

Seamless Interaction Across Roles

Abstract

The SAVIOR system demonstrates a virtual desktop

environment that partitions applications and data into

isolated Roles for security, which run in separate virtual

machines in the cloud. SAVIOR addresses two usability

issues with such an architecture: management of and

interaction with applications scattered across VMs in the

cloud, and secure information sharing across Roles.

First, its custom Desktop application unifies

presentation and interaction across Roles and provides

a user experience almost like running the applications

locally. The Desktop also provides a single interface for

starting and stopping installed applications. Second,

SAVIOR allows sharing data across Roles with familiar

clipboard operations and file sharing with single sign-on

to standard file servers, as permitted by the

administrator. For security, user credentials are never

shared with applications themselves or even the VMs

they reside in.

Author Keywords

hcisec; usability; cloud computing; malware; virtual

machines

ACM Classification Keywords

• Security and privacy~Usability in security and privacy

• Security and privacy~Malware and its mitigation •

Security and privacy~Virtualization and security •

Human-centered computing~Interactive systems and

Copyright is held by the author/owner. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted
without fee. Poster presented at the 15th Symposium on Usable Privacy

and Security (SOUPS 2019).

Chris Long

Sophie Kim

Chris Hill

Next Century

Falls Church, VA 22042, USA

chris.long@nextcentury.com

sophie.kim@nextcentury.com

chris.hill@nextcentury.com

Wole Omitowoju

Kyle Drumm

Kevin Aranyi

Next Century

Annapolis Junction, MD 20701,

USA

wole.omitowoju@nextcentury.com

kyle.drumm@nextcentury.com

kevin.aranyi@nextcentury.com

mailto:sophie.kim@nextcentury.com

tools • Computer systems organization~Cloud

computing

Introduction

Desktop computer security is still a big problem.

Malware, phishing, and intruders are still prevalent.

One reason for their success is that all applications run

with access to all file and applications the user has

access to. We have developed the SAVIOR system

(Secure Applications in Virtual Instantiations of Roles)

to leverage virtualization and cloud computing to

provide users with a more secure computing

environment that is still easy to use.

SAVIOR allow users to easily run unmodified

applications that have restricted access to resources,

including files, networking, and other applications.

Unlike other similar solutions, SAVIOR partitions

applications using separate virtual machines running in

the cloud, specifically Amazon Web Services (AWS)

Elastic Computing Cloud (EC2). The separation of

applications into roles limits their access to only the

resources available in that role. For example, an Email

Role that had only an email client installed (e.g.,

Thunderbird, Outlook) would not have access to the

web or to the user's sensitive documents. As others

have discussed, while not a panacea, this type of

compartmentalization will thwart many types of

malware and other threats.

The SAVIOR Desktop application provides a unified

interface for launching and seamlessly interacting with

applications running on multiple virtual machines and

operating systems, with a user experience nearly

identical to running applications locally (see Figure 1).

One challenge for partitioned systems such as this is

that users sometimes do need to share information

across these boundaries. To support this, SAVIOR

allows sharing across roles via SMB file shares (e.g.,

Windows, Samba) and clipboard copy & paste.

Related Work

SAVIOR was motivated in part by prior research

showing the need for security to be usable (e.g., [18]).

It also adheres to many of the principals for usability

security espoused by [18] and [2], such as: you can't

retrofit security, tools aren't solutions, and mind the

upper layers.

There are many mechanisms available today for

restricting application execution. These include

AppArmor [1] and SELinux [12], which both allow

policies at the level of specific programs and files.

Virtualization is also used for security, with systems

such as VirtualBox [23], VMWare [20], and Xen [4].

Several previous systems were designed to increase

security by limiting application actions while providing a

unified interface for interacting with them. Chameleon

[7] and Polaris [19], for example, run applications as

different users to restrict applications. WindowBox [3]

and Janus [6] used process-level protections. Bromium

uses "micro-virtual machines" [5]. Apiary [15] uses

containerization provided by the operating system and

a custom virtual layered file system. Qubes OS [17]

uses Xen domains. Unlike SAVIOR, none of these work

with cloud-based virtual machines, and only Qubes OS

supports multiple operating systems.

SAVIOR

SAVIOR was designed with the following goals:

Figure 1 Example SAVIOR

Session. Switching among Roles

is easy. For example, the

terminal from the Developer Role

and web browser from the Web

Browser Role are visible

simultaneously.

Web Browsing Role

Developer Role

▪ Easy to use, specifically by being as similar to the

standard desktop experience as possible.

▪ Support for existing Linux and Windows applications,

including Outlook and Microsoft Office.

▪ Secure by design, via role-based partitioning.

▪ Instrumented with sensors at multiple levels, to

provide data for security analytics.

▪ Integrated with enterprise infrastructure: Active

Directory authentication, single-sign-on access to file

shares and printers.

The overall architecture of SAVIOR is shown in Figure

2. Each user may be given access to any number of

Roles and may run as many of these at a time as

desired. Each Role can be run any number of Linux

and/or Windows applications. Each Role is instantiated

as a Xen hypervisor running on Amazon Elastic

Computing Cloud (EC2) and, if the Role includes

Windows applications, Windows and Windows Display

Server instances, also (see Figure 3). While a user's

applications are running, a CIFS Proxy allows

authorized Roles to access files on standard Windows

file servers. The Virtue Manager handles user

authentication to the system, user access to Roles, and

startup and shutdown of EC2 instances. Its features are

exposed as REST services, which can be secured with

https. Sensors run continuously and report many types

of events to the Sensor Servers, including file access,

running processes, and network activity. The level of

detail of their reports can be dynamically varied.

All network connections in SAVIOR are secured. A few

types of connections have their own security

mechanisms, such as with Active Directory. Those that

do not, such as Xpra, are secured by tunneling via ssh.

Desktop

The Desktop is the application users run to authenticate

to SAVIOR, start and stop applications, and interact

with running applications. As part of the overall SAVIOR

ease-of-use design goal, the Desktop presents each

application in its own top-level window, as if it were

running locally, similar to "seamless" mode in

VirtualBox or "unity" mode in VMWare Workstation.

This goal significantly restricted our choice of remote

protocol, because most remote protocols only support

full desktop remoting (e.g., VNC [16]). For Linux

applications, these constrained our choices to X [14]

and Xpra [24]. We chose Xpra because unlike X, it is

designed to work well over wide area networks. The

Desktop natively implements the Xpra protocol.

For Windows, only Microsoft's Remote Desktop Protocol

(RDP) [10] with the remote application extension [11]

fit our requirements. Although the server is not open

source, there are multiple open source clients (e.g.,

[21], [22], [25]). We considered either adding RDP

support directly to the SAVIOR Desktop, or adding an

intermediate computer running an RDP client and Xpra

server. We chose the RDP+Xpra approach for two

reasons. First, it required substantially less engineering.

Second, by using an intermediary, the Windows Display

Server, Windows applications remain running if there is

a network problem or the Desktop exits. The WDS runs

an Xpra server to which the Desktop connects and an

RDP client, connected to the Windows Application VM,

for each Windows application that is running.

CIFS Proxy

The CIFS (Common Internet File System [8]) Proxy

exists to satisfy two apparently contradictory goals: 1.

to allow users access files shared with them on existing

remote file servers using single-sign-on, and 2. to deny

the applications that use those files access to the user's

credentials for those files, thus limiting them to access

granted to their Role. To resolve this conundrum, the

CIFS Proxy acts as an intermediary between virtual

machines running user applications and the file servers

hosting the shared files. It connects to the file server

on the user's behalf and mounts the file share (i.e., a

specific set of shared files). It then exposes this share

only to virtual machines in roles that are allowed to

access the share, potentially with different permissions

(as configured by the system administrator). There is

exactly one Proxy for each logged-in user.

First, the Virtue Manager uses the username [9] and

password it received from the Desktop to obtain a

Kerberos [13] Ticket Granting Ticket (TGT) for the user

and from it a service ticket for the Proxy. It passes that

service ticket to the Proxy with a request to grant a role

access to a file share. The Proxy uses the service ticket

with Kerberos constrained delegation and Service for

User to Proxy (S4U2Proxy) [9] to get a service ticket

for the desired file server. The CIFS proxy is then able

to mount the file share. To provide access to the files to

the authorized virtual machines, the Proxy runs a

Samba server. To control access on a per-role basis,

the Proxy generates a unique username/password

combination for each role and sets permissions on the

exported Samba share to read only or read-write, as

specified by the system administrator.

Limitations

SAVIOR is a research prototype and so has several

limitations. One is the approximately five minutes it

takes to start a new Role instance. We are exploring

keeping hot spares and other avenues to reduce this

time. Also, operating on files across Roles is not as

convenient as it could be. It is possible with shared file

servers and via the clipboard, but direct access [7] [19]

would be better.

SAVIOR was designed specifically to run on AWS EC2.

Some components, such as the Desktop, are not

sensitive to the specific cloud technology, but others,

such as the Virtue Manager, have substantial ties to

virtual machine management. Creating new Roles

involves the manual construction of virtual machine

images that can be instantiated by the Virtue Manager.

We are developing tools to ease this process.

Conclusion

SAVIOR demonstrates a more secure virtual desktop

environment, in which applications are partitioned from

one another for security, but provide easy and familiar

access to these applications and allow straightforward

sharing of information among them, but under user

control and subject to administrator oversight.

Acknowledgements

We thank our colleagues at Virginia Tech and Two Six

Labs, and our sponsor, IARPA1.

1 The research is based upon work supported by the Office of the

Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA). The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the ODNI,
IARPA, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon.

Figure 3 Example SAVIOR Role.

Applications for both Linux

(LibreOffice, Gimp) and Windows

(Microsoft Excel and Word) are

available.

Legend

Xen

DHCP Unikernel
DomU

Dom0

Linux DomU

Sensors

Sensors

Windows VM

Linux VM

Windows
Display
Server

Sensors

RDP

EC2 Instance
SAVIOR

Component

References

[1] AppArmor. 2019. AppArmor.

[2] Dirk Balfanz, Glenn Durfee, Rebecca E. Grinter,

and D. K. Smetters. 2004. In Search of Usable

Security: Five Lessons from the Field. IEEE Secur.

Priv. 2, 5 (September 2004), 19–24.

DOI:https://doi.org/10.1109/MSP.2004.71

[3] Dirk Balfanz and Daniel R. Simon. 2000.

WindowBox: a simple security model for the

connected desktop. In Proceedings of the 4th

USENIX Windows Systems Symposium, 37–48.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. 2003. Xen and the Art

of Virtualization. In Proceedings of the Nineteenth

ACM Symposium on Operating Systems Principles

(SOSP ’03), 164–177.

DOI:https://doi.org/10.1145/945445.945462

[5] Bromium. 2019. Bromium Secure Platform.

[6] Ian Goldberg, David Wagner, Randi Thomas, and

Eric A. Brewer. 1996. A Secure Environment for

Untrusted Helper Applications Confining the Wily

Hacker. In Proceedings of the 6th Conference on

USENIX Security Symposium, Focusing on

Applications of Cryptography - Volume 6

(SSYM’96), 1–1. Retrieved from

http://dl.acm.org/citation.cfm?id=1267569.126757

0

[7] A. Chris Long and Courtney Moskowitz. 2005.

Security and Usability: Designing Secure Systems

That People Can Use. In Lorrie Faith Cranor and

Simson Garfinkel (eds.). O’Reilly Media, Inc., 336–

356.

[8] Microsoft. 2018. [MS-CIFS]: Common Internet File

System (CIFS) Protocol.

[9] Microsoft. 2018. [MS-SFU]: Kerberos Protocol

Extensions: Service for User and Constrained

Delegation Protocol.

[10] Microsoft. [MS-RDPBCGR]: Remote Desktop

Protocol: Basic Connectivity and Graphics

Remoting. Retrieved April 8, 2019 from

https://docs.microsoft.com/en-

us/openspecs/windows_protocols/ms-

rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c

[11] Microsoft. [MS-RDPERP]: Remote Desktop

Protocol: Remote Programs Virtual Channel

Extension. Retrieved April 8, 2019 from

https://docs.microsoft.com/en-

us/openspecs/windows_protocols/ms-

rdperp/83275957-2d0e-4c52-88d1-1b4c998c6bec

[12] National Security Agency. SELinux.

[13] Dr Clifford Neuman, Sam Hartman, Kenneth

Raeburn, and Taylor Yu. 2005. The Kerberos

Network Authentication Service (V5). RFC Editor.

DOI:https://doi.org/10.17487/RFC4120

[14] Adrian Nye. 1992. X Protocol Volume 0 R6. O’Reilly

Media. Retrieved April 8, 2019 from

http://shop.oreilly.com/product/9781565920835.d

o

[15] Shaya Potter and Jason Nieh. 2010. Apiary: easy-

to-use desktop application fault containment on

commodity operating systems. In Proceedings of

the 2010 USENIX conference on USENIX annual

technical conference, 8.

DOI:https://doi.org/10.5555/1855840.1855848

[16] Tristan Richardson, Quentin Stafford-Fraser,

Kenneth R. Wood, and Andy Hopper. 1998. Virtual

Network Computing. IEEE Internet Comput. 2, 1

(January 1998), 33–38.

DOI:https://doi.org/10.1109/4236.656066

[17] Joanna Rutkowska and Rafal Wojtczuk. 2010.

Qubes OS architecture. Invis. Things Lab Tech Rep

54, (2010). Retrieved from https://www.qubes-

os.org/attachment/wiki/QubesArchitecture/arch-

spec-0.3.pdf

[18] D. K. Smetters and R. E. Grinter. 2002. Moving

from the design of usable security technologies to

the design of useful secure applications. In

Proceedings of the 2002 workshop on New security

paradigms, 82–89.

DOI:http://doi.acm.org/10.1145/844102.844117

[19] Marc Stiegler, Alan H. Karp, Ka-Ping Yee, Tyler

Close, and Mark S. Miller. 2006. Polaris: Virus-safe

Computing for Windows XP. Commun ACM 49, 9

(September 2006), 83–88.

DOI:https://doi.org/10.1145/1151030.1151033

[20] VMware, Inc. 2003. VMware. Retrieved from

http://www.vmware.com/

[21] rdesktop is an open source UNIX client for

connecting to Windows Remote Desktop Services.

rdesktop. Retrieved April 8, 2019 from

https://github.com/rdesktop/rdesktop

[22] FreeRDP is a free remote desktop protocol library

and clients: FreeRDP/FreeRDP. FreeRDP. Retrieved

April 8, 2019 from

https://github.com/FreeRDP/FreeRDP

[23] Oracle VM VirtualBox. Retrieved April 8, 2019 from

https://www.virtualbox.org/

[24] xpra home page. Retrieved April 8, 2019 from

https://xpra.org/

[25] A feature rich Remote Desktop Application.

Retrieved April 8, 2019 from https://remmina.org/

	Abstract
	Author Keywords
	ACM Classification Keywords
	Chris Long
	Sophie Kim
	Chris Hill
	Wole Omitowoju
	Kyle Drumm
	Kevin Aranyi
	Introduction
	Related Work
	SAVIOR
	Desktop
	CIFS Proxy

	Limitations
	Conclusion
	Acknowledgements
	References

