Developers Are Users Too: Helping
Developers Write Privacy Preserving
and Secure (Android) Code

Duc Cuong Nguyen Yasemin Acar, Sascha Fahl
Saarland University CISPA, Saarland University
s9ddnguy@stud.uni-saarland.de acar,fahl@cs.uni-saarland.de

Michael Backes

CISPA and MPI-SWS, Saarland
University
backes@cs.uni-saarland.de

Copyright is held by the author/owner. Permission to make digital or hard copies of all
or part of this work for personal or classroom use is granted without fee. Poster
presented at the 12th Symposium on Usable Privacy and Security (SOUPS 2016),
June 22-24, 2016, Denver CO

Abstract

Despite security advice in the official documentation and
an extensive body of security research about vulnerabilities
and exploits, many developers fail to write secure code for
their Android apps. Oftentimes, Android code fails to ad-
here to secure best practices, leaving the apps vulnerable
to a multitude of attacks. Our approach focuses on identi-
fying these weak links in Android code and offering devel-
opers secure options in an Android Studio plugin similar to
a spell-checking mechanism known from text documents.
Instead of trying to identify vulnerable Android apps in ex-
isting markets, we can effectively prevent an app from be-
ing accidentally dangerous right at the development stage,
before it reaches users’ hands. We propose a formal and
direct support for developers in building secure Android ap-
plications. The usability of the tool is established in an on-
site developer problem discovery study, and its real world
use is put to the test in a telemetry study after its rollout to
interested Android developers.

Author Keywords
Android Best Practices; Developer Security; Usable Secu-
rity for Developers, Developers Support, Android Security

Introduction
Whenever developers are anything less than cautious and
knowledgeable and act accordingly, they put users’ privacy



and security at risk. Even in the absence of malicious inten-
tions by developers, benign failure to write privacy preserv-
ing or secure code can lead to applications that leave user
data vulnerable to leaks and attacks. Previous research
has found that many mobile apps have poorly implemented
privacy and security mechanisms, potentially because de-
velopers are inexperienced, distracted or overwhelmed [5].
Developers tend to risk users’ privacy and security by re-
questing more permissions than actually needed [11, 12],
not using TLS [9, 10] or cryptographic APlIs [7] correctly,
often using dangerous options for Inter Component Com-
munication [6], and fail to store sensitive information in pri-
vate areas. This behaviour frequently leads to the leakage
of private user information [8]. In addition to educating and
supporting end users with helpful transparent tools to help
them take action to preserve their privacy and protect their
security, we are convinced that it is important to admit that
developers are users too — and oftentimes lack the time or
understanding to always put their users’ privacy and secu-
rity first. By helping developers during the implementation
process, we directly improve the privacy and security of
users in ways that save them time and attention, offering
them solutions that are usually only accessible to power
users: Making code privacy preserving and secure.

Supporting developers in writing better code
We are developing a plugin for Android Studio. This plugin
guides Android application developers in scenarios that re-
quire them to make privacy or security relevant decisions.
We extracted pitfalls from the large body of research we ad-
dress in our Systematization of Knowledge [4] and privacy
and security best practices from Android’s official documen-
tation. Using static analysis techniques on our body of all
(some 1,4 million) free Android apps, we identify which pri-
vacy and security pitfalls occur in the wild. We map these
dangerous code choices to privacy and security preserving

@Ooverride

onCreate(Bundle savedInstanceState) {
.onCreate(savedInstanceState)
setContentView(R. layout. )
Toolbar toolbar = (Toolbar) findViewById(R.id.
setSupportActionBar(toolbar)

r
{
String address =
= URL(address)
1
This is an insecure HTTP connection, however a secure HTTPS connection is available. mo
¥ (MalformedURLException e) {
e.printStackTrace()

Figure 1: Our plugin detects a bad practice, highlights and warns
the developer.

@Override
onCreate(Bundle savedInstanceState) {
.onCreate(savedInstanceState)
setContentView(R. layout. )
Toolbar toolbar = (Toolbar) findViewById(R.id.
setSupportActionBar(toolbar)

{
String address =
URL = URL (address)
® Change http to https >

% Split into declaration and assignment »
(MalformedURLExcept.u: p v g

e.printStackTrace()

Figure 2: Our plugin suggests a quick fix.

@Ooverride
onCreate(Bundle savedInstanceState) {
.onCreate(savedInstanceState)
setContentView(R. layout. )
Toolbar toolbar = (Toolbar) findViewById(R.id.
setSupportActionBar(toolbar)

[

1
String address =
URL = URL(address) ;|

(MalformedURLException e) {
e.printStackTrace()

Figure 3: The developer uses our suggested quick fix.



code. In our Android Studio plugin, we scan the develop-
ers’ input for code that translates to less-than-ideal privacy
and security. Additionally, we detect whenever they paste a
code snippet and use our existing knowledge of freely ac-
cessible code snippets online to give our users unobtrusive
feedback about the privacy and security impact of their cho-
sen code snippet. With a usability similar to spell-checking,
we inform developers whether their choices are dangerous
(cf. Figure 1) and offer a preview of possibly better alterna-
tives (cf. Figure 2) that developers can choose to replace
the concerned code with by using a simple shortcut i.e. as
a quickfix (cf. Figure 3).

Evaluation plan

We offer users of our plugin the choice to opt into our teleme-
try feature that we use to quantify the usability and help-
fulness, but also the failures and limitations of our plugin.
More precisely, we design our plugin to gather bad prac-
tices’ information anonymously (e.g How many bad prac-
tices happen in a project, does the developer ever read our
warning message, how long did he spend to read, was a
provided quickfix applied). From this information, we will
gain a better understanding of how developers interact with
our plugin. Our prototype was well received by the research
and IT community present at Cebit 2016, a major interna-
tional IT fair that conveniently takes place in our vicinity.
When we asked developers to interact with our plugin pro-
totype, we witnessed firsthand the relief developers expe-
rienced when they were exposed to a usable and unob-
trusive way to making their code more privacy preserving
and secure. We are in close contact with the developers
interested in our plugin, and use their feedback to evalu-
ate and continuously improve the usability and feature set
of our plugin. Further more, during development, we are
conducting expert reviews with developers of Android apps.
Additionally, we are preparing a field study with Android ap-

plication developers to quantify our plugin’s contribution in
real world circumstances.

Android Studio Plugin

Android Studio is the official Integrated Development En-
vironment (IDE) for Android app development, based on
Intellid IDEA [2]. Therefore, we decided to implement our
approach as an Android Studio plugin, instead of a plugin
for Eclipse [1] or another IDEs. The IntelliJ IDEA platform
provides APls so we can inspect developers’ code in many
ways:

* Inspect new statement (e.g new URL("http:/google.
com");)

* Inspect declaration statement (e.g Random random;)

« Inspect assignment statement (e.g int x = random.nextInt();)

Having these APlIs helps us easily detect whenever devel-
opers write dangerous code in terms of security and pri-
vacy. For more complicated combinations of code, we use
secure information flow to back/forward track insecure code.
For example, when developers read the string from a pass-
word field and store the password on the external SD card,
our plugin will detect the dangerous code and give a warn-
ing message against this combination. Whenever a mistake
is detected, beside a warning message, we also provide
developer a concrete solution to correct their mistake. By
leveraging the quick-fix mechanism [3] of the IntelliJ plat-
form, we offer developers the option to use a single simple
short cut to replace the existing dangerous code by secure
code (e.g replace a TrustManager that accepts all certifi-
cates by certificate pinning).


http://google.com
http://google.com

Our contributions

Our Android Studio plugin helps developers to easily imple-
ment privacy and security best practices. With our plugin,
we are:

+ Protecting app users against leakage of personally
identifiable information by careless developers (e.g.
upgrading to secure and privacy preserving network
connections whenever possible).

Supporting (laymen) developers in selecting libraries
including but not limited to advertising, crash report-
ing and analytics libraries that provide an adequate
level of privacy protection for end users.

Supporting developers in choosing secure and pri-
vacy preserving cryptographic primitives and proto-
cols (e.g. using a strong symmetric cryptographic

algorithm, with the correct cipher mode and padding).

Preventing privacy leaks caused by unsafe storage
of sensitive user information (e. g. preventing the un-
encrypted storage of sensitive user information on an
external storage such as SD cards).

Protecting developers against the use of dangerous
code snippets pasted from StackOverflow and other
information sources.

Helping developers to write apps that protect their
users against user fingerprinting attacks (e.g. using
randomized identifiers instead of unique (hardware)
tokens).

Providing transparent interfaces and workflows to
help developers make effective privacy decisions.



REFERENCES

1.

2016. Eclipse. https://eclipse.org. (2016). [Online;
accessed: 2016-06-06].

2016. IntelliJ. https://www. jetbrains.com. (2016).
[Online; accessed: 2016-06-06].

2016. Quick-Fixes for Code Issues.
https://www.jetbrains.com/help/resharper/10.0/
Code_Analysis__Quick-Fixes.html. (2016). [Online;
accessed: 2016-06-06].

Yasemin Acar, Michael Backes, Sven Bugiel, Sascha
Fahl, Patrick McDaniel, and Matthew Smith. 2016a.
SoK: Lessons Learned From Android Security
Research For Appified Software Platforms. In
Proceedings of the 2016 IEEE Symposium on Security
and Privacy (SP ’16).

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L. Mazurek, and Christian Stransky.
2016b. You Get Where You're Looking For: The Impact
Of Information Sources On Code Security. In
Proceedings of the 2016 IEEE Symposium on Security
and Privacy (SP ’16).

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and
David Wagner. 2011. Analyzing Inter-application
Communication in Android. In Proc. 9th International
Conference on Mobile Systems, Applications, and
Services (MobiSys’11). ACM. DOI :
http://dx.doi.org/10.1145/1999995.2000018

Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. 2013. An Empirical Study of
Cryptographic Misuse in Android Applications. In Proc.

10.

11.

12.

20th ACM Conference on Computer and
Communication Security (CCS’13). ACM. DOI:
http://dx.doi.org/10.1145/2508859.2516693

William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. 2011. A Study of Android
Application Security. In Proc. 20th Usenix Security
Symposium (SEC’11). USENIX Association.
http://www.enck.org/pubs/enck-secll.pdf

Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgartner, Bernd Freisleben, and Matthew Smith.
2012. Why Eve and Mallory Love Android: An Analysis
of Android SSL (in)Security. In Proc. 19th ACM
Conference on Computer and Communication Security
(CCS’12). ACM. DOI:
http://dx.doi.org/10.1145/2382196.2382205

Sascha Fahl, Marian Harbach, Henning Perl, Markus
Koetter, and Matthew Smith. 2013. Rethinking SSL
Development in an Appified World. In Proc. 20th ACM
Conference on Computer and Communication Security
(CCS’13). ACM. DOI:
http://dx.doi.org/10.1145/2508859.2516655

A. Porter Felt, E. Chin, S. Hanna, D. Song, and D.
Wagner. 2011. Android Permissions Demystified. In
Proc. 18th ACM Conference on Computer and
Communication Security (CCS’11). ACM.

Adrienne Porter Felt, Helen J. Wang, Alexander
Moshchuk, Steve Hanna, and Erika Chin. 2011.
Permission Re-Delegation: Attacks and Defenses. In
Proc. 20th Usenix Security Symposium (SEC’11).
USENIX Association.


https://eclipse.org
https://www.jetbrains.com
https://www.jetbrains.com/help/resharper/10.0/Code_Analysis__Quick-Fixes.html
https://www.jetbrains.com/help/resharper/10.0/Code_Analysis__Quick-Fixes.html
http://dx.doi.org/10.1145/1999995.2000018
http://dx.doi.org/10.1145/2508859.2516693
http://www.enck.org/pubs/enck-sec11.pdf
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/2508859.2516655

	Introduction
	Supporting developers in writing better code
	Evaluation plan

	Android Studio Plugin
	Our contributions
	REFERENCES 

