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ctFS is a new file system that aims to exploit the char-
acteristics of byte-addressable persistent memory (PM)
so as to reduce file access overheads. It achieves these
gains by representing each file as a contiguous region of
virtual memory and leveraging memory management ab-
stractions and hardware to efficiently navigate the file. In
particular, translating an offset to a file address becomes a
simple arithmetic offset operation followed by a mapping
of the target virtual address to a physical address which
can be performed efficiently by the hardware MMU. This
translation incurs a fraction of the overhead of traditional
(e.g., extent-tree) index lookups in software.

Byte-addressable persistent memory (PM) fundamen-
tally blurs the boundary between memory and persis-
tent storage. For example, Intel’s Optane DC persistent
memory is byte-addressable and can be integrated as a
memory module. Its performance is orders of magni-
tude faster than traditional storage devices: the sequential
read, random read, and write latencies of Intel Optane
DC are 169ns, 305ns, and 94ns, respectively, which are
the same order of magnitude as DRAM (86ns) [7]. Many
new file systems for PM have emerged in recent years.
For example, Linux introduced Direct Access support
(DAX) for some of its file systems (ext4, xfs, and ext2)
that eliminates the use of the page cache and directly ac-
cesses PM using memory operations (memcpy()). Other
designs bypass the kernel by mapping different file sys-
tem data structures into user space to reduce the overhead
of switching into the kernel [3,4,8,10,15]. SplitFS, a state-
of-the-art PM file system, aggressively uses memory-
mapped I/O [8] for significantly improved performance.

With PM closing the performance gap between DRAM
and persistent storage, file access bottlenecks have shifted
from I/O to file indexing overhead. As shown in Figure 1,
the file indexing overhead can be as high as 45% of the to-
tal runtime on ext4-DAX for write workloads with many

append operations. Yet all existing file systems still rely
on traditional tree-based file indexing, first proposed by
Unix [13] in the 70s, when the speed of memory and disk
differed by several orders of magnitude. While memory-
mapped I/O (mmap()) can reduce indexing overheads [6],
it does not remove them, but only shifts their timing to
page fault handling or mmap() operations (when pre-fault
is used). Even with SplitFS, file indexing contributes to
62% of its runtime in append-heavy workloads. ctFS,
on the other hand, nearly eliminates file indexing over-
head, achieving 7.7x speedup against ext4-DAX and 3.1x
against SplitFS on the append workload (Figure 1).

An alternative to using index-structured files is to use
contiguous file allocation. While simple contiguous allo-
cation designs like fixed-size or variable-size partitions
are known [14], they face three major design challenges:
(1) internal fragmentation for fixed-size partitions, (2) ex-
ternal fragmentation for variable-size partitions, and (3)
file resizing. The only use of contiguous file allocation in
practice is in CD-ROM, where files are read-only [14].

ctFS addresses the challenges associated with contigu-
ous file allocation and exploits hardware for memory
translation. Its source code will be available at https:
//github.com/robinlee09201/ctFS. ctFS was de-
signed from the ground up with the following design
elements:

• Each file (and directory) is contiguously allocated in
the 64-bit virtual memory space. Hence we can lever-
age existing MMU hardware to efficiently perform
virtual-to-physical translation, even as the file needs
not be contiguous in the physical address space. 64-bit
virtual address spaces are so large that contiguous allo-
cation is practical for any existing system. Furthermore,
the virtual address space is carefully managed by using
a hierarchical layout of memory paritions, similar to
that of the buddy memory allocator [9], in which each
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partition is subdivided into 8 equal-size sub-partitions.
This design speeds up allocation, avoids external frag-
mentation, and minimizes internal fragmentation.

• A file’s virtual-to-physical mapping is managed using
persistent page tables (PPTs). PPTs have a structure
similar to that of regular, volatile page tables for virtual
addresses in DRAM, but they are stored persistently
on PM. Upon a page fault on an address that is within
ctFS’s region, the OS looks up the PPTs to create the
mappings in the DRAM-based page tables.

• Initially, a file is allocated within a partition whose
size is just large enough for the file. When a file out-
grows its partition, it is moved to a larger partition in
virtual memory without copying any physical persis-
tent memory. ctFS does this by remapping the file’s
physical pages to the new partition using atomic swap,
or pswap(), a new OS system call we proposed that
atomically swaps the virtual-to-physical mappings.

In ctFS, the translation from file offset to the physical
address now needs to go through the virtual-to-physical
memory mapping, which is no less complex than the con-
ventional file-to-block indexes. The key difference is that
page translation can be sped up by existing hardware sup-
port. Translations that are cached by TLB will be handled
transparently from the software and completed in one cy-
cle. In contrast, a file system’s file-to-block translation
can only be cached by software. Additionally, ctFS can
adopt various optimizations for memory mapping, such
as using huge pages, to further speed up its operations.

A limitation of ctFS is that we implement it as a user-
space, library file system that trades protection for per-
formance. While this maximizes performance by aggres-
sively bypassing the kernel, it sacrifices protection in
that it only protects against unintentional bugs instead of
intentional attacks. At the same time, we see no reason
why ctFS could not be implemented in the OS kernel.

Analysis of File Indexing Overhead

We analyzed the performance overhead of block address
translation in Linux’s ext4-DAX, the port of the ext4
extent-based file system to PM and in SplitFS [8] using
the six microbenchmarks listed in Table 1. The experi-
ments were performed on a Linux server with 256GB
Intel Optane DC persistent memory.

Figure 1 shows the breakdown of the completion time
of each benchmark. For ext4-DAX, we observe that in-
dexing overhead is significant in Append and Sequential
Write Empty (SWE), spending at least 45% of the total
runtime on indexing. In both cases, the index time in-

Table 1: Six microbenchmarks for evaluating file index-
ing overheads. Each operates on 10GB files. RR, RW
perform the reads/writes 2,621,440 times.

Append
Append 10 GB of data, 4KB at a time to an ini-
tially empty file

SWE
Sequentially write 10 GB of data, 1GB at a time,
to an initially empty file

RR & RW
Read/write 4KB at a time from/to a random (4KB-
aligned) offset of a previously allocated file

SR & SW
Sequentially read/write 10 GB of data, 1GB at a
time, from a previously populated file

cludes the time to build the index. For the random access
workloads, RR and RW, the proportion of time spent on
indexing is lower, but still considerable: at 18% and 15%
respectively.

Compared to ext4-DAX, SplitFS spends an even
higher proportion of the total runtime on indexing in the
Append (63%), SWE (45%), and RW workloads (38%),
even though its total runtime is shorter. This is because
SplitFS’s speedup further shifts the bottleneck and ex-
acerbates the indexing overhead. SplitFS splits the file
system logic into a user-space library (U-Split) and a
kernel space component (K-Split), where K-Split reuses
ext4-DAX. A file is split into multiple 2MB regions by U-
Split, where each region is mapped to one ext4-DAX file.
Both U-Split and K-Split participate in indexing: U-Split
maps a logical file offset to the corresponding ext4-DAX
file, and the ext4-DAX in K-Split further searches its
extent index to obtain the actual physical address.

To understand its indexing overhead in more detail,
consider the Append workload. SplitFS spends a total of
6.62s on indexing overhead. The majority (4.37s) comes
from the kernel indexing time during page fault handling.
SplitFS converts all read and write operation to memory
mapped I/O; hence an operation could trigger a page
fault, which in turn triggers kernel indexing. The time
spent in mmap() itself is smaller (1.39s). The remaining
0.84s comes from the indexing time in its user-space
component, U-split, spent on mapping a file offset to the
corresponding ext4-DAX file.

In comparison, ctFS successfully eliminates most of
the indexing time: in all six benchmarks, the vast ma-
jority (at least 97%) of the runtime is spent on I/O, in-
stead of indexing. As a result, it achieves a 7.7x speedup
against ext4-DAX and 3.1x against SplitFS on the Ap-
pend benchmark, whereas its average speedups on the
other benchmarks are 2.17x and 1.97x over ext4-DAX
and SplitFS, respectively.

Note that both SplitFS and ctFS have two modes, sync
and strict. The results in Figure 1 are from their sync
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Figure 1: Overhead breakdown for ext4-DAX, SplitFS, and ctFS using persistent memory.
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Figure 2: Architecture of ctFS. Each box represents a page.
Two partitions are shown. The file allocated in partition 1 uses
3 pages (green), and the file in partition 2 uses 5 pages. ctK
maintains virtual-to-physical page mappings in the persistent
page table (PPT).

mode, because it offers comparable crash consistency
guarantees to ext4-DAX. The results on strict mode,
which offers stronger crash consistency, as well as com-
parison with other research file systems like NOVA [16]
and pmfs [4], can be found in our FAST’22 paper [12].

Overview of ctFS

ctFS is a high-performance PM file system that directly
accesses and manages both file data and metadata in user
space. Each file is stored contiguously in virtual mem-
ory, and ctFS offloads traditional file systems’ offset-to-
block translations to the memory management subsystem.
In addition, ctFS provides an efficient atomic primitive
called pswap to ensure data consistency while minimiz-
ing double-writing. Write operations on ctFS are always
synchronous, i.e., writes are persisted on PM before the
operation completes; in fact, similar to Linux’s DAX PM
file systems, all writes are directly applied on PM without
being cached in DRAM.

ctFS’s architecture, shown in Figure 2, consists of two
components: (1) the user space file system library, ctU,

512GB

 PGD       PUD           PMD        PTE (sub-PMD)

64GB 8GB 1GB 128MB 16MB 2MB 256KB 32KB 4KB

L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Figure 3: Size of partitions at levels L0 to L9. PGD, PUD,
PMD, and PTE refer to the four levels of page tables in Linux
(from highest to lowest). An L9 partition aligns with PGD, i.e.,
its starting address has zero in all of the lower level page tables
(PUD, PMD, PTE); Similarly, L6-L8 partitions align with PUD,
whereas L3-L5 partitions align with PMD.

that provides the file system abstraction, and (2) the ker-
nel subsystem, ctK, that manages the virtual memory
abstraction. ctU implements the file system structure and
maps it into the virtual memory space. ctK maps virtual
addresses to PM’s physical addresses using a persistent
page table (PPT), which is stored in PM. Any page fault
on a virtual address inside ctU’s address range is handled
by ctK. If the PPT does not contain a mapping for the
fault address, ctK will allocate a PM page, establish the
mapping in the PPT, then copy the mapping from the
PPT to the kernel’s regular DRAM page table, allow-
ing virtual to PM address translation to be carried out
by the MMU hardware. When any mapping in the PPT
becomes obsolete, ctK will remove the corresponding
mapping from the DRAM kernel page table and shoot
down the mapping in the TLBs.

With this architecture, there is a clear separation of
concerns. ctK is not aware of any file system semantics,
which is entirely implemented by ctU using memory
operations.

File System Structure (ctU)

ctFS’s user-space library, ctU, organizes the file system’s
virtual memory space into hierarchical partitions to facil-
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Figure 4: Layout of ctFS in virtual address space. The space of an entire partition is reserved in the virtual memory space, whereas
the physical PM space is allocated on-demand based on the actual usage. Headers circled in the dashed-line reside on the same page.

itate contiguous allocations. The size of each partition at
a particular level is identical; and the size of a partition at
a particular level is 8x the size of the partitions at the next
lower level. Figure 3 shows the sizes of the ten levels
that ctFS currently supports. The lowest level, L0, has
4KB partitions, whereas the highest level, L9, has 512
GB partitions. ctFS can be easily extended to support
more partition levels, e.g. L10 (4TB), L11 (32TB), etc.

A file or directory is always allocated contiguously in
one and only one partition, and such that the partition is
of the smallest size capable of containing the file. For
example, a 1KB file is allocated in an L0 partition (4KB);
a 2GB file is allocated in an L7 partition (8GB).

We chose each next level to be 8x the size of the previ-
ous level because the boundary of the levels should align
with the boundary of Linux page table levels (Figure 3).
This enables the optimization during pswap we describe
later. Therefore, our only options for partition size dif-
ferences are: 2x (21), 8x (23), or 512x (29). We chose 8x
because 2x would be too small and 512x too large.

Figure 4 shows the layout of ctFS. The virtual memory
region is partitioned into two L9 partitions. The first L9
partition is a special partition used to store file system
metadata: a superblock, a bitmap for inodes, and the i-
nodes themselves. Each inode stores the file’s metadata
(e.g., owner, group, protection, size, etc.), and it contains
a single field identifying the virtual memory address
of the partition that contains the file’s data. The inode
bitmap is used to track whether an inode is allocated
or not. The second L9 partition is used for data storage.
Note that the 512GB allocated for an L9 partition is in
virtual memory; The physical pages underneath it are
allocated on demand.

Each partition can be in one of the three states: Allo-
cated (A), Partitioned (P), or Empty (E). A partition in
state A is allocated to a single file; a partition in state

P is divided into eight next-level partitions. We call the
higher level partition the parent of its eight next-level
partitions. This parent partition subsumes its eight child
partitions; i.e., these 8 child partitions are sub-regions
within the virtual memory space allocated to the parent.
For example, in Figure 4, an L9 partition in state P is
divided into 8 L8 partitions. The first L8 partition is also
in state P, which means it is divided into 8 L7 partitions,
and so on. In this manner, the different levels of partitions
form a hierarchy.

This hierarchy of partitions has three properties.
(1) For any partition, all of its ancestors must be in state
P; and any partition in the A or E state does not have
any descendants. (2) Any address in a partition is also
an address in the partitions of its ancestors; e.g., any L3
partition in Figure 4 is contained in its ancestor L4-L9
partitions. (3) The starting address of any partition, re-
gardless of its level, is aligned to its partition size; this
is the case as long as the top-level L9 partitions are 512
GB aligned.

ctU needs to maintain book keeping information for
each partition, such as its state, as well as information
that facilitates fast allocations. To store such metadata,
each partition in P-state has a header which contains the
state of each of its child partitions; ctU stores the header
directly in the first page of the partition for fast lookup
that does not involve indirections.

To speed up allocation, the header also has an
availability-level field that identifies the highest level
at which a descendent partition is available for alloca-
tion. For example, the availability-level of the L9 par-
tition in Figure 4 is 8 because this L9 partition has at
least 1 L8 child partition in E state. With this informa-
tion, when allocating a level-N partition, if a P partition’s
availability-level is less than N, ctU does not need to drill
down further to check its child partitions. This results
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in constant worst-case time complexity for allocating a
partition within an L9 partition and is far more efficient
than using bitmaps.

Because ctU places the header in the first page of a
partition in P state, its first child partition will also contain
the same header, and as a result, this first child partition
must also be in P state; it cannot be in the Allocated
state because the first page would need to be used for file
content. Therefore, a header page can contain the headers
of multiple partitions in the hierarchy. For example, in
Figure 4, the headers in the dashed circle are all stored
on the same page. This is achieved by partitioning the
header page into non-overlapping header spaces for each
level from L4-L9.

ctU does not allow partitions in levels L0–L3 to be fur-
ther partitioned, as the 4KB header space becomes much
more wasteful for smaller partition sizes. Instead, each
L3 partition (2MB) can only be partitioned as (1) 512 L0
child partitions, (2) 64 L1 child partitions, or (3) 8 L2
child partitions, as shown at the bottom of Figure 4. As
a result, there is only one header in each L3 partition that
is in state P, and it contains a bitmap to indicate the status
of each of its child partitions, which can only be in either
state A or E, but not P.

Kernel Subsystem Structure (ctK)

ctK manages the PPT and implements pswap(). The
structure of the PPT is identical to Linux’s 4-level page
table with two key differences: (1) It resides on PM and
is thus persistent; (2) It uses relative addresses for both
virtual and physical addresses, because ctFS’s memory
region may be mapped to different starting virtual ad-
dresses in different processes due to Address Space Lay-
out Randomization [2] [5], and hardware reconfiguration
could change starting physical address. Whereas each
process has its own DRAM page table, ctK has a single
PPT that contains the mapping of all virtual addresses
in ctU’s memory range (i.e., those inside the partitions).
The PPT cannot be accessed by the MMU, so mappings
in the PPT are used to populate entries in the DRAM
page table on demand as part of page fault handling.

ctK provides a pswap system call that atomically
swaps the mapping of two same-sized contiguous se-
quences of virtual pages in the PPT. It has the following
interface:

int pswap(void* A, void* B, unsigned int N,
int* flag);

A and B are the starting addresses of each page sequence,
and N is the number of pages in the two sequences. The
last parameter flag is an output parameter. Regardless
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Figure 5: An example of pswap. The shaded entries in the
page tables are the ones used to map the two-page arrays A
and B. The red and blue page table entries are the ones that
are modified by pswap. Before pswap, A maps to the red pages
and B maps to the blue pages, whereas after pswap A maps to
blue pages and B maps to red pages. The last 39 bits of A and
B’s address are shown at the bottom.
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Figure 6: Comparing the performance of pswap and memcpy.
Both the X and Y axis are log scale.

of its prior value, pswap will set *flag to 1 if and only
if the mappings are swapped successfully. ctU sets flag
to point to a variable in the redo log stored on PM and
uses it to decide whether it needs to redo the pswap upon
crash recovery. pswap also invalidates all related DRAM
page table mappings.

The pswap() system call guarantees crash consistency:
it is atomic, and its result is durable as it operates on PPT.
Moreover, concurrent pswap() operations occur as if
they are serialized, which guarantees isolation between
multiple threads and processes.

To optimize performance, pswap() avoids swapping
every target entry in the PTEs (the last level page table) of
the PPT whenever possible. Figure 5 shows an example
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where pswap needs to swap two sequences of pages - A
and B - each containing 262,658 (512×512+512+2)
pages. pswap only needs to swap 4 pairs of page table
entries or directories in the PPT (as shown in red and blue
colors in Figure 5), as all 262,658 pages are covered by
a single PUD entry (covering 512×512 pages), a single
PMD entry (covering 512 pages), and two PTE entries
(covering 2 pages).

Figure 6 shows the performance of pswap as a function
of the number of pages that are swapped. We compare
it with the performance of the same swap implemented
with memcpy that approximates the use of conventional
write ahead or redo logging that requires copying data
twice. The curve of pswap performance shows a wave-
like pattern: as the number of pages increases, the pswap
latency first increases and then drops back as soon as it
can swap one entry in a higher-level page table instead of
512 entries in the lower-level table. The two drop points
in Figure 6 are when N is 512 (mapped by a single PMD
entry) and 262,144 (mapped by a single PUD entry). In
comparison, memcpy’s latency increases linearly with the
number of pages. When N is 1,048,576 (representing
4GB of memory), memcpy takes 2.2 seconds, whereas
pswap only takes 62µs. However, when N is less than 4,
memcpy is more efficient than pswap.

There are two use cases of pswap. First, when a write
(append) triggers an upgrade to a larger partition or a
truncate triggers a downgrade, instead of copying the
file data from the old partition to the new partition, ctU
uses pswap to atomically change the mapping. Second,
pswap can be used to support atomic write on any amount
of data. To do so, ctU first writes the data to a staging
partition, and when the write is complete, it swaps the
newly written data to the memory region belong to the

target file.

Performance on Real-world Application

We evaluated ctFS on LevelDB [11], using the YCSB [1]
benchmark. (Microbenchmark results were shown in Fig-
ure 1.) YCSB includes six different key-value access
workloads, including update heavy (A), read mostly (B),
read only (C), read records that were recently inserted
(D), range query (E), and read-modify-write (F), as well
as two load workloads (A and E).

Figure 7 shows the performance of different PM file
systems on LevelDB using YCSB workload. ctFS outper-
forms all other file systems of comparable consistency
levels in every workload. ctFS achieves the most signif-
icant speedup in write-heavy workloads, Load A and E
and Run A, B, F. Among these write-heavy workloads,
ctFS-sync’s throughput is 1.64x of the throughput of
SplitFS-sync on average, with 1.82x in the best-case (in
Load E). Compared with ext4-DAX, ctFS-sync’s through-
put is 2.88x on average with 3.62x in the best case (in
Run A). In strict mode, ctFS’s throughput is 1.30x of
SplitFS on average, with 1.50x in the best-case (in Load
A). In comparison, ctFS’s speedups on read-heavy work-
loads are smaller. But it still achieves an average of 1.25x
- 1.36x speedup over ext4-DAX.
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