Understanding security mistakes
developers make: Qualitative analysis
from Build It, Break It, Fix It

Daniel Votipka

Kelsey R. Fulton
James Parker

Matthew Hou

Michelle L. Mazurek
Michael Hicks
University of Maryland
College Park, MD 20742, USA
dvotipka@cs.umd.edu
kfulton@cs.umd.edu
jprider@cs.umd.edu
mhoul@cs.umd.edu
mmazurek@cs.umd.edu
mwh@cs.umd.edu

Copyright is held by the author/owner. Permission to make digital or hard copies of all
or part of this work for personal or classroom use is granted without fee. Poster
presented at the 15th Symposium on Usable Privacy and Security (SOUPS 2019).
Copyright held by the owner/author(s).

SOUPS, '19 Santa Clara, California USA

ACM X-XXXXX-XX-X/XX/XX.

http://dx.d0i.org/xx.xxXxx/XXXxxXX.XXXXXXX

Abstract

Secure software development is a challenging task requir-
ing programmers to consider many possible threats and
mitigations. This paper investigates how and why program-
mers, despite having a baseline of security experience,
make security-relevant errors. To do this, we conducted an
in-depth analysis of 76 submissions to a secure program-
ming contest designed to mimic real-world constraints: cor-
rectness, performance, and security. In addition to writing
secure code, participants were asked to search for vulner-
abilities in other teams’ programs; in total, teams submitted
866 exploits against the submissions we considered. We
found that simple mistakes were least common: only 26%
of projects introduced such an error. Conversely, vulnerabil-
ities arising from a misunderstanding of security concepts
were significantly more common: 84% of projects intro-
duced at least one such error.

Author Keywords
Secure Software Development; Vulnerability Discovery;
Security Competitions

ACM Classification Keywords

H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous; See [http://acm.org/about/class/1998/]: for full
list of ACM classifiers. This section is required.


http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx
http://acm.org/about/class/1998/

Research Questions:

RQ1: What types of vulner-
abilities do developers intro-
duce? Are they conceptual
flaws in their understanding
of security requirements or
coding mistakes?

RQ2: How severe are the
vulnerabilities? If exploited,
what is the effect on the
system?

RQ3: How exploitable are
the vulnerabilities? What
level of insight is required
and how much work is nec-
essary?

Introduction

Producing secure programs is a difficult task. NIST’s Na-
tional Initiative for Cybersecurity Education framework high-
lights the size of the challenge developers face, outlining 44
distinct areas of knowledge necessary for secure develop-
ment [4]. Developers’ limited time and attention — e.g., for
security training, or for learning about and using new pro-
gramming and testing tools — implies the importance of
identifying the most critical and effective security interven-
tions to prioritize.

In this paper, we make progress on this issue by investigat-
ing how and why programmers, despite a baseline of secu-
rity experience, make security-relevant errors. To do this,
we carried out a systematic, in-depth examination vulnera-
bilities present in 76 projects sampled from submissions to
the Build it, Break it, Fix it' (BIBIFI) secure-coding competi-
tion series [5].

By studying code produced within security competitions, we
can identify patterns in how different teams make security
errors when approaching the same problem specification,
enabling insights that are difficult to obtain when examining
real-world programs with varying goals and requirements.
At the same time, the contest format — in which teams had
several weeks to build their project submissions, using any
languages or tools they preferred — provides more ecolog-
ical validity than lab studies in which developers complete
small, highly specified programming tasks.

Our rigorous manual analysis of this dataset identified
several interesting trends, with implications for improving
secure-development training, security-relevant APIs [1-3],
and tools for vulnerability discovery.

Thttps:/builditbreakit.org

Simple mistakes, in which the developer attempts a valid
security practice but makes a minor programming error,
were least common: only 26% of projects introduced such
an error. However, vulnerabilities arising from misunder-
standing of security concepts were significantly more com-
mon: 84% of projects introduced at least one such error.
Although these vulnerabilities were common, they proved
difficult to exploit: only 76% were exploited by other teams
(compared to 97% of simple mistakes), and our qualitative
labeling identified 32% as difficult to exploit (compared to
none of the simple mistakes).

Methods

We are interested in characterizing the vulnerabilities de-
velopers introduce when writing programs with security re-
quirements. In particular, we pose several research ques-
tions as can be seen in the sidebar on page 2.

Answers to these questions can provide guidance about
which interventions—tools, policy, and education—might

be (most) effective, and how they should be prioritized. To
obtain answers, we manually examined a sample of 76 BIB-
IFI projects (54% of all BIBIFI projects) and the 866 breaks
submitted against them. The ultimate codebook we devel-
oped provides labels for vulnerabilities—their type, severity,
and exploitability—and for features of the programs that
contained them.

Codebook

To measure the types of vulnerabilities in each project, we
characterized them across three variables as can be seen
in the sidebar on page 4.

Results
Our manual analysis of 76 BIBIFI projects identified 172
unique vulnerabilities. We categorized each based on our


https://builditbreakit.org

Unintuitive

Bad Choice

Conceptual Error

Figure 2: Classes of different
issues

self.db = self.sql.connect(filename, timeout=30)
self.db.execute ('pragma key="' + token + '";’)
self.db.execute (' PRAGMA kdf_ =

+ str(Utils.KDF_ITER) + ';')
self.db.execute (' PRAGMA cipher_use MAC = OFF;’)

o L

Figure 1: Team that had a conceptual error by turning off integrity
checks

codebook into 23 different Types. We also saw some inter-
esting relationships between vulnerability class and preva-
lence, severity, and likelihood to be exploited.

Classes

No Implementation A vulnerability type was classed as
No Implementation when a team failed to even attempt to
implement a necessary security mechanism, presumably
because they did not realize it was needed. This class is
further divided into the sub-classes All Intuitive, Some Intu-
itive, and Unintuitive. In the first two categories teams did
not implement all or some, respectively, of the requirements
that were either directly mentioned in the problem specifi-
cation or were intuitive The Unintuitive category was used
if the security requirement was not directly stated or was
otherwise unintuitive.

Misunderstanding A vulnerability type was classed as
Misunderstanding when a team attempted to implement a
security mechanism, but failed due to a conceptual misun-
derstanding. We sub-classed these as either Bad Choice
or Conceptual Error. An example of this can be seen in fig-
ure 1.

Mistake Finally, some teams attempted to implement the
solution correctly, but made a mistake that led to a vulner-
ability. The mistake class is composed of five subclasses:
insufficient error checking (P=12, V = 12), uncaught runtime

if (nonce in bank.nonceData):
raise Exception("ERROR:Reinyected package")

1 def checkReplay(nonce, timestamp):

2 First heck for tiemstamp delta

3 dateTimeStamp datetime.strptime (timestamp,
4 5Y-3m-%d $H:3M:%S.%f’

5 deltaTime = datetime.utcnow() - dateTimeStamp
6 if deltaTime.seconds > MAX_DELAY:

7 raise Exception("ERROR:Expired nonce ")
8 $The we check if it is in the table

9 global bank

0

1

Figure 3: Team that made a made a mistake by forgetting to save
the nonce

error (P=5, V=9), control flow mistake (P=5, V=10), skipped
algorithmic step (P=5, V=7), and null write (P=1, V=1). An
example of this can be seen in figure 3.

Prevalence
We observed a clear trend that teams often struggled to
completely understand security concepts.

Teams often did not understand security concepts We
found that both classes of vulnerabilities relating to a lack

of security knowledge—No Implementation and Misun-
derstanding —were significantly more likely to be intro-
duced than vulnerabilities caused by programming mis-
takes. These results indicate that efforts to address concep-
tual gaps should be prioritized. Focusing on these issues of
understanding, we make the following observations.

Unintuitive security requirements are commonly skipped
Of the No Implementation vulnerabilities, we found that the
Unintuitive subclass was much more common than its All
Intuitive or Some Intuitive counterparts. This indicates that
developers do attempt to provide security — at least when
incentivized to do so — but struggle to consider all the unin-
tuitive ways an adversary could attack a system.



Codebook:

Type: Characterizes the
underlying source of a vul-
nerability (RQ1)

Severity: Characterizes the
impact of a vulnerability’s
exploitation (RQ2) as either
a full compromise or a partial
one

Likelihood of exploitability
(RQ@3): Characterized us-
ing two variables, discovery
difficulty and exploit difficulty

 Discovery difficulty-
characterizes the
amount of knowledge
the attacker must have
to find the vulnerability

» Exploit difficulty-
describes the amount
of work needed to ex-
ploit the vulnerability
once discovered

Teams often used the right security primitives, but did
not know how to use them correctly Among the Mis-
understanding vulnerabilities, we found that the Conceptual
Error sub-class was significantly more likely to occur than
Bad Choice This indicates that despite knowing the the cor-
rect primitives to use, developers do not always conform to
the assumptions of "normal use" made by the library devel-
opers.

Complexity breeds Mistakes We found that complexity
within both the problem itself and also the approach taken
by the team has a significant effect on the number of Mis-
takes introduced. Mistakes were most common in the mul-
tiuser database problem and least common in the secure
log problem. Teams were 5.79x more likely to introduce
Mistakes in multiuser database than in the baseline secure
communication case. This effect likely reflects the fact that
the multiuser database problem was the most complex, re-
quiring teams to write a command parser, handle network
communication, and implement nine different access con-
trol checks.

Effect of Exploitation
To answer RQ2 and RQ3, we compare the severity and
likelihood of exploitation of the identified vulnerabilities.

Misunderstandings are hard to find Identifying Misun-
derstanding vulnerabilities often required the attacker to
determine the developer’s exact approach and have a good
understanding of the algorithms, data structures, or libraries
they used. As such, we coded Misunderstanding vulnera-
bilities as hard to find significantly more often than both No
Implementation and Mistake vulnerabilities.

No Implementations are easy to find Unsurprisingly, a
majority of No Implementation vulnerabilities were coded as

easy to find (V=41, 60% of No Implementations). None of
the All Intuitive or Some Intuitive vulnerabilities were coded
as difficult to exploit; however, 42% of Unintuitive vulnerabil-
ities were (V=19).

Mistakes are easy to find and exploit We coded Mis-
takes as easy to exploit significantly more often than either
No Implementation or Misunderstanding vulnerabilities.
Further, all Mistakes were coded as easy to exploit. Fortu-
nately, code review may be sufficient to find many of these
vulnerabilities: Mistakes were also found and exploited dur-
ing the Break It phase significantly more often than either
Misunderstanding or No Implementation with only one Mis-
take (0.03%) not found by any Break It team.

Conclusion

With the goal of understanding which security errors pro-
grammers tend to make and why, this paper has presented
a systematic, qualitative study of 76 program submissions
to the build it, break it, fix it secure programming contest.
Considering the 866 exploits against these submitted pro-
grams, we labeled 172 unique security vulnerabilities, ac-
cording to type, severity, and ease of exploitability as well
assecurity aligned project features. We found implemen-
tation mistakes were comparatively less common than fail-
ures in security understanding.Our results have implications
for improving APls and documentation, vulnerability-finding
tools, and security education.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1801545.

REFERENCES
1. Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L Mazurek, and



Christian Stransky. 2017. Comparing the usability of
cryptographic apis. In Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 154—171.

. Matthew Green and Matthew Smith. 2016. Developers
are not the enemy!: The need for usable security apis.
IEEE Security & Privacy 14,5 (2016), 40—46.

. Alena Naiakshina, Anastasia Danilova, Christian
Tiefenau, Marco Herzog, Sergej Dechand, and
Matthew Smith. 2017. Why Do Developers Get
Password Storage Wrong?: A Qualitative Usability
Study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications
Security. ACM, 311-328.

4. William Newhouse, Stephanie Keith, Benjamin

Scribner, and Greg Witte. 2017. NIST Special
Publication 800-181, The NICE Cybersecurity
Workforce Framework. Technical Report. National
Institute of Standards and Technology.

. Andrew Ruef, Michael Hicks, James Parker, Dave

Levin, Michelle L. Mazurek, and Piotr Mardziel. 2016.
Build It, Break It, Fix It: Contesting Secure
Development. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and
Communications Security (CCS ’16). ACM, New York,
NY, USA, 690-703. DOT :
http://dx.doi.org/10.1145/2976749.2978382


http://dx.doi.org/10.1145/2976749.2978382

	Introduction
	Methods
	Codebook

	Results
	Classes
	Prevalence
	Effect of Exploitation

	Conclusion
	Acknowledgements
	REFERENCES 

