[strong]
22: var state←⊥
23: for all 〈op′,commitVec〉∈opLog[k].commitVec≤snapVec do
24: state← apply(op′,state)
25: send VERSION(state) to p

26: function COMMIT_CAUSAL(tid)
27: var L←{l | wbuff[tid][l] 6=∅}
28: if L =∅ then return snapVec[tid]
29: send PREPARE(tid, wbuff[tid][l], snapVec[tid]) to pl

d , l ∈ L
30: var commitVec← snapVec[tid]
31: for all l ∈ L do
32: wait receive PREPARE_ACK(tid, ts) from pl

d
33: commitVec[d]←max{commitVec[d], ts}
34: send COMMIT(tid, commitVec) to pl

d , l ∈ L
35: return commitVec

36: when received PREPARE(tid, wbuff , snapVec) from p
37: for i ∈D \{d} do
38: uniformVec[i]←max{snapVec[i], uniformVec[i]}
39: var ts← clock
40: preparedCausal← preparedCausal∪{〈tid,wbuff , ts〉}
41: send PREPARE_ACK(tid, ts) to p

42: when received COMMIT(tid, commitVec)
43: wait until clock≥ commitVec[d]
44: 〈tid,wbuff ,_〉 ← find(tid,preparedCausal)
45: preparedCausal← preparedCausal\{〈tid,_,_〉}
46: for all 〈k,op〉 ∈ wbuff do
47: opLog[k]← opLog[k] · 〈op,commitVec〉
48: committedCausal[d]← committedCausal[d]∪

{〈tid,wbuff ,commitVec〉}

49: function UNIFORM_BARRIER(V )
50: wait until uniformVec[d]≥V [d]

51: function ATTACH(V )
52: wait until ∀i ∈D \{d}.uniformVec[i]≥V [i]
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prepare time ts from its local clock and adds the transaction
to preparedCausal, which stores the set of causal transactions
that are prepared to commit at the replica. The replica then
returns ts to the coordinator in a PREPARE_ACK message.

When the coordinator receives replies from all replicas up-
dated by the transaction, it computes the transaction’s commit
vector commitVec: it sets the local timestamp commitVec[d] to
the maximum among the prepare times proposed by the repli-
cas (line 1:33), and it copies the other entries of commitVec
from the snapshot vector snapVec[tid] (line 1:30). The latter
reflects the fact that the transactions in the snapshot become
causal dependencies of tid.

After computing commitVec, the coordinator sends it in a
COMMIT message to the relevant replicas at the local data
center (line 1:34) and returns it to the client (line 1:35). The
client then sets its causal past pastVec to the commit vector.
When a replica receives the COMMIT message (line 1:42), it
removes the transaction from preparedCausal, adds the trans-
action’s updates to opLog, and adds the transaction to a set
committedCausal[d], which stores transactions waiting to be
replicated to sibling replicas at other data centers.

5.3 Transaction Replication
Each replica pm

d periodically replicates locally committed
update transactions to sibling replicas in other data centers by
executing PROPAGATE_LOCAL_TXS (line 2:1). Transactions
are replicated in the order of their local timestamps. The prefix
of transactions that is ready to be replicated is determined by
knownVec[d]: according to Property 1, pm

d stores updates to
m by all transactions originating at d with local timestamps
≤ knownVec[d]. Thus, the replica first updates knownVec[d]
while preserving Property 1.

There are two cases of this update. If the replica does not
have any prepared transactions (preparedCausal =∅), it sets
knownVec[d] to the current value of the clock (line 2:2). This
preserves Property 1 because in this case a new transaction
originating at d and updating m will get a prepare time at
m higher than the current clock (line 1:39), and thus also a
higher local timestamp (line 1:33). If the replica has some pre-
pared transactions, then they may end up getting local times-
tamps lower than the current clock. In this case, the replica
sets knownVec[d] to just below the smallest prepared time
(line 2:3). This preserves Property 1 because: (i) currently
prepared transactions will get a local timestamp no lower than
their prepare time; and (ii) as we argued above, new transac-
tions will get a prepare time higher than the current clock and,
hence, than the smallest prepare time.

After updating knownVec[d], the replica sends a
REPLICATE message to its siblings with the transactions in
committedCausal[d] such that commitVec[d]≤ knownVec[d],
and then removes them from committedCausal[d]. In other
words, the replica sends all transactions from the prefix
determined by knownVec[d] that it has not yet replicated.

When a replica pm
d receives a REPLICATE message with

Algorithm 2 Transaction replication at pm
d .

1: function PROPAGATE_LOCAL_TXS() . Run periodically
2: if preparedCausal =∅ then knownVec[d]← clock
3: else knownVec[d]←min{ts | 〈_,_, ts〉∈preparedCausal}−1
4: var txs←{〈_,_,commitVec〉 ∈ committedCausal[d] |

commitVec[d]≤ knownVec[d]}
5: if txs 6=∅ then
6: send REPLICATE(d, txs) to pm

i , i ∈D \{d}
7: committedCausal[d]← committedCausal[d]\ txs
8: else send HEARTBEAT(d,knownVec[d]) to pm

i , i∈D \{d}

9: when received REPLICATE(i, txs)
10: for all 〈tid,wbuff ,commitVec〉∈ txs in commitVec[i] order do
11: if commitVec[i]> knownVec[i] then
12: for all 〈k,op〉 ∈ wbuff do
13: opLog[k]← opLog[k] · 〈op,commitVec〉
14: committedCausal[i]← committedCausal[i]∪

{〈tid,wbuff ,commitVec〉}
15: knownVec[i]← commitVec[i]

16: when received HEARTBEAT(i, ts)
17: pre: ts > knownVec[i]
18: knownVec[i]← ts

19: function FORWARD_REMOTE_TXS(i, j)
20: var txs←{〈_,_,commitVec〉 ∈ committedCausal[ j] |

commitVec[ j]> globalMatrix[i][ j]}
21: if txs 6=∅ then send REPLICATE( j, txs) to pm

i
22: else send HEARTBEAT( j,knownVec[ j]) to pm

i

23: function BROADCAST_VECS() . Run periodically
24: send KNOWNVEC_LOCAL(m,knownVec) to pl

d , l ∈ P
25: send STABLEVEC(d,stableVec) to pm

i , i ∈D
26: send KNOWNVEC_GLOBAL(d,knownVec) to pm

i , i ∈D

27: when received KNOWNVEC_LOCAL(l, knownVec)
28: localMatrix[l]← knownVec
29: for i ∈D do stableVec[i]←min{localMatrix[n][i] | n ∈ P}
30: stableVec[strong]←min{localMatrix[n][strong] | n ∈ P}

31: when received STABLEVEC(i, stableVec)
32: stableMatrix[i]← stableVec
33: G← all groups with f +1 replicas that include pm

d
34: for j ∈D do
35: var ts←max{min{stableMatrix[h][ j] | h ∈ g} | g ∈ G}
36: uniformVec[ j]←max{uniformVec[ j], ts}

37: when received KNOWNVEC_GLOBAL(l, knownVec)
38: globalMatrix[l]← knownVec

a set of transactions txs originating at a sibling replica pm
i

(line 2:9), it iterates over txs in commitVec[i] order. For each
new transaction in txs with commit vector commitVec, the
replica adds the transaction’s operations to its log and sets
knownVec[i] = commitVec[i]. Since communication channels
are FIFO, pm

d processes all transactions from pm
i in their local

timestamp order. Hence, the above update to knownVec[i]
preserves Property 1: pm

d stores updates originating at pm
i by

all transactions with commitVec[i]≤ knownVec[i]. Finally, the
replica adds the transactions to committedCausal[i], which
is used to implement transaction forwarding (§4). Due to
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the forwarding, pm
d may receive the same transaction from

different data centers. Thus, when processing transactions in
the REPLICATE message, it checks for duplicates (line 2:11).

5.4 Advancing the Uniform Snapshot
Replicas run a background protocol that refreshes the informa-
tion about uniform transactions. This proceeds in two stages.
First, a replica keeps track of which transactions have been
replicated at the replicas of other partitions in the same data
center. To this end, replicas in the same data center peri-
odically exchange KNOWNVEC_LOCAL messages with their
knownVec vectors, which they store in a matrix localMatrix
(lines 2:24 and 2:27); in our implementation this is done via
a dissemination tree. This matrix is then used to compute the
vector stableVec, which represents the set of transactions that
have been fully replicated at the local data center as per Prop-
erty 2. To ensure this, a replica computes an entry stableVec[i]
as the minimum of knownVec[i] it received from the replicas
of other partitions in the same data center (line 2:29).

In the second stage of the background protocol, sib-
ling replicas periodically exchange STABLEVEC messages
with their stableVec vectors, which they store in a matrix
stableMatrix (lines 2:25 and 2:31). This matrix is then used
by a replica to compute uniformVec, which characterizes the
update transactions that are replicated at f +1 data centers
as per Property 3. To this end, a replica first enumerates all
groups G of f +1 data centers that include its local data cen-
ter (line 2:33). For each data center j the replica performs
the following computation. First, for each group g ∈ G, it
computes the minimum j-th entry in the stable vectors of
all data centers h ∈ g: min{stableMatrix[h][ j] | h ∈ g}. By
Property 2 all update transactions originating at j with local
timestamp ≤ the minimum have been replicated at all data
centers in g. The replica then sets uniformVec[ j] to the maxi-
mum of the resulting values computed for all groups g ∈ G,
to cover transactions that are replicated at any such group.
According to Property 4, the transactions with commit vec-
tors ≤ uniformVec are uniform, and now become visible to
transactions coordinated by pm

d (§5.2).
Replicas also update uniformVec in lines 1:2-3, 1:19-20

and 1:37-38 by incorporating snapVec[i] for remote data cen-
ters i. This is safe because a transaction executes on a snapshot
that only includes uniform remote transactions.

Finally, if a replica does not receive new transactions for a
long time, it sends the value of its knownVec[d] as a heartbeat
(lines 2:8 and 2:16). This allows advancing stableVec and
uniformVec even under skewed load distributions.

5.5 Transaction Forwarding
As we explained in §4, to guarantee that a transaction originat-
ing at a correct data center eventually becomes exposed at all
correct data centers despite failures (Eventual Visibility), repli-
cas may have to forward remote update transactions. To deter-
mine which transactions to forward, each replica keeps track

of the update transactions that have been replicated at sibling
replicas in other data centers. To this end, sibling replicas peri-
odically exchange KNOWNVEC_GLOBAL messages with their
knownVec vectors, which they store in a matrix globalMatrix
(lines 2:26 and 2:37). Thus, pm

i has received all update trans-
actions from pm

j with commitVec[ j]≤ globalMatrix[i][ j].
A replica pm

d only forwards transactions when it suspects
that a data center j may have failed before replicating all
the update transactions originating at it to a data center i
(this information is provided by a separate module). In this
case, pm

d executes FORWARD_REMOTE_TXS(i, j) (line 2:19).
The function forwards the set of transactions txs received
from pm

j that have not been replicated at pm
i according to

globalMatrix[i][ j]. For example, in Figure 1, UNISTORE will
eventually invoke FORWARD_REMOTE_TXS(d1,d3) at repli-
cas in d2 to forward t1. The replica pm

d sends the transactions
in txs to pm

i in a REPLICATE message. If there are no up-
date transactions to forward, pm

d sends a heartbeat to pm
i with

knownVec[ j].
UNISTORE periodically deletes from committedCausal

transactions that have been replicated at every data center
(omitted from the pseudocode for brevity).

5.6 On-Demand Durability and Client Migration
A client may wish to ensure that the transactions it has ob-
served so far are durable. To this end, the client can call
UNIFORM_BARRIER(V ) at any replica in its local data cen-
ter d, where V is the client’s causal past pastVec (line 1:49).
The replica returns to the client only when all the transactions
from pastVec that originate at d are uniform, and thus durable.
Then the same holds for all transactions from pastVec, be-
cause the protocol only exposes remote transactions to clients
when they are already uniform (§5.2).

A client wishing to migrate from its local data center d to
another data center i first calls UNIFORM_BARRIER(V ) at any
replica in d with V = pastVec, to ensure that the transactions
the client has observed or issued at d will eventually become
visible at i. The client then calls ATTACH(V ) at any replica in i
(line 1:51). The replica returns when its uniformVec includes
all remote transactions from V (line 1:52). The client can
then be sure that its transactions at i will operate on snapshots
including all the transactions it has observed before.

6 Adding Strong Transactions

We now describe the full UNISTORE protocol with both causal
and strong transactions. It is obtained by adding the high-
lighted lines to Algorithms 1-2 and a new Algorithm 3.

6.1 Metadata
The Conflict Ordering property of our consistency model re-
quires any two conflicting strong transactions to be related
one way or another by the causal order ≺ (§3). To ensure
this, the protocol assigns to each strong transaction a scalar
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strong timestamp, analogous to those used in optimistic con-
currency control for serializability [70]. Several vectors used
as metadata in the causal consistency protocol (§5.1) are then
extended with an extra strong entry.

First, we extend commit vectors and those representing
causally consistent snapshots. Commit vectors are compared
using the previous order <, but considering all entries; as
before, this order is consistent with the causal order ≺. Fur-
thermore, conflicting strong transactions are causally ordered
according to their strong timestamps.

PROPERTY 5. For any conflicting strong transactions t1 and t2
with commit vectors commitVec1 and commitVec2, we have:
t1 ≺ t2⇐⇒ commitVec1[strong]< commitVec2[strong].

A consistent snapshot vector V now defines the set of trans-
actions with a commit vector ≤ V , according to the new
<. The vectors knownVec and stableVec maintained by a
replica pm

d are also extended with a strong entry. The entries
knownVec[strong] and stableVec[strong] define the prefix of
strong transactions that have been replicated at pm

d and the
local data center d, respectively:

PROPERTY 6. Replica pm
d stores the updates to m by all strong

transactions with commitVec[strong]≤ knownVec[strong].

PROPERTY 7. Data center d stores the updates by all strong
transactions with commitVec[strong]≤ stableVec[strong].

To ensure Property 7, the strong entry of stableVec is up-
dated at line 2:30 similarly to its other entries. We do not
extend uniformVec, because our commit protocol for strong
transactions automatically guarantees their uniformity.

6.2 Transaction Execution
UNISTORE uses optimistic concurrency control for strong
transactions, with the same protocol for executing causal and
speculatively executing strong transactions. To this end, Al-
gorithm 1 is modified as follows. First, the computation of
the snapshot vector snapVec[tid] is extended to compute the
strong entry (line 1:7), which is now taken into account when
checking that a replica state is up to date (line 1:21). The
strong entry of the snapshot vector is computed so as to in-
clude all strong transactions known to be fully replicated
in the local data center, as defined by stableVec[strong]. To
ensure read your writes, the snapshot additionally includes
strong transactions from the client’s causal past, as defined by
V [strong]. Finally, the coordinator of a transaction now main-
tains not only its write set, but also its read set rset that records
all operations by the transaction, including read-only ones
(line 1:14). The latter is used to certify strong transactions.

After speculatively executing a strong transaction, the client
tries to commit it by calling COMMIT_STRONG at its coordi-
nator (line 3:1). The coordinator first waits until the snapshot
on which the transaction operated becomes uniform by call-
ing UNIFORM_BARRIER (line 3:2): as we argued in §4, this
is crucial for liveness. The coordinator next submits the trans-

Algorithm 3 Committing strong transactions at pm
d .

1: function COMMIT_STRONG(tid)
2: UNIFORM_BARRIER(snapVec[tid])
3: return CERTIFY(tid, wbuff[tid], rset[tid], snapVec[tid])

4: upon DELIVER_UPDATES(W )
5: for all〈wbuff ,commitVec〉∈W incommitVec[strong]order do
6: for all 〈k,op〉 ∈ wbuff do
7: opLog[k]← opLog[k] · 〈op,commitVec〉
8: knownVec[strong]← commitVec[strong]

9: function HEARTBEAT_STRONG() . Run periodically
10: return CERTIFY(⊥, ∅, ∅,~0)

action to a certification service, which determines whether
the transaction commits or aborts (line 3:3, see §6.3). In the
former case, the service also determines its commit vector,
which the coordinator returns to the client. If the transaction
commits, the client sets its causal past pastVec to the commit
vector; otherwise, it re-executes the transaction.

The certification service also notifies replicas in all data
centers about updates by strong transactions affecting them
via DELIVER_UPDATES upcalls, invoked in an order consis-
tent with strong timestamps of the transactions (line 3:4). A
replica receiving an upcall adds the new operations to its log
and refreshes knownVec[strong] to preserve Property 6.

Finally, a replica pm
d that has not seen any strong transac-

tions updating its partition m for a long time submits a dummy
strong transaction that acts as a heartbeat (line 3:9). Similarly
to heartbeats for causal transactions, this allows coping with
skewed load distributions.

6.3 Certification Service

We implement the certification service using an existing fault-
tolerant protocol from [19], with transaction commit vectors
computed using the techniques from [30]. The protocol in-
tegrates two-phase commit across partitions accessed by the
transaction and Paxos among the replicas of each partition. It
furthermore uses white-box optimizations between the two
protocols to minimize the commit latency. The use of Paxos
ensures that a committed strong transaction is durable and its
updates will eventually be delivered at all correct data cen-
ters (line 3:4). For each partition, a single replica functions
as the Paxos leader. The protocol is described and formally
specified elsewhere [19], and here we discuss it only briefly.
Its pseudocode and formal specification are given in [12, §A]
and [12, §C], respectively.

The certification service accepts the read and write sets of
a transaction and its snapshot vector (line 3:3). Even though
the service is distributed, it guarantees that commit/abort de-
cisions are computed like in a centralized database with opti-
mistic concurrency control – in a total certification order. To
ensure Conflict Ordering, the decisions are computed using
a concurrency-control policy similar to that for serializabil-
ity [70]: a transaction commits if its snapshot includes all
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conflicting transactions that precede it in the certification or-
der. The certification service also computes a commit vector
for each committed transaction by copying its per-data center
entries from the transaction’s snapshot vector and assigning a
strong timestamp consistent with the certification order.

7 Proof of Correctness

We have rigorously proved that UNISTORE correctly imple-
ments the specification of PoR consistency for the case when
the data store manages last-writer-wins registers. The proof
uses the formal framework from [14, 15, 17] and establishes
Properties 1-7 stated earlier. Due to space constraints, we
defer the proof to [12, §D].

8 Evaluation

We have implemented UNISTORE and several other protocols
(listed in the following) in the same codebase, consisting of
10.3K SLOC of Erlang. We evaluate the protocols on Amazon
EC2 using m4.2xlarge VMs from 5 different regions. Each
VM has 8 virtual cores and 32GB of RAM. The RTT between
regions ranges from 26ms to 202ms. Unless otherwise stated,
our experiments deploy 3 data centers, thus tolerating a single
data center failure: Virginia (US-East), California (US-West)
and Frankfurt (EU-FRA). All Paxos leaders are located in
Virginia. By default we use 4 replica machines per data center.
Each machine stores replicas of 8 partitions, matching the
number of cores. Clients are hosted on separate machines
in each data center. We run each experiment for at least 5
minutes, with the first and the last minute ignored. Replicas
propagate local update transactions (line 2:1) and broadcast
vectors (line 2:23) every 5ms.

8.1 Does UNISTORE combine causal and strong consis-
tency effectively?

We start by analyzing the performance of UNISTORE using
RUBiS – a popular benchmark that emulates an online auction
website such as eBay [41, 42]. It defines 11 read-only trans-
actions and 5 update transactions, e.g., selling items, bidding
on items, and consulting outstanding auctions. As in previ-
ous work [42], to make the benchmark more challenging, we
add an extra update transaction closeAuction to declare the
winner of an auction. We also borrow from [42] a conflict
relation between RUBiS transactions that preserves key in-
tegrity invariants in the PoR consistency model. This marks
four transactions as strong (registerUser, storeBuyNow,
storeBid and closeAuction) and declares three conflicts
between them. For example, storeBid, which places a bid on
a item, conflicts with closeAuction if both act on the same
item: this is needed to preserve the invariant that the winner
of an auction is the highest bidder. Our RUBiS database is
configured according to the benchmark specification: it is pop-
ulated with 33,000 items for sale and 1 million users; client
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Figure 3: RUBiS benchmark: throughput vs. average latency.

think times are 500ms. We run the bidding mix workload of
RUBiS with 15% of update transactions, which yields 10%
of strong transactions.

We compare UNISTORE with STRONG, REDBLUE and
CAUSAL. STRONG implements serializability [70] as a spe-
cial case of UNISTORE where all transactions are strong and
all pairs of operations conflict. REDBLUE implements red-
blue consistency [41], which like PoR, combines causal and
strong consistency. However, it declares conflicts between all
strong transactions. REDBLUE certifies strong transactions
at a centralized replicated service, with a replica at each data
center. CAUSAL implements causal consistency as a special
case of UNISTORE where all transactions are causal. It cannot
preserve the integrity invariants of RUBiS, but gives an upper
bound on the expected performance.

Throughput and average latency. Figure 3 evaluates aver-
age transaction latency and throughput. As the figure shows,
UNISTORE exhibits a high throughput: 72% and 183% higher
than REDBLUE and STRONG respectively at their saturation
point. This is expected, as UNISTORE implements the consis-
tency model that enables the most concurrency. STRONG
classifies all transactions as strong. This impacts perfor-
mance because executing a strong transaction is significantly
more expensive than executing a causal one. REDBLUE uses
a centralized certification service that saturates before the
UNISTORE’s distributed service, creating a bottleneck. UNI-
STORE exhibits an average latency of 16.5ms, lower than
80.4ms of STRONG. The latency of REDBLUE is comparable
to that of UNISTORE. This is because both systems mark the
same set of transactions as strong. Still, REDBLUE declares
conflicts between all strong transactions and thus aborts more
transactions than UNISTORE: 0.12% vs 0.027%. The clients
whose transactions abort have to retry them, thus increasing
latency. Since the abort rate remains low in both cases, the
difference in latency is negligible in our experiment. We ex-
pect a more significant difference in workloads with higher
contention. Finally, in comparison to CAUSAL, UNISTORE
penalizes throughput by 45%. This is the unavoidable price
to pay to preserve application-specific invariants.

Latency of each transaction type. In UNISTORE, the la-
tency of strong transactions is dominated by the RTT between
Virginia (the leader’s region) and California (Virginia’s clos-
est data center) – 61ms. Strong transactions exhibit a latency
of 73.9ms on average. The latency varies depending on the
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Figure 4: Scalability when varying the ratio of strong transactions
with uniform data access (top) and under contention (bottom).

client’s location: from 65.4ms on average at the leader’s site to
93.2ms at the site furthest from the leader (Frankfurt). Since
causal transactions do not require coordination between data
centers, they exhibit a very low latency – 1.2ms on average,
which is comparable to that of CAUSAL. This demonstrates
that UNISTORE is able to mix causal and strong consistency
effectively, as the latency of causal transactions remains low
regardless of concurrently executing strong transactions.

8.2 How does UNISTORE scale with the number of ma-
chines?

We evaluate the peak throughput of UNISTORE as we in-
crease the number of machines per each data center from 2
to 8, i.e., the number of partitions from 16 to 64. We use a
microbenchmark with 100% of update transactions, where
each transaction accesses three data items. We vary the ratio
of strong transactions from 0% to 100% to understand their
impact on scalability.

Scalability under low contention. For this set of experi-
ments, the data items accessed by each transaction are picked
uniformly at random. This yields a very low contention: e.g.,
with 16 partitions, the probability of two transactions access-
ing the same partition is 0.031. As shown by the top plot
of Figure 4, UNISTORE is able to scale almost linearly even
when the workload includes strong transactions: a 9.76%
throughput drop compared to the optimal scalability. This is
because, with uniform accesses, the task of committing trans-
actions is balanced among partitions. Thus, when the number
of partitions increases, so does the system’s capacity. The
scalability is not perfect due to the cost of the background
protocol that computes stableVec, which grows logarithmi-
cally with the number of partitions. The plot also shows that
strong transactions are expensive: 25.72% of throughput drop
on average with 10% of strong transactions. The performance
is dominated by the number of strong transactions that a par-
tition can certify per second.
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Impact of contention. For this set of experiments, we set the
ratio of strong transactions that access a designated partition
to 20% to create contention. As shown by the bottom plot
of Figure 4, UNISTORE is still able to scale fairly well un-
der contention. But, as expected, contention has an impact
on scalability: a 17.15% throughput drop from the optimal
scalability compared to the 9.76% throughput drop in the
experiments without contention.

8.3 What is the cost of uniformity?
We compare CUREFT to UNIFORM. CUREFT implements
Cure [3], a causally consistent data store, and makes it fault
tolerant by adding transaction forwarding (§4). UNIFORM is
a simplified version of UNISTORE that removes all the mech-
anisms related to strong transactions. UNIFORM tracks unifor-
mity and makes remote transactions visible only when these
are uniform; CUREFT does not. We use a microbenchmark
with only causal transactions and 15% of update transactions.
Each transaction accesses three data items.

Throughput penalty. Figure 5 evaluates the cost of tracking
uniformity. It shows the peak throughput when the number of
data centers increases from 3 to 5. We first add Ireland and
then Brazil. As we do this, the throughput remains almost
constant. This is because each data center stores replicas of all
partitions and the computational power gained when adding a
data center is offset by the cost of replicating update transac-
tions. As the figure shows, the cost of tracking uniformity is
small: a 7.97% drop on average. The gap grows as we increase
the number of data centers: a 10.61% drop on average with 5
data centers. This is because, to track uniform transactions,
sibling replicas exchange messages: the more data centers,
the more messages exchanged. The penalty can be reduced by
decreasing the frequency at which sibling replicas exchange
their stableVec (line 2:25), at the expense of an extra delay in
the visibility of remote transactions.

Reading from a uniform snapshot. Figure 6 evaluates the
delay on the visibility of remote transactions when reading
from a uniform snapshot. We deploy four data centers: Vir-
ginia, California, Frankfurt and Brazil. We set f = 2 to tol-
erate 2 data center failures (when f = 1, UNIFORM shows
no delay). Under such a configuration, a data center makes
a transaction visible when it knows that 3 data centers store
the transaction and its dependencies (§5.4). The figure shows
the cumulative distribution of the delay before updates from
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Figure 6: Left: California to Brazil (best case). Right: California to
Virginia (worst case).

California are visible in Brazil and Virginia.
The extra delay at Brazil is only of 5ms at the 90th per-

centile. This is the best case scenario for UNIFORM because
Brazil learns that Virginia stores a transaction originating at
California only 2ms after receiving it. The worst case sce-
nario for UNIFORM is when the origin and the destination
data center are the closest ones. This is why the extra delay
at Virginia is 92ms at the 90th percentile: Brazil learns that
Frankfurt stores a transaction originating at California 88ms
after receiving it. Note that when clients communicate only
via the data store, the delay is unnoticeable. Even if clients
communicate out of band, as the maximum extra delay is less
than 100ms, it is unlikely that a client will miss an update.

9 Related Work

Systems with multiple consistency levels. A number of data
stores have combined weak and strong consistency, includ-
ing several commercial and academic systems that combine
eventual and strong consistency [5, 6, 29, 49, 58, 65, 73]. Sev-
eral academic data stores combined causal and strong con-
sistency [9, 37, 41, 42, 59, 65]. Pileus [65] funnels all updates
through a single data center. In the fault-tolerant version of
lazy replication [37], causal operations require synchroniza-
tion between replicas on its critical path. In both cases, causal
operations are not highly available, defeating the benefits of
causal consistency. Walter [59] restricts causal operations
to a specific type and lacks fault tolerance due to the use
of two-phase commit across data centers. The remaining
works [9, 41, 42] support highly available causal operations,
but are not fault tolerant. First, they do not make causal oper-
ations uniform on demand to guarantee the liveness of strong
operations. Thus, they suffer from the liveness issue we ex-
plained in §4 (Figure 2). In addition, these systems do not
use fault-tolerant mechanisms even for strong transactions.
They guard the use of strong transactions using mechanisms
similar to locks; if the lock holder fails before releasing it, no
other data center can execute a strong transaction requiring the
same lock. This occurs even when the service handing locks is
fault-tolerant, as in [42]. Finally, the above systems either do
not include mechanisms for partitioning the key space among
different machines in a data center or include per-data center
centralized services, which limits their scalability (§8.2).

Some group communication systems mix causal and atomic

broadcast [10, 68]. However, these systems do not provide
mechanisms for maintaining transactional data consistency.

Several papers have proposed tools that use formal verifi-
cation technology to ensure that consistency choices do not
violate application invariants [9, 31, 34, 40, 51, 52]. Such tools
can make it easier for programmers to use our system.

Causal consistency implementations. Our subprotocol for
causal consistency belongs to a family of highly scalable
protocols that avoid using any centralized components or de-
pendency check messages [3, 23, 60–62]; other alternatives
are less scalable [4, 8, 13, 22, 32, 43, 44, 48, 72]. While we
base our causal consistency subprotocol on an existing one,
Cure [3], we have extended it in nontrivial ways, by integrat-
ing mechanisms for tracking uniformity (§5.4) and for transac-
tion forwarding (§5.5). Some of the above protocols [32, 61]
use hybrid clocks instead of real time [36] to improve per-
formance with large clock skews; this technique can also be
integrated into UNISTORE.

SwiftCloud [72] implements k-stability [46], a notion simi-
lar to uniformity, to enable client migration. SwiftCloud relies
on a single per-data center sequencer, which makes tracking
k-stability easy, but the data store less scalable. Our protocol
is more sophisticated, since we distribute the responsibility
of tracking uniformity among the replicas in a data center.

Paxos variants. Several Paxos variants [25, 39, 50, 53] lower
the latency by allowing commutative operations to execute at
replicas in arbitrary orders. In contrast to them, UNISTORE
implements PoR consistency, which allows causal transac-
tions to execute without any synchronization at all.

10 Conclusion

This paper presented UNISTORE, the first fault-tolerant and
scalable data store that combines causal and strong consis-
tency. UNISTORE carefully integrates state-of-the-art scalable
protocols and extends them in nontrivial ways. To maintain
liveness despite data center failures, unlike previous work,
UNISTORE commits a strong transaction only when all its
causal dependencies are uniform. Our results show that UNI-
STORE combines causal and strong consistency effectively:
3.7× lower latency on average than a strongly consistent sys-
tem with 1.2ms latency on average for causal transactions. We
expect that the key ideas in UNISTORE will pave the way for
practical systems that combine causal and strong consistency.
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