
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

SILK: Preventing Latency Spikes
in Log-Structured Merge Key-Value Stores

Oana Balmau, Florin Dinu, and Willy Zwaenepoel, University of Sydney;
Karan Gupta and Ravishankar Chandhiramoorthi, Nutanix Inc.;

Diego Didona, IBM Research–Zurich

https://www.usenix.org/conference/atc19/presentation/balmau

SILK: Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores

Oana Balmau
University of Sydney

Florin Dinu
University of Sydney

Willy Zwaenepoel
University of Sydney

Karan Gupta
Nutanix Inc.

Ravishankar Chandhiramoorthi
Nutanix Inc.

Diego Didona
IBM Research – Zurich

Abstract

LSM-based KV stores are designed to offer good write per-
formance, by capturing client writes in memory, and only
later flushing them to storage. Writes are later compacted
into a tree-like data structure on disk to improve read perfor-
mance and to reduce storage space use. It has been widely
documented that compactions severely hamper throughput.
Various optimizations have successfully dealt with this prob-
lem. These techniques include, among others, rate-limiting
flushes and compactions, selecting among compactions for
maximum effect, and limiting compactions to the highest
level by so-called fragmented LSMs.

In this paper we focus on latencies rather than throughput.
We first document the fact that LSM KVs exhibit high tail
latencies. The techniques that have been proposed for opti-
mizing throughput do not address this issue, and in fact in
some cases exacerbate it. The root cause of these high tail
latencies is interference between client writes, flushes and
compactions. We then introduce the notion of an I/O sched-
uler for an LSM-based KV store to reduce this interference.
We explore three techniques as part of this I/O scheduler: 1)
opportunistically allocating more bandwidth to internal op-
erations during periods of low load, 2) prioritizing flushes
and compactions at the lower levels of the tree, and 3) pre-
empting compactions.

SILK is a new open-source KV store that incorporates this
notion of an I/O scheduler. SILK is derived from RocksDB,
but the concepts can be applied to other LSM-based KV
stores. We use both a production workload at Nutanix and
synthetic benchmarks to demonstrate that SILK achieves up
to two orders of magnitude lower 99th percentile latencies
than RocksDB and TRIAD, without any significant negative
effects on other performance metrics.

1 Introduction

Latency-critical applications require data platforms that are
able to deliver low latency and predictable throughput. Tail

latency is especially important, because applications often
exhibit high fan-out queries whose overall latency is de-
termined by the response time of the slowest reply. Log-
structured merge key-value stores (LSM KVs), such as
RocksDB [18], LevelDB [14] and Cassandra [30], are widely
adopted in production environments to provide storage be-
yond main memory for such latency-critical applications,
especially for write-heavy workloads. At Nutanix, we use
LSM KVs for storing the meta-data of our core enter-
prise platform, which serves thousands of customers with
petabytes of storage capacity.

KV stores support a range of client operations, such as
Get(), Update() and Scan(), to store and retrieve data.
LSM KVs strive for good update performance by absorbing
updates in an in-memory buffer [36, 37]. A tree-like struc-
ture is maintained on storage. In addition to client opera-
tions, LSM KVs implement two types of internal operations:
flushing, which persists the content of in-memory buffers to
disk, and compaction, which merges data from the lower into
the higher levels of the tree.

In this paper we demonstrate that tail latencies in state-of-
the-art LSM KVs can be quite poor, especially under heavy
and variable client write loads. We introduce the notion of an
I/O scheduler for LSM KVs. We implement this I/O sched-
uler in RocksDB, and we show up to two orders of magnitude
improvements in tail latency.

Our work complements much recent work that has sought
to improve the client throughput of LSM KVs (e.g., [4, 24,
28, 32, 34, 38, 39, 42, 43]). Client throughput is improved by
reducing the cost of internal operations, but this does not suf-
fice to reduce tail latency. Internal operations remain neces-
sary, and client operations that arrive during ongoing internal
operations experience increased latency because of interfer-
ence with these internal tasks. The internal operations may
be fewer in number and less costly, reducing the probabil-
ity of latency spikes, but in practice they occur sufficiently
often to influence the higher order percentiles of the latency
distribution, especially if client load is bursty.

USENIX Association 2019 USENIX Annual Technical Conference 753

One may at first think that limiting the I/O bandwidth allo-
cated to internal operations, as is commonly done in produc-
tion systems, would avoid latency spikes due to interference
between internal work and client load. On closer inspection,
however, we find this not to be the case. As a simple ex-
ample, consider a burst of client writes, triggering a burst
of flushes. If a number of compactions is going on at the
same time, the flushes have to share the limited bandwidth
with the compactions, and they become slow. This leads
to the in-memory component filling up and blocking further
writes, hence producing latency spikes. Limiting the rate of
compactions is also insufficient, because they can lead to the
lowest level of the tree filling up, stalling flushes, and in turn
stalling writes.

These and other observations lead us to the conclusion
that reducing the cost of internal operations or limiting their
bandwidth allocation does not suffice to avoid latency spikes,
and that instead there is a fundamental need for coordination
between the client load and the load imposed by different in-
ternal operations. To this end we introduce an I/O scheduler
for an LSM-based KV store.

We build a new KV store, SILK, which we derive from
RocksDB. The I/O scheduler in SILK (1) dynamically allo-
cates bandwidth between client and internal operations, (2)
gives preference to internal operations that may block client
operations, and (3) allows preemption of less critical internal
operations. Other techniques could possibly be included, but
we have found these sufficient to get two orders of magni-
tude benefits in tail latency for write-heavy workloads, with
no negative effects on throughput or average latency. Also,
SILK does not produce significant negative effects in read-
and scan-heavy workloads.
Contributions. The main contributions of this paper are:

1. An extensive empirical study that demonstrates the high
tail latencies of current LSM KVs.

2. The introduction of an I/O scheduler for LSM KVs, and
various scheduling techniques useful for reducing tail
latency while maintaining good throughput.

3. An implementation of an LSM KV store I/O scheduler
in an industry-standard LSM KV store (RocksDB).

4. An experimental evaluation demonstrating up to two or-
ders of magnitude improvements in tail latency in our
production workload, without significant negative ef-
fects on other performance metrics or workloads.

2 LSM KV background

2.1 LSM KV architecture
An LSM KV store has three main components: the memory
component, the disk component, and the commit log.

Memory component. The memory component Cm is a
sorted data structure that resides in main memory. Its size
is typically small, around a few tens of MBs. The purpose of
Cm is to temporarily absorb user updates. When Cm fills up,
it is replaced by a new, empty component. The old memory
component is then in the background flushed as is to level 0
(L0) of the LSM disk component.

Disk component. The disk component Cdisk is structured
into multiple levels (L0, L1, . . . Ln), where each level is
larger than the previous (lower) level by a configurable fac-
tor (e.g., 10). Each level contains multiple sorted files, called
SSTables. The number of SSTables on a given level is lim-
ited by a configuration parameter, as is the maximum size
of an individual file for a given level. SSTables on levels
Li (i > 0) have disjoint key-ranges. L0 allows overlapping
key-ranges between files.

Commit log. The commit log Clog stores the updates that
are made to Cm (in small batches) on stable storage. Clog
is usually a few hundreds of MBs large. It is used if the
application requires the data to be recoverable in case of a
failure, but it is not mandatory. The techniques we propose
in SILK apply regardless of whether Clog is active or not.

2.2 LSM KV operations

LSM KVs implement two main kinds of operations, which
are executed by disjoint thread pools.

Client operations. The main client operations in LSM KVs
are writes (Update(k, v)), reads (Get(k)), and range scans
(Scan(k1, k2)). Update(k, v) associates value v to key k. Up-
dates are absorbed in Cm, to achieve high write throughput.
Get(k) returns the most recent value of k. The read first goes
to Cm. If k is not found in Cm, the read continues to L0, L1,
. . . Ln, until k is found. By design, at most one SSTable is
checked on each level Li for i > 0. On the contrary, more
than one SSTable in L0 may need to be checked because
L0 SSTables may contain the entire key-range. Per-SSTable
Bloom filters [7, 25] are used to address this issue. There-
fore, in practice, only one SSTable ends up being checked
on L0 most of the time. Scan(k1, k2) returns a range of key-
value tuples with the keys ranging from k1 to k2. First, Cm
is queried for keys in the k1–k2 range. Then, SSTables in
Cdisk that may contain the k1–k2 range are read, going down
the levels, until all the keys are found. Client operations are
enqueued and served in FIFO order by a fixed-size worker
thread pool.

Internal operations. LSM KVs implement flushing and
compaction as background processes. Flushing writes Cm as
is to L0. Because flushing speed affects the rate at which new
memory components can be installed, memory components
are written to disk without additional processing. As a result,
L0 allows overlapping key-ranges between files. Compaction
is the operation that cleans up the LSM tree. It merges SSTa-

754 2019 USENIX Annual Technical Conference USENIX Association

bles in level Li of Cdisk into SSTables with overlapping key-
ranges in Li+1, discarding older values in the process. When
the size of Li exceeds its maximum, an SSTable F in Li is
picked and merged into the SSTables in Li+1 that have over-
lapping key-ranges with F , in a way similar to a merge sort.
Most LSM KVs support parallel compactions, apart from
compactions from L0 to L1 which are not parallelized be-
cause of overlapping key-ranges on L0. Compaction induces
large I/O overhead by reading the SSTables and writing the
new ones to disk.

The system maintains an internal FIFO work queue, where
flushes and compactions are enqueued. When a new internal
work request is enqueued, it is placed at the end of the in-
ternal work queue. A flush is enqueued when Cm fills up.
A compaction operation may be enqueued after a flush com-
pletes, or after a compaction completes. A pool of internal
worker threads serve the requests in the internal work queue.
In current LSM KVs an internal operation is enqueued when-
ever the system deems it necessary in order to maintain the
structure of the LSM tree (e.g., when the maximum size or
maximum number of files is reached on a level).

2.3 State-of-the-art LSM-based systems
Our experimental study includes three state-of-the-art sys-
tems: RocksDB, TRIAD, and PebblesDB.
RocksDB [18] developed at Facebook, is a popular system
in production environments, including ours. Its architecture
follows the description above. In addition, RocksDB pro-
vides a rate limiter to restrict the I/O bandwidth for inter-
nal operations. The bandwidth can be set to a fixed value,
or RocksDB can change it over time in a multiplicative-
increase, multiplicative-decrease manner [19]. This auto-
tuned version of the rate limiter adapts the bandwidth to the
amount of internal work, allocating more bandwidth when
there is more pending work.
TRIAD [4] reduces the overhead of internal operations
through three techniques. First, TRIAD keeps frequently up-
dated keys in Cm, decreasing internal operation overhead in
skewed workloads. Second, TRIAD provides an improve-
ment to the flushing operation, by leveraging data already
written in Clog. Finally, at the disk level, TRIAD employs a
cost-based approach to trigger compaction from L0 to L1.
Compaction happens only when there is significant key-
range overlap, reducing the frequency of compaction oper-
ations and amortizing their cost.
PebblesDB [39] avoids most of the compaction overhead of
merging and rewriting SSTables, by allowing overlapping
key-ranges on all but the highest tree level through the use
of Fragmented LSM trees. PebblesDB orders SSTables by
key-ranges on each level, and uses special pointers called
guards to indicate where a given key-range is on a level.
When the number of guards on a level reaches a threshold,
the guards and the corresponding keys are moved to the next

level, mostly without re-writing the SSTables. PebblesDB
only requires compaction at the highest tree level, when the
number of guards reaches a threshold.

3 Performance requirements for LSM KVs

LSM KVs should meet the following requirements:

1. Low tail latency. In environments where LSM KVs
serve applications with high fan-out operations, in
which the slowest reply within an operation determines
the latency of the whole operation, low tail latency is a
key requirement [15].

2. Predictable throughput. LSM KVs must deliver a
throughput that matches the client load at any time.
Throughput variability is a well-known problem in
LSM KVs, mostly stemming from the interference be-
tween LSM internal work and client requests.

3. Small main memory footprint. Typically, LSM KVs
are only one piece of a wider set of services that are
accessed by an application. For example, a KV store
that handles meta-data can co-exist on the same ma-
chine with other services that require large amounts of
memory, making memory a constrained resource.

LSM issues. A common issue in LSM KVs is interfer-
ence between LSM internal work and client operations when
a sudden burst of client-side writes occurs in parallel with
long-running, resource-intensive compaction tasks. Despite
the fact that internal LSM work directly influences client la-
tency, it is handled without being aware of the client load.
For instance, large compactions (e.g., compacting tens of
GBs) may occupy a large fraction of the I/O bandwidth for
extended periods of time (e.g., tens of minutes). The result-
ing problem is two-fold. First, when flushes do not proceed
in a timely manner, the memory component fills up, and in-
coming writes cannot be absorbed in the memory compo-
nent. Second, slow L0 to L1 compactions lead to the accu-
mulation of a large number of SSTables on L0. In extreme
situations, when the maximum number of SSTables on L0 is
reached, this dynamic brings the entire system to a halt. Both
scenarios lead to severe spikes in client latency.

4 Experimental study of tail latency

We perform an extensive experimental study to show that
established techniques used in industry and state-of-the-art
research systems do not solve the issue of tail latency.

4.1 Experimental environment
We use the YCSB [11] update-intensive workload, corre-
sponding to a 50:50 read:write ratio on 1 KB items (YCSB

USENIX Association 2019 USENIX Annual Technical Conference 755

!

!"

!""

!"""

!""""

!"""""

!#!" $

!#!" %

!#!" &

" !"" '"" ("")"" *""

+,- ./01.234 516

732819:/7 . ;5/<;=.42> /+,- ./?.@,.1

732819:/5 . A;BC=
732819:/D 3/E3B1.8.. F,4G

La
te

nc
y

(m
icr

os
)

104

106

102

Time (s)
100 200 3000 400 500

Default RocksDB
No internal ops.

Figure 1: RocksDB compared to a RocksDB version with
no internal operations. Internal operations lead to spikes in
client request 99th percentile latency.

workload A), with a uniform data distribution. We choose
this workload because it is representative for write-intensive
workloads in LSM KVs. Furthermore, a uniform workload
allows us to detect more quickly performance problems that
in skewed workloads would remain hidden due to in-memory
caching [4]. LSM KVs are notorious for having numerous
tuning knobs. Throughout this study, we configure all the in-
volved systems to the best of our abilities, following guide-
lines in [23, 39]. The hardware configuration we use in this
study is described in Section 6.1.

Each experiment consists of a population phase followed
by read and write operations issued at 18 Kops/sec. Unless
stated otherwise, all experiments are run without I/O band-
width rate limiting for internal operations. For RocksDB,
unless stated otherwise, we use two memory components
of 128MB each. For the rest of the systems we limit the
memory use to 1GB. We configure the maximum number of
concurrent internal operations to ten for all systems. The la-
tency is measured every second. The 99th percentile latency
is computed for every 1-second interval.

4.2 RocksDB

We first show the performance degradation of client opera-
tions caused by internal operations in RocksDB. To this end,
we compare RocksDB with a modified version of RocksDB
in which compaction and flushing are disabled. We disable
internal operations by discarding Cm when it fills up (the data
store is pre-populated with the full set of keys, so persistent
storage is accessed by reads, if necessary).

Figure 1 shows the performance of the two systems over
time. The 99th percentile latency of operations in RocksDB
is 2 to 4 orders of magnitude higher than in the system with-
out internal operations. These spikes are not present at the
50th and 90th percentiles of the latency distribution. Both
reads and writes experience latency spikes at the same time
and of the same magnitude, despite their different access
paths in the LSM KV store (i.e., writes complete in-memory,
while reads are typically served from persistent storage).

The main culprit for the latency spikes is the fact that
writes get blocked by virtue of Cm filling up. The reads then
get queued behind these writes in the threading architecture.

107 128 11 13 259 2219 2420 2316 2114 15 17 18 26

L1 à L2 compaction

Latency spike
(writes)Flush

7 L0 files

L0 à L1 compaction (7 L0 SSTables)

Time (seconds)

8 L0 files 9 L0 files 10 L0 files

L1 à L2 compaction

L1 à L2 compaction

L0 limit reached

Flush Flush Flush Flush

L1 à L2 compaction L1 à L2 compaction L1 à L2

Figure 2: RocksDB. Timeline of internal operations during a
writes latency spike (dashed red line) caused by L0 reaching
full capacity. L0 reaches 10 SSTables at t = 19, so flushes
are temporarily paused.

We identify two main reasons for write latency spikes, il-
lustrated in Figures 2 and 3. The examples showcase real
scenarios encountered while profiling RocksDB.

Figure 2 illustrates an example of a write latency spike (the
red dashed line) occurring because L0 reaches maximum ca-
pacity (10 SSTables in this example). Several compactions
on levels L0, L1 and L2 occur in parallel between t = 14
and t = 23. Even if many parallel compactions can run at
higher levels (i.e., Li to Li+1, where i >0), there can only
be one L0 to L1 compaction running at a time. Since I/O
bandwidth is spread equally over all compactions, L0 to L1
compaction is slowed down. Consequently, L0 is not cleared
fast enough, which, in turn, causes flushes from Cm to be
temporarily halted.

A second cause for latency spikes is Cm filling up because
of slow flushing, as illustrated in Figure 3. Here, L0 does
not fill up, reaching only 7 SSTables at t = 5. However, the
flush starting at t = 0 takes an unusually long time (5 seconds
compared to 1-2 seconds for a typical flush). The cause is
that, by coincidence, a large number of compactions are run-
ning at the same time, which makes flushing slow because of
limited available I/O bandwidth. There are 7 ongoing com-
pactions at the time of the very slow flush.

4.3 Rate-limited RocksDB

Limiting the I/O bandwidth for internal operations is a pop-
ular technique to prevent them from consuming an exces-
sive amount of I/O bandwidth, and hence to “shelter” client
operations. We now report the results that we obtain when
running RocksDB with limited I/O bandwidth for internal
operations [22].

Figure 4 shows the 99th percentile latency of client opera-
tions over time when limiting the I/O bandwidth for internal
operations to 50, 75 and 90 MB/s. For the sake of legibility,
in Figure 4 we show the results of the experiment only up to
the time that the tail latency greatly deteriorates (at 900s for
50MB/s, etc). The higher the bandwidth assigned to inter-

756 2019 USENIX Annual Technical Conference USENIX Association

Flush

30 51 4 65754 255 56 58 59 7 8
Time (seconds)

FlushFlushFlush Flush
Latency spike

(writes)L1 à L2
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction
L1 à L2 compaction

L0àL0 (6 L0 SSTables)

5 L0 files 6 L0 files 7 L0 files 3 L0 files

Figure 3: RocksDB. Timeline of internal operations during a
writes latency spike caused by slow flushing. From t = 0 to
t = 7, flushes are slowed down by many parallel L1 to L2
compactions monopolizing I/O bandwidth. Consequently,
Cm fills up, not being able to absorb incoming updates.

0

1x106

2x106

3x106

4x106

5x106

0 500 1000 1500 2000 2500 3000 3500 4000 4500

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Time (seconds)

RocksDB Read Latency Time Series

50 MB/s P99 Read Latency
70 MB/s P99 Read Latency
90 MB/s P99 Read Latency

La
te

nc
y

(m
icr

os
)

Time (s)
0 1000 2000 3000 4000

50 MB/s
70 MB/s
90 MB/s

106

3x106

5x106

Figure 4: RocksDB. 99th percentile of client request latency
when limiting the I/O bandwidth for internal operations.

nal operations, the longer the system is able to postpone the
occurrence of latency spikes. However, restricting the band-
width for internal operations results in slowing them down.
This approach therefore increases the likelihood that at some
later point many compactions are running at the same time,
contending for the limited I/O bandwidth.

4.4 RocksDB with increased Cm

We investigate whether allocating larger memory buffers in-
fluences tail latencies in LSM KV. To this end, we run a se-
ries of experiments in RocksDB where we increase the total
size of the memory component(s) to 1GB – a value close to
the upper limit of what we can allow in our production envi-
ronments (see Section 3). We distribute the memory first into
two 500MB memory components and then into ten memory
components of 100MB each. We also vary the maximum
number of flushes, experimenting with one and ten parallel
flushing threads. We find the setup with ten memory compo-
nents and a single flushing thread to be the most efficient in
postponing the latency spikes because the memory absorbs
more updates and the data flow from memory to L0 matches
more closely the L0 to L1 compaction flow. However, we
encounter tail latency spikes sooner or later in all of these
cases, for similar reasons to the ones in the scenarios above.

800 1300

La
te

nc
y

(m
icr

os
)

Time (s)

102

900 1000 1100 1200

106

104

1

10

100

1000

10000

100000

1x106

1x107

0 100 200 300 400 500

La
te

nc
y

(m
icr

os
ec

on
ds

)

Time (seconds)

triad-latency-motivation

TRIAD

Figure 5: TRIAD. 99th percentile latency. Despite reduc-
ing internal operations overhead, TRIAD does not prevent
latency spikes during resource-intensive compactions.

0 10000

La
te

nc
y

(m
icr

os
)

Time (s)

102

2000 4000 6000 8000

106

104

1

10

100

1000

10000

100000

1x106

1x107

0 2000 4000 6000 8000 10000 12000 14000

La
te

nc
y

(m
icr

os
ec

on
ds

)

Time (seconds)

pebbles

Cronos

12000 14000

1GB memory
limit exceeded

Figure 6: PebblesDB. 99th percentile latency. Postponing
compaction keeps the latency low. Experiment ends because
of high memory overhead.

4.5 TRIAD

Reducing the overhead of internal operations, as done by
state-of-the-art systems [4, 12, 13, 17], is not enough to avoid
resource interference. We use TRIAD [4] as a representative
of such state-of-the-art systems in the next experiment. Fig-
ure 5 shows the 99th percentile latency of client operations
over time. In this scenario, TRIAD reduces compaction over-
head mainly by choosing when to run L0 to L1 compactions
depending on key-range overlap. Postponing compactions
at the lower levels (closer to Cm) results in postponing com-
pactions at the higher levels. So, in the long term, TRIAD
increases the likelihood of running many concurrent com-
pactions. Consequently, the 99th percentile of client opera-
tions shows no spikes for the first ≈ 1,000 seconds but, after
that point, shows frequent and significant spikes.

4.6 PebblesDB

Figure 6 shows PebblesDB’s 99th percentile latency over
time. The experiment stops after 10,500 seconds. Although
we provide PebblesDB with more memory than RocksDB
and TRIAD, it runs out of memory at this time. The memory
consumption is due to the frequent creation of guards and
Bloom filters in a write-intensive workload. During its up-
time, PebblesDB provides very good tail latencies due to the
absence of compactions. In other words, the LSM tree is re-
structured through the use of guards but no data compactions
occurred.

To create a situation in which PebblesDB experiences
compactions, we run it with a read-intensive workload (95:5)
which reduces memory pressure. With this workload, tail la-
tencies remain very good in the early going, but after around

USENIX Association 2019 USENIX Annual Technical Conference 757

8 hours, when compaction sets in, the system effectively
comes to a halt. PebblesDB stalls client operations when
it has to perform the very resource-demanding compaction
on the highest level of the tree. When such compaction takes
place, all threads for internal operations are busy, so they
cannot push down guards and keys from the lower levels of
the tree. Hence, to maintain the tree integrity, PebblesDB
stalls client operations until compaction terminates.

4.7 Lessons learned
We gain three main insights from our experimental study.
Lesson 1) The main reason for high tail latency is the fact
that writes get blocked by Cm filling up. There are two prin-
cipal reasons for this. The first reason is that L0 on disk is
full, which causes flushes from Cm to be halted. L0 reaches
its capacity if L0 to L1 compaction cannot keep up. The sec-
ond reason is that, by coincidence, a large number of com-
pactions are happening concurrently, which causes flushing
to be slow because of limited available bandwidth.
Lesson 2) Simply limiting bandwidth for internal operations
does not solve the problem of limited bandwidth being avail-
able for flushes and can in fact exacerbate it in the long run.
This approach effectively postpones compactions, and there-
fore increases the likelihood that at some later point many
compactions occur at the same time.
Lesson 3) Recent approaches to improve throughput, such as
being selective about starting compactions or only perform-
ing compactions at the highest level, avoid latency spikes in
the short run, but aggravate the problem in the long run, be-
cause they too increase the likelihood of many concurrent
compactions at some later point in time.

As a corollary to Lesson 1, we conclude that not all inter-
nal operations are equal. Internal operations on the lower
levels of the tree (i.e., closer to Cm) are critical, because
failing to complete them in a timely fashion may result in
stalling client operations.

Finally, as a corollary to Lessons 2 and 3, it is essential to
run performance tests for an extended amount of time, lest
these issues go undetected.

5 SILK

5.1 SILK design principles
SILK integrates the lessons we learn from our experimental
study into an I/O scheduler for internal and external work.
SILK follows three core design principles.
1) Opportunistically allocating I/O bandwidth to inter-
nal operations. SILK leverages the fact that, in produc-
tion workloads, the load of client-facing operations typi-
cally varies over time (see Figure 7). SILK allocates less
I/O bandwidth to compactions on higher levels during peak

Time (s)
0 500100 200 300 400

Cl
ie

nt
 Lo

ad
(K

op
s/

s)

20

10

30

Figure 7: Client load in Nutanix production workload. Real
workloads are not flat lines.

client load, and exploits transient low-load periods to boost
the processing of internal operations. Dynamic I/O throttling
enables SILK (1) to limit interference between internal oper-
ations and client-facing ones, and (2) to avoid accumulating
over time too large a backlog of internal work, preventing
overload conditions in the long term.
2) Prioritizing internal operations at the lower levels of
the tree. SILK integrates Lesson 1 in its design by introduc-
ing prioritized execution of flushes and compactions from L0
to L1. SILK splits internal operations of LSM KVs into three
categories with respect to the effect they have on client laten-
cies: (1) SILK ensures that the flushes are fast, making room
in memory to absorb incoming updates, which directly af-
fects write latency, (2) SILK gives second priority to L0 to L1
compactions, ensuring that L0 does not reach its full capac-
ity, so that flushes can proceed, (3) SILK gives third priority
to compactions on the levels below L1 because, while they
maintain the structure of the LSM tree, their timely execu-
tion does not significantly affect client operation latencies in
the short term.
3) Preempting compactions. SILK implements a new com-
paction algorithm that allows internal operations on lower
levels of the tree to preempt compactions on higher levels.

5.2 SILK implementation
5.2.1 Opportunistically allocating I/O bandwidth

SILK continuously monitors the bandwidth used by client
operations and allocates the available leftover I/O bandwidth
to internal operations. The client load monitoring and rate
limiting are handled by a separate SILK thread. The mon-
itoring granularity is a system parameter which depends on
the frequency of fluctuations in the workload; the monitoring
granularity in SILK is currently configured to 10 ms.

If the total I/O bandwidth available to the LSM KV store
is T B/s, SILK measures the bandwidth C B/s used by the
client requests and it continuously adjusts the internal op-
eration bandwidth to I = T −C−ε B/s , where ε is a small
buffer. To adjust the I/O bandwidth, SILK makes use of a
standard rate limiter (e.g., [22]). SILK maintains a minimum
configurable I/O bandwidth threshold for flushing and L0 to
L1 compactions, because these operations directly influence
client latency.

758 2019 USENIX Annual Technical Conference USENIX Association

To minimize overhead associated with changing the rate
limit, SILK only adjusts the limit if the difference between
the current value and the new measured value is significant.
We empirically set this threshold to be 10 MB/s. We find
that lower thresholds cause overly frequent changes in the
rate limit. The role of ε is to account for small fluctuations in
client load which are not significant enough to adjust internal
operation bandwidth using the rate limiter.

5.2.2 Prioritizing and preempting internal operations

Recall that in LSM KVs internal work is handled by a pool
of internal worker threads. Once a flush or a compaction is
completed, the system checks whether more internal work is
needed by assessing the size of the levels and the state of the
memory component. If needed, more internal work tasks are
scheduled in an internal work queue. SILK maintains two
internal worker thread pools: a high-priority one for flushing,
and a low-priority one for compactions.
Flushing has the highest priority among the internal oper-

ations. Flushes have their dedicated thread pool and always
have access to the I/O bandwidth available for internal op-
erations. The minimum flushing bandwidth is chosen to be
sufficient to be able to flush the immutable memory compo-
nent before the active one fills up. The current implemen-
tation of SILK allows two memory components (i.e., an im-
mutable one, and an active one) and one flushing thread. If
memory constraints allow it, having multiple memory com-
ponents and flushing threads may help sustain longer client
activity peaks.
L0 to L1 compaction. SILK needs L0 to L1 compactions
to progress to ensure that there is enough room to flush on
L0. Unlike flushes, these compactions do not have a ded-
icated thread pool. If L0 to L1 compaction needs to pro-
ceed and all the threads in the compaction pool are running
higher-level compactions, one of them is preempted. This
way, L0 to L1 compactions do not wait behind higher-level
compactions. In the current implementation the preempted
compaction task is picked at random.

L0 to L1 compaction, like all internal operations is subject
to dynamic I/O throttling. However, this type of compaction
is never paused, even if SILK may choose to give no band-
width to compactions. In order to keep L0 to L1 compaction
running, SILK temporarily moves this job to the high prior-
ity thread pool and keeps it running via a high priority thread
(i.e., same priority as the flush thread). In this case, the min-
imum flushing bandwidth mentioned above is shared by the
flushing thread and the L0 to L1 compaction thread. At most
one L0 to L1 compaction can run at a time, due to consis-
tency issues caused by overlapping key-ranges. So, only one
extra thread is added in the high priority thread pool. Re-
cent versions of RocksDB support L0 to L0 compactions as
an optimization to quickly reduce the number of SSTables

on L0 [21]. Since this optimization is beneficial for allowing
flushes to proceed, SILK treats this case the same as L0 to L1
compactions.

Higher-level compactions. Compactions on levels higher
than L1 are scheduled in the low priority compaction thread
pool. They make use of the I/O bandwidth available, as indi-
cated by the dynamic rate limiter described in Section 5.2.1.
SILK can pause and resume these larger compactions, either
individually (because of L0 to L1 compaction preemption) or
at the level of the thread pool (because of high user load).

It might happen that an L1 to L2 compaction is invalidated
by the work done by an L0 to L1 compaction which pre-
empted it. In this case, SILK discards the partial work done
by the higher level compaction. We did not find this wasted
work to significantly impact performance.

SILK supports parallel compaction, like most current
LSM KVs. By default, and assuming equally aggressive
compaction threads, each thread gets a similar share of the
resources. LSM KVs do not allow parallel compactions from
L0 to L1, so, if many parallel compactions are allowed, most
of the compaction threads are working on the higher levels.
This is detrimental to the client operation latencies, since L0
to L1 compactions are key to system performance and would
benefit from getting the bulk of the resources. Reducing the
size of the thread pool, together with SILK’s compaction pre-
empting scheme allows each internal worker thread to access
a larger share of the resources, which results in faster com-
pletion of critical compactions.

The typical recommendation [23] is to set the number
of compaction threads equal to the total number of cores.
However, we find that the number of compaction threads
should instead depend on the total drive I/O bandwidth and
the amount of I/O bandwidth required by individual com-
paction operations. For instance, for a drive with 200MB/s
bandwidth, four internal work threads is a suitable choice;
even if all the threads happen to run in parallel, they are still
allocated a large enough amount of bandwidth to finish the
compaction operations fast, thus avoiding scenarios like the
ones described in Section 4.

Currently, SILK controls the total I/O bandwidth allocated
for compactions in the low priority thread pool. An interest-
ing strategy to explore would be allocating different amounts
of bandwidth to compactions at a finer granularity, depend-
ing on how urgent the compaction task is considered. We
find the current approach to bring good improvements with-
out this additional level of complexity.

6 Evaluation

We implement SILK as an extension of RocksDB –
used at Nutanix–, and of TRIAD. The source code of
SILK is available at https://github.com/theoanab/

SILK-USENIXATC2019. In what follows, we refer to the

USENIX Association 2019 USENIX Annual Technical Conference 759

https://github.com/theoanab/SILK-USENIXATC2019
https://github.com/theoanab/SILK-USENIXATC2019

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

Th
ro

ug
hp

ut
(K

op
s/

s)

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
te

nc
y (

m
icr

os
ec

on
ds

)

Time (seconds)

Cronos Operations Latency Production Workload

Cronos

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
te

nc
y (

m
icr

os
ec

on
ds

)

Time (seconds)

RocksDB Operations Latency Production Workload

RocksDB

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

RocksDB Autotuned Operations Latency Production Workload

RocksDB Autotuned

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (o

ps
/s)

Time (seconds)

TRIAD Throughput Production

TRIAD

1

10

100

1000

10000

100000

1x106

1x107

0 500 1000 1500 2000

La
te

nc
y (

m
icr

os
ec

on
ds

)

Time (seconds)

TRIAD Operations Latency Production Workload

TRIAD

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (o

ps
/s)

Time (seconds)

Cronos Throughput Production

CRONOS

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (o

ps
/s)

Time (seconds)

RocksDB Throughput Production

RocksDB

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Th
rou

gh
pu

t (o
ps

/s)

Time (seconds)

RocksDB Autotuned Throughput Production

RocksDB Autotuned

La
te

nc
y

(m
ic

ro
s) 106

RocksDB

20

40

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K
op

s/
s)

Th
ro

ug
hp

ut
(K

op
s/

s)

20

40

20

40

20

40

TRIAD

SILK

Autotuned RocksDB

103

106

103

106

103

La
te

nc
y

(m
ic

ro
s) 106

103

Time (s)
20001000 15000 500

Time (s)
20001000 15000 500

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

Cronos Read Latency Long Peak

Cronos

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

RocksDB Read Latency Long Peak

Cronos

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

CRONOS Read Latency Long Peak

Cronos

1

10

100

1000

10000

100000

1x106

1x107

1x108

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

RocksDB Read Latency Long Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos vs RocksDB Throughput 10s Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos vs RocksDB Throughput 50s Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos Throughput 100s Peak

Cronos

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

Cronos vs RocksDB Throughput 1500s Peak

Cronos

La
te

nc
y

(m
ic

ro
s)

103

106 SILK 10s peaks 50% write
Th

ro
ug

hp
ut

(K
op

s/
s)

20
40

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K
op

s/
s)

Th
ro

ug
hp

ut
(K

op
s/

s)

20
40

20

40

20

40

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

103

106

103

106

103

106

SILK 50s peaks 50% write

SILK 100s peaks 50% write

SILK long peak 50% write

1

10

100

1000

10000

100000

1x106

1x107

0 200 400 600 800 1000

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

silk-latency-1500s-90w

Silk

Time (s)
400 6000 200 800

Th
ro

ug
hp

ut
(K

op
s/

s)

Time (s)
1000400 6000 200 800

20
40

1000

La
te

nc
y

(m
ic

ro
s)

103

106 SILK long peak 90% write

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

silk-throughput-peaks-1500s-90w

Silk

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K
op

s/
s)

Time (s)
1000400 6000 200 800

40

80

40

80

40

80

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

La
te

nc
y

(m
ic

ro
s)

103

106

103

106

103

106

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400

Th
rou

gh
pu

t (o
ps

/s)

Time (seconds)

SILK-throughput-breakdown

SCHEDULING ONLY

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400

Th
rou

gh
pu

t (o
ps

/s)

Time (seconds)

SILK-throughput-breakdown

BANDWIDTH ONLY

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
(o

ps
/s)

Time (seconds)

SILK-throughput-breakdown

SILK

1200 1400

0.1

1

10

100

1000

10000

100000

1x106
1x107
1x108

0 200 400 600 800 1000 1200 1400

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

SILK-latency-breakdown

SCHEDULING ONLY
0.1

1

10

100

1000

10000

100000

1x106
1x107
1x108

0 200 400 600 800 1000 1200 1400

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

SILK-latency-breakdown

BANDWIDTH ONLY

0.1

1

10

100

1000

10000

100000

1x106
1x107
1x108

0 200 400 600 800 1000 1200 1400

La
ten

cy
 (m

icr
os

ec
on

ds
)

Time (seconds)

SILK-latency-breakdown

SILK

Scheduling and Preemption

Dynamic I/O Rate Limiting

SILK

Time (s)
1000400 6000 200 800 1200 1400

Th
ro

ug
hp

ut
(K

op
s/

s)

A). Nutanix production workload. Left: 99th percentile latency, log scale on y-axis. Right: throughput. SILK
maintains low and steady tail latency and its throughput closely follows the client load. Throughput presents

high fluctuations in RocksDB and TRIAD. Average throughput is shown by the dashed black line.

B). Synthetic workloads. Degradation is faster during long peaks, as workloads get more write intensive.

C). Breakdown of SILK techniques. 50% write - 50% read workload, 100s peaks.
SILK’s techniques complement each other in order to maintain low tail latency in the long run.

Figure 8: SILK performance in production and synthetic workloads.

760 2019 USENIX Annual Technical Conference USENIX Association

RocksDB and the TRIAD extensions as RocksDB-SILK and
TRIAD-SILK, respectively. An I/O scheduler could also be
applied to PebblesDB, with suitable modifications for the
fact that compactions only happen at the highest level. We do
not extend PebblesDB with an I/O scheduler because of lack
of familiarity with the code base and because PebblesDB’s
memory demands are not suitable in our environment.

We evaluate SILK with production and synthetic work-
loads, focusing on write-intensive workloads. We compare
against TRIAD and RocksDB and show that:

• SILK achieves up to 2 orders of magnitude lower tail la-
tency than state-of-the-art systems (Section 6.2).

• SILK’s performance does not deteriorate over time in long
running production workloads (Section 6.2).

• SILK provides stable throughput, close to the client load
(Sections 6.2 and 6.4).

• SILK does not create any significant negative side effects
on other important metrics such as average latency and read
performance (Section 6.3).

• SILK can sustain long client activity peaks interrupted by
short client activity lows (Section 6.4).

• The techniques used in SILK contribute to the results above
in complementary ways (Section 6.5).

6.1 Experimental setup

Hardware. We perform the evaluation on a 20-core Intel
Xeon, with two 10-core 2.8 GHz processors, 256 GB of
RAM, and 960GB SSD Samsung 843T. All systems were re-
stricted to run with 1GB of RAM using Linux control groups.

Benchmark. We compare the performance of RocksDB-
SILK and TRIAD-SILK to RocksDB, TRIAD, and a version
of RocksDB that uses the auto-tuned rate limiter [19]. All
experiments are run through db bench, one of RocksDB’s
standard benchmarking tools [20].

Measurements. Load-generator threads issue requests in an
open loop according to the workload characteristics. They
deposit the requests in the queues of the KV store worker
threads. Latency is measured on the side of the load-
generator threads, capturing both queuing time and process-
ing time. We measure the 99th percentile tail latency and
the throughput over one-second intervals (i.e., not cumula-
tive over the entire experiment run). We report throughput
and latency every second in the time-series plots.

Dataset. The dataset size for both the production and the
synthetic workloads is approximately 500GB. The KV-tuple
sizes vary between the production and the synthetic work-
loads. In all the experiments the data store is pre-populated
with the entire dataset.

RocksDB TRIAD RocksDB Autotuned SILK

20
40
60

0

80

tim

es
 C

m
fu

ll

10

20

0%
 ti

m
e

st
al

lin
g

100s
178s

18s 0s0

Figure 9: Production workload. Number of times Cm cannot
be flushed (left) and time spent stalling writes (right).

KV store configuration. We use a 128MB memory com-
ponent size and two memory components (i.e., one active
and one immutable). In SILK, flushing and L0 to L1 com-
pactions proceed at a rate of 50MB/s if SILK paused the
other internal operations. The total I/O bandwidth allocated
to the LSM KV store is 200MB/s. The level0-slowdown

and level0-stop parameters (used to slow down or stop
client writes once a maximum number of files is reached on
L0) are configured to very large values in all data stores so
as not to artificially interfere with the measured latency. We
use a thread pool of 4 threads for internal operations (includ-
ing the flushing thread) for all the systems. All systems are
pinned to 16 cores, out of which 8 are used by the worker
threads, and 8 are used by the internal operations and other
LSM threads (e.g., monitoring the client load in SILK). The
load-generator threads run on separate dedicated cores.

Compression and commit logging are disabled in all re-
ported measurements. While enabling them affects the ab-
solute performance results, it does not impact the conclu-
sions of our evaluation: the performance differences between
RocksDB-SILK or TRIAD-SILK, on the one hand, and stan-
dalone RocksDB and TRIAD, on the other hand, remain
similar. Using compression is equivalent to working with
a smaller dataset. Commit logging takes the same amount of
bandwidth in all systems. Therefore, from an experimental
perspective, using Clog is roughly equivalent to working on a
machine with smaller disk bandwidth.

6.2 Nutanix workload

Workload description. We sample one of our production
workloads at Nutanix over 24h. It is a write-dominated
workload, with a 57:41:2 write:read:scan ratio (a scan length
is in the order of tens of keys). The client requests arrive in
bursts (peaks of around 20K requests/s), separated by peri-
ods of low activity (valleys of around hundreds of requests/s
or less). A typical duration of a valley is between 5s and
20s, with an average valley length being approximately 15s.
Most peaks (approximately 90%) are short bursts between
10s and 20s. The longer peaks (>100s) make up the rest
of the workload. The maximum peak lasts approximately
400s. The request sizes range between 250B and 1KB for

USENIX Association 2019 USENIX Annual Technical Conference 761

Time (h)

103

106

20

40

0 24126 18
0

10000

20000

30000

40000

50000

0 10000 20000 30000 40000 50000 60000 70000 80000

T
h

r
o

u
g

h
p

u
t

(
o

p
s
/
s
)

Time (seconds)

Cronos vs RocksDB Throughput Long Peak

Cronos
1

10

100

1000

10000

100000

1x106

1x107

0 5000 10000 15000 20000 25000 30000 35000 40000

L
a
te

n
c
y
 (

m
ic

r
o
s
e
c
o

n
d
s
)

Time (seconds)

Cronos Read Latency Long Peak

Cronos

99
p

La
te

nc
y

(m
icr

os
)

Th
ro

ug
hp

ut
(K

op
s/

s)

Figure 10: SILK in 24h Nutanix production workload. Top:
99th percentile latency, log scale on y-axis. Bottom: through-
put. SILK maintains stable low latency and throughput close
to the client load for extended time spans.

the single-point operations (i.e., reads and writes), with a me-
dian of 400B. We use a trace replay of the original workload,
providing the input at the same rate as the original trace.

Results. Figure 8A shows the 99th percentile latency (left)
and throughput (right) for RocksDB-SILK (bottom row),
compared to state-of-the-art systems. Results obtained with
TRIAD-SILK are similar.

SILK obtains two orders of magnitude lower tail latency
than the auto-tuned RocksDB, and three orders of magni-
tude better than RocksDB and TRIAD, due to its combi-
nation of adjusting the I/O bandwidth and better internal
work scheduling. Similar to their behavior described in Sec-
tion 4, the tail latencies in RocksDB and TRIAD exhibit fre-
quent spikes, due to stalling and contention for I/O band-
width. The auto-tuned rate limiter in RocksDB achieves
one order of magnitude better tail latency than both TRIAD
and RocksDB, but does not avoid interference on shared re-
sources as effectively as SILK (see Figure 8A, third row).
The auto-tuner simply increases I/O bandwidth when there
is more internal work to do, and it is oblivious of user load.

Throughput in SILK stays close to the offered client load,
while throughput in RocksDB presents high fluctuations.
Client operations build up in the worker thread queues be-
cause of interference with internal operations. When they
can proceed, they are processed in bursts, which results in
throughput spikes. TRIAD and the auto-tuned RocksDB stay
closer to the offered client load, but still present throughput
fluctuations, correlated to increases in tail latency.

Figure 9 shows the number of times Cm cannot be flushed
right away (left) and the amount of time the writes are
stalled, relative to the duration of the experiment (right).
The statistics are collected for the experiment shown in Fig-
ure 8A. SILK never stalls writes and can always flush Cm
as soon as it fills up. TRIAD has the most problems flush-
ing Cm on time – the flush is delayed 69 times – because of
its L0 − L1compaction strategy. The auto-tuned version of
RocksDB does better, but it still spends a significant amount
of the time stalling writes, consisting of 1% of the total ex-
periment time.

0

50

100

150

200

18700 18750 18800 18850 18900

IO
 B

an
dw

id
th

 (
M

B
/s

)

Time (seconds)

Cronos Bandiwdth allocation

Client

Internal Operations

Client Load
Internal Operations

0

50

100

150

200

18700 18750 18800 18850 18900

IO
 B

a
n

d
w

id
th

 (
M

B
/s

)

Time (seconds)

Cronos Bandiwdth allocation

Client

Internal Operations

Time (s)
18700 18800 18900I/O

 B
an

dw
id

th

100

0

200

Figure 11: Detail of RocksDB-SILK I/O bandwidth alloca-
tion. SILK boosts internal work when client load decreases.

24h production workload. Figure 10 presents the 99th per-
centile latency and throughput time series of RocksDB-SILK
for a 24h run of our production workload. SILK maintains
stable performance over the extended period of time. Fig-
ure 11 shows a detail of the I/O bandwidth allocation in
RocksDB-SILK during 200s of the production workload. In-
ternal work may be temporarily postponed, but is eventually
completed in the long term. RocksDB-SILK compacts ap-
proximately 3TB of data over the 24h and never has more
than three compaction operations waiting to be scheduled.
The worker threads experience no write stalls and have less
than three operations enqueued throughout the experiment.

6.3 YCSB benchmarks
To evaluate the performance of SILK for a wide range of
workloads, we now present results with the the full YCSB
benchmark. From this point forward, we show results ob-
tained with TRIAD-SILK. We report that the results for
RocksDB-SILK are similar.
Workload description. YCSB provides six core workloads,
described in Table 1. We use 8B keys and 1024B values. We
evaluate SILK in the zipfian and uniform key distributions
and show that SILK reduces tail latency in write-dominated
workloads without inducing significant performance degra-
dation in other scenarios.
Results. Figure 12 shows the average throughput of TRIAD
and TRIAD-SILK, for the uniform (top) and zipfian (bot-
tom) key distributions. SILK has low impact on throughput
for both key distributions, amounting to at most 7%. As ex-
pected, SILK incurs the highest overhead for the uniform key
distribution for the write-dominated workloads (i.e., YCSB
F), because it entails frequent compactions and therefore fre-
quent scheduling interventions by SILK. Reads do not suffer
significantly compared to the baseline because of L0 read op-
timizations in TRIAD (and RocksDB): (1) there is a Bloom
filter for each L0 file, and (2) reads return after the KV tuple
is first found on L0, without checking all the L0 files. Be-
cause of these two optimizations, most of the time only one
L0 file is read. So, even if SILK postpones L0 – L1 com-
pactions, it has little impact on read performance. With a zip-
fian key distribution, most requests are served from memory
in the entire benchmark, leading to less compaction. Here,
SILK’s overhead is at most 4%. Similarly, read-dominated
workloads (YCSB B, C, D and E) are less impacted by com-

762 2019 USENIX Annual Technical Conference USENIX Association

Workload Description
YCSB A write-intensive: 50% updates, 50% reads
YCSB B read-intensive: 5% updates, 95% reads
YCSB C read-only: 100% reads
YCSB D read-latest: 5% updates, 95% reads
YCSB E scan-intensive: 5% updates, 95% scans;

average scan length 50 elements
YCSB F 50% read-modify-write, 50% reads

Table 1: YCSB core workloads description.

0
10
20
30
40
50

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

0
50

100
150
200
250

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

Th
ro

ug
hp

ut
(K

op
s/

s)
Th

ro
ug

hp
ut

(K

op
s/

s)

A. Uniform key distribution

B. Zipfian key distribution

SILK TRIAD

SILK
TRIAD

Figure 12: Average throughput of TRIAD and TRIAD-SILK
in YCSB. Using SILK has minimal impact on throughput in
read- and write- dominated workloads.

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

YCSB A YCSB B YCSB C YCSB D YCSB E YCSB F

A. Uniform key distribution

B. Zipfian key distribution

104

106

La
te

nc
y

(m
ic

ro
s)

104

106

La
te

nc
y

(m
ic

ro
s)

SILK 50p TRIAD 50p SILK 99p TRIAD 99p

Figure 13: Latency of TRIAD and TRIAD-SILK in YCSB.
Log-scale on Y-axis. SILK decreases 99p latency by two
orders of magnitude in write-dominated workloads, while
maintaining similar median latency across all workloads.

pactions, leading to less overhead (at most 5% in the uniform
key distribution).

Figure 13 shows the median and 99 percentile latency for
TRIAD and TRIAD-SILK. Generally, SILK’s median la-
tency is on par with that of TRIAD, or slightly lower. The
only workload where SILK experiences higher median la-
tency than TRIAD is YCSB E with a zipfian key distribution,
where SILK surpasses TRIAD by 5%. Tail latency is lower
with SILK across all workloads, by at least 5% (in YCSB
E). SILK’s benefits in terms of tail latency are most pro-
nounced in write-dominated workloads, where the latency
is decreased by up to two orders of magnitude.

6.4 Stress testing for long peaks
Workload description. In this section we focus on work-
loads in the style of YCSB core workload A (see Table 1),
where we vary the ratio between the length of the client load
peaks and valleys (gradually increasing peak duration, while
keeping valley duration constant). We use 8B keys, 1024B
values and a uniform key distribution. Client load during low
activity periods is approximately 10 Koperations/second and
approximately 40 Koperations/s during peaks. The offered
load is higher for both the peaks and the valleys than our
production workload, in order to stress the system.

Results. Figure 8B shows the 99th percentile latency (left)
and the throughput (right) of TRIAD-SILK. The first three
rows show a 50:50 write:read workload, where the ratio of
peak:valley length is varied: peaks last 10, 50, and 100 sec-
onds, while the valleys last 10 seconds. SILK easily sustains
these peaks and valleys in the client load, keeping tail latency
low and the throughput steady.

On the last two rows of the figure we show the results of
an experiment with a long peak, to see at what point SILK’s
performance starts to degrade. The fourth row shows the
results with a 50:50 write:read workload and the last row
with a 90:10 write:read workload. Despite the prioritiza-
tion of critical internal work, if the peak load is high and
the peak duration long, the system cannot allocate enough
resources to the internal work, and the performance eventu-
ally starts to degrade. Also, as expected, the proportion of
writes influences the amount of time the peaks can be sus-
tained. SILK’s performance starts to degrade at around 500
seconds (300 seconds of peak) for the 90% writes workload,
while the peak can be sustained up to around 700 seconds
(500 seconds of peak) for the 50% writes scenario. Despite
showing performance degradation, SILK is able to handle
challenging workloads that are representative of real appli-
cations. Our production workload has at most 400s peaks,
50% writes and load peaks reaching only half the load of the
synthetic workload peaks (Figure 10).

6.5 Breakdown
Figure 8C shows 99th percentile latency (left) and through-
put (right) for the following variants of SILK. The first row
shows a version where we enable SILK’s dynamic I/O band-
width rate limiting, but where the priorities and preemption
are disabled. The second row shows the complementary ver-
sion which uses priorities and preemption but where the I/O
bandwidth is not controlled. The final row shows SILK. On
their own, neither of the two techniques is able to sustain the
client load.

In the first case (top row), the dynamic bandwidth alloca-
tion ensures that internal and external work interference is
low. However, as the experiment progresses and larger com-
pactions need to take place, the urgent internal operations are
slowed down.

USENIX Association 2019 USENIX Annual Technical Conference 763

In the second case (middle row), good prioritization main-
tains the tree structure at the levels close to the memory com-
ponent, allowing flushes and L0 – L1 compactions to proceed
without slowdowns. However, as larger compactions need to
take place, the fact that the bandwidth is not controlled leads
to negative interference between internal and external work.

7 Related work

Reducing compaction overhead. Many systems reduce the
overhead of compaction algorithms used in production sys-
tems, such as RocksDB [18], LevelDB [14] and Cassan-
dra [30]. WiscKey [32], HashKV [10] and LWC-tree [44]
separate keys from values, and only store keys in the LSM
tree, reducing data movement in compaction operations.
TRIAD [4] keeps hot data in memory, avoids duplicate
writes of the log component, and compacts an SSTable only
when there is sufficient overlap with lower-level SSTables.
SlimDB [40] allows overlapping key-ranges on each level of
the LSM tree to reduce the amount of data that is rewritten,
and uses new index blocks and cuckoo filters to perform fast
key lookup. Monkey [12], Dostoevsky [13], Lim et al. [31],
Dong et al. [17] tune the parameters of the LSM tree, in order
to limit the amount of maintenance work and to achieve bet-
ter performance. Accordion [8] optimizes the layout of the
in-memory component by means of a hierarchical structure
and in-memory compactions. SifrDB [33] employs different
compaction algorithms on different levels of the LSM tree.

These techniques decrease the amount of work performed
during internal operations, with the result of increasing
throughput. However, they do not avoid the interference
with user operations while internal operations execute. By
contrast, SILK schedules internal operations so as to avoid
interference on user operations, thus avoiding latency spikes
for user operations and improving tail latencies. The tech-
niques of SILK can be applied to existing designs, thereby
preserving their improvements in terms of internal operation
overhead. We show this by applying SILK techniques on top
of two systems: RocksDB and TRIAD.

Compaction variants and alternatives. PebblesDB [39] al-
lows overlapping key ranges in the lower LSM tree levels to
avoid SSTable merges, and uses a skip-list-like structure to
allow efficient key lookups. PebblesDB achieves remarkable
performance, but its last-level compaction may lead to pro-
longed service unavailability (Section 4). SILK techniques
can be applied to PebblesDB to improve its robustness.

Tucana [38] and ForestDB [2] use variants of the B-ε
tree [6, 9, 27] and of the B+ tree, respectively. Unlike LSM
trees, these systems do not maintain large sorted files and
hence do not implement flushing and compaction. How-
ever, they implement operations such as leaf splitting, leaf
merging and tree re-balancing to preserve the structure of
the tree. These operations result in random accesses that in-

crease write amplification and affect the latency of user op-
erations by contending for I/O. SILK targets LSM tree-based
systems, which favor sequential I/O, absorb writes in mem-
ory, and leverage sorted SSTables for efficient range scans.

Ahmad and Kemme [1] offload compaction to a dedicated
server. Atlas [29] uses different servers to store keys and
values. Using a different server for compactions is an ef-
fective way to address latency spikes, since this approach
removes interference between client and internal operations.
However, this solution substantially changes the architecture
of the KV store from a standalone system to a distributed
one, which results in higher operational costs and increased
complexity. Moreover, the transfer of SSTables between the
compaction server and the client-facing servers puts addi-
tional load on the network, which can generate interference
on co-located applications.

Data structure and algorithm improvements. FloDB [5],
cLSM [24], HyperLevelDB [26], Nibble [35] and Be-
spoKV [3] improve scalability by alleviating contention bot-
tlenecks. NoveLSM [28] reduces logging overhead by sup-
porting in-place updates to a component stored on NVM, and
performs parallel reads. These techniques are orthogonal to
SILK’s. Minos [16] reduces tail latency for in-memory KVs
focusing on workloads with heterogeneous item sizes. To
this end, Minos serves similar-sized requests on the same
cores. Similar approaches could be implemented in LSM
KVs to further reduce tail latency in heterogeneous work-
loads, and they can co-exist with SILK. bLSM [41] aims to
avoid stalling at a level L of the tree by ensuring that opera-
tions at lower levels have completed by the time level L has to
push data to lower levels. bLSM achieves this goal by throt-
tling internal operation rates. bLSM, however, may throttle
user writes as the memory component fills up. Instead of
artificially throttling requests, SILK performs internal oper-
ations during off-peak periods, and prioritizes higher-level
internal operations to avoid stalling user operations.

8 Conclusion

In this paper we presented SILK, a new LSM KV store de-
signed to prevent client request latency spikes. SILK uses
an I/O scheduler to manage external client load and inter-
nal LSM maintenance work. We implemented SILK in
two state-of-the-art LSM KVs and demonstrated order-of-
magnitude improvements in latency at the 99th percentile in
synthetic and production workloads from Nutanix.

Acknowledgements. We would like to thank our shepherd,
Vijay Chidambaram, and the anonymous reviewers for all
their helpful comments and suggestions. This work was sup-
ported in part by the Swiss National Science Foundation
through grant No. 513954, an EcoCloud Postdoctoral Fel-
lowship, and by a gift from Nutanix, Inc. Part of the work has
been done while Oana Balmau was an intern at Nutanix.

764 2019 USENIX Annual Technical Conference USENIX Association

References

[1] AHMAD, M. Y., AND KEMME, B. Compaction Man-
agement in Distributed Key-value Datastores. In Pro-
ceedings of VLDB (2015).

[2] AHN, J., SEO, C., MAYURAM, R., YASEEN, R.,
KIM, J., AND MAENG, S. ForestDB: A Fast Key-value
Storage System for Variable-length String Keys. IEEE
Transactions on Computers 65, 3.

[3] ANWAR, A., CHENG, Y., HUANG, H., HAN, J.,
SIM, H., LEE, D., DOUGLIS, F., AND BUTT, A. R.
BespoKV: Application Tailored Scale-out Key-value
Stores. In Proceedings of SC18 (2018).

[4] BALMAU, O., DIDONA, D., GUERRAOUI, R.,
ZWAENEPOEL, W., YUAN, H., ARORA, A., GUPTA,
K., AND KONKA, P. TRIAD: Creating Synergies Be-
tween Memory, Disk and Log in Log Structured Key-
value Stores. In Proceedings of USENIX ATC (2017).

[5] BALMAU, O., GUERRAOUI, R., TRIGONAKIS, V.,
AND ZABLOTCHI, I. FloDB: Unlocking Memory in
Persistent Key-value Stores. In Proceedings of EuroSys
(2017).

[6] BENDER, M. A., FARACH-COLTON, M., JANNEN,
W., JOHNSON, R., KUSZMAUL, B. C., PORTER,
D. E., YUAN, J., AND ZHAN, Y. An Introduction to
Bε-trees and Write-optimization. ;login: 40, 5 (2015).

[7] BLOOM, B. H. Space/time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM
13, 7 (1970).

[8] BORTNIKOV, E., BRAGINSKY, A., HILLEL, E., KEI-
DAR, I., AND SHEFFI, G. Accordion: Better Memory
Organization for LSM Key-value Stores. In Proceed-
ings of VLDB (2018).

[9] BRODAL, G. S., AND FAGERBERG, R. Lower Bounds
for External Memory Dictionaries. In Proceedings of
SODA (2003).

[10] CHAN, H. H. W., LI, Y., LEE, P. P. C., AND XU, Y.
HashKV: Enabling Efficient Updates in KV Storage via
Hashing. In Proceedings of USENIX ATC (2018).

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings of
SoCC (2010).

[12] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S.
Monkey: Optimal Navigable Key-value Store. In Pro-
ceedings of SIGMOD (2017).

[13] DAYAN, N., AND IDREOS, S. Dostoevsky: Better
Space-time Trade-offs for LSM-tree Based Key-value
Stores via Adaptive Removal of Superfluous Merging.
In Proceedings of SIGMOD (2018).

[14] DEAN, J., AND GHEMAWAT, S. LevelDB. https:

//github.com/google/leveldb. visited Jan 2019.

[15] DELIMITROU, C., AND KOZYRAKIS, C. Amdahl’s
Law for Tail Latency. Communications of the ACM 61,
8 (2018).

[16] DIDONA, D., AND ZWAENEPOEL, W. Size-aware
Sharding for Improving Tail Latencies in In-memory
Key-value Stores. In Proceedings of NSDI (2019).

[17] DONG, S., CALLAGHAN, M., GALANIS, L.,
BORTHAKUR, D., SAVOR, T., AND STRUM, M. Opti-
mizing Space Amplification in RocksDB. In Proceed-
ings of CIDR (2017).

[18] FACEBOOK. RocksDB: A Persistent Key-value Store
for Fast Storage Environments. https://rocksdb.

org. visited Jan 2019.

[19] FACEBOOK. RocksDB Autotuned Rate Lim-
iter. https://rocksdb.org/blog/2017/12/18/

17-auto-tuned-rate-limiter.html. visited Jan
2019.

[20] FACEBOOK. RocksDB Benchmarking Tools.
https://github.com/facebook/rocksdb/wiki/

Benchmarking-tools. visited Jan 2019.

[21] FACEBOOK. RocksDB Level-based Compaction
Changes. https://rocksdb.org/blog/2017/06/

26/17-level-based-changes.html. visited Jan
2019.

[22] FACEBOOK. RocksDB Rate Limiter. https:

//github.com/facebook/rocksdb/wiki/

Rate-Limiter. visited Jan 2019.

[23] FACEBOOK. RocksDB Tuing Guide. https:

//github.com/facebook/rocksdb/wiki/

RocksDB-Tuning-Guide. visited Jan 2019.

[24] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL, E.,
AND KEIDAR, I. Scaling Concurrent Log-structured
Data Stores. In Proceedings of EuroSys (2015).

[25] HUA, Y., XIAO, B., VEERAVALLI, B., AND FENG,
D. Locality-sensitive Bloom Filter for Approximate
Membership Query. IEEE Transactions on Computers
61, 6 (2012).

[26] HYPERDEX. HyperLevelDB. https://github.com/
rescrv/HyperLevelDB. visited Jan 2019.

USENIX Association 2019 USENIX Annual Technical Conference 765

https://github.com/google/leveldb
https://github.com/google/leveldb
https://rocksdb.org
https://rocksdb.org
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://rocksdb.org/blog/2017/06/26/17-level-based-changes.html
https://rocksdb.org/blog/2017/06/26/17-level-based-changes.html
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB

[27] JANNEN, W., YUAN, J., ZHAN, Y., AKSHINTALA,
A., ESMET, J., JIAO, Y., MITTAL, A., PANDEY,
P., REDDY, P., WALSH, L., BENDER, M., FARACH-
COLTON, M., JOHNSON, R., KUSZMAUL, B. C.,
AND PORTER, D. E. BetrFS: Write-optimization in
a Kernel File System. ACM Transactions on Storage
(TOS) 11, 4 (2015).

[28] KANNAN, S., BHAT, N., GAVRILOVSKA, A.,
ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R.
Redesigning LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of USENIX ATC (2018).

[29] LAI, C., JIANG, S., YANG, L., LIN, S., SUN, G.,
HOU, Z., CUI, C., AND CONG, J. Atlas: Baidu’s Key-
value Storage System for Cloud Data. In Proceedings
of MSST (2015).

[30] LAKSHMAN, A., AND MALIK, P. Cassandra: A De-
centralized Structured Storage System. ACM SIGOPS
Operating Systems Review 44, 2 (Apr. 2010).

[31] LIM, H., ANDERSEN, D. G., AND KAMINSKY, M.
Towards Accurate and Fast Evaluation of Multi-stage
Log-structured Designs. In Proceedings of FAST
(2016).

[32] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. WiscKey: Separat-
ing Keys from Values in SSD-conscious Storage. In
Proceedings of FAST (2016).

[33] MEI, F., CAO, Q., JIANG, H., AND LI, J. SifrDB: A
Unified Solution for Write-optimized Key-value Stores
in Large Datacenter. In Proceedings of SoCC (2018).

[34] MEI, F., CAO, Q., JIANG, H., AND TINTRI, L. T.
LSM-tree Managed Storage for Large-scale Key-value
Store. In Proceedings of SoCC (2017).

[35] MERRITT, A., GAVRILOVSKA, A., CHEN, Y., AND
MILOJICIC, D. Concurrent Log-structured Memory
for Many-core Key-value Stores. In Proceedings of
VLDB (2017).

[36] O’NEIL, P., CHENG, E., GAWLICK, D., AND
O’NEIL, E. The Log-Structured Merge-tree (LSM-
tree). Acta Inf. 33, 4 (1996).

[37] OUSTERHOUT, J., AND DOUGLIS, F. Beating the I/O
Bottleneck: A Case for Log-structured File Systems.
ACM SIGOPS Operating Systems Review 23, 1 (1989).

[38] PAPAGIANNIS, A., SALOUSTROS, G., GONZÁLEZ-
FÉREZ, P., AND BILAS, A. Tucana: Design and
Implementation of a Fast and Efficient Scale-up Key-
value Store. In Proceedings of USENIX ATC (2016).

[39] RAJU, P., KADEKODI, R., CHIDAMBARAM, V., AND
ABRAHAM, I. PebblesDB: Building Key-value Stores
Using Fragmented Log-Structured Merge Trees. In
Proceedings of SOSP (2017).

[40] REN, K., ZHENG, Q., ARULRAJ, J., AND GIBSON,
G. SlimDB: A Space-efficient Key-value Storage En-
gine for Semi-sorted Data. In Proceedings of VLDB
(2017).

[41] SEARS, R., AND RAMAKRISHNAN, R. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceed-
ings of SIGMOD (2012).

[42] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S.,
ZHANG, C., AND CONG, J. An Efficient Design and
Implementation of LSM-tree Based Key-value Store on
Open-channel SSD. In Proceedings of EuroSys (2014).

[43] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie:
An LSM-tree-based Ultra-large Key-value Store for
Small Data. In Proceedings of USENIX ATC (2015).

[44] YAO, T., WAN, J., HUANG, P., HE, X., WU, F., AND
XIE, C. Building Efficient Key-Value Stores via a
Lightweight Compaction Tree. ACM Transactions on
Storage (TOS) 13, 4 (2017).

766 2019 USENIX Annual Technical Conference USENIX Association

	Introduction
	LSM KV background
	LSM KV architecture
	LSM KV operations
	State-of-the-art LSM-based systems

	Performance requirements for LSM KVs
	Experimental study of tail latency
	Experimental environment
	RocksDB
	Rate-limited RocksDB
	RocksDB with increased Cm
	TRIAD
	PebblesDB
	Lessons learned

	SILK
	SILK design principles
	SILK implementation
	Opportunistically allocating I/O bandwidth
	Prioritizing and preempting internal operations

	Evaluation
	Experimental setup
	Nutanix workload
	YCSB benchmarks
	Stress testing for long peaks
	Breakdown

	Related work
	Conclusion

