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Containers can suffer from poor performance because they
share kernel resources for I/O-intensive workloads. We have
developed user-level services that avoid system calls for
POSIX-style filesystem storage and networking. In this article
we explain the problems in current container systems, and
how our Diciclo framework allows a key-value storage engine
run faster over a distributed filesystem.

Containers are popular in the cloud landscape because they
offer flexible virtualization with low overhead. Although their
benefits follow from the native resource management of the
operating system, the improved isolation of the container
execution often requires hardware-level virtualization or rule-
based control. In particular, the persistent storage of container
images and data through the system kernel introduces several
isolation and efficiency issues. Examples include the sub-
optimal performance, security and fault-containment, or the
excessive use of processing, memory and storage resources.

The data-intensive applications depend on scalable stor-
age systems to handle their I/O requests. Along the I/O path,
the control and data operations face contention at multiple
layers of the shared network and storage infrastructure. A
process invokes the application host kernel to access the stor-
age servers backing the network filesystem or block volume.
The host kernel handles the I/O calls through the local page
cache and storage software stack. The storage servers serve
multiple clients with the shared page cache, kernel modules,
and storage device bandwidth of their local filesystems. The
application hosts and storage servers compete for the avail-
able bandwidth and buffer space of the network cards and
datacenter switch ports.

The network performance isolation has been previously
addressed by centrally controlled resource allocators, flow
endpoint rate limiters and congestion signaling protocols [7].
Promising techniques have also been introduced for the multi-
tenant storage isolation. Although the dynamic resource allo-
cation, kernel service replication and hardware virtualization
are actively explored as potential solutions, the multitenant
I/O handling through the operating-system kernel remains
challenging.

First, the kernel services consume resources (e.g., mem-
ory space, cpu time) that are inaccurately accounted to the
colocated processes due to the complex multiplexing or shar-
ing. Second, the kernel consumes resources that often exceed
the reservations of the tenants that cause the respective I/O
activities (e.g., cpu time of page flushing). Third, there are
consumable resources (e.g., software locks) that remain unac-
counted for due to their allocation complexity (e.g., arbitration
of synchronization instructions). Fourth, the kernel involve-
ment incurs implicit hardware costs (e.g., mode switch, cache
pollution, TLB flushes) that penalize unfairly the collocated
tenants regardless of the relative intensity of their I/O activity.

Additional inefficiencies arise in cloned containers running
on the same host. Indeed, their concurrent execution intro-
duces duplication in the utilized memory and storage space,
or the memory and I/O bandwidth. The multi-layer union
filesystems and block-based copy-on-write snapshots reduce
the waste of storage space. Yet, they do not always prevent
the duplication of memory space and memory or I/O band-
width at the host. Therefore, the resource contention and the
inflexible sharing of the system kernel reduces the container
I/O isolation and increases the resource duplication.

Current systems explicitly reserve resources for user-level
execution, but they are blurry in the allocation and fair ac-
cess of the kernel resources. Given the undesirable variability
consequences, we argue that the effective container isolation
requires two types of system support: first, the explicit al-
location of the hardware resources utilized at both the user
and kernel level; and second, the fair access to the kernel
operations and data structures.

In Diciclo, we target the end-to-end performance isolation
of the containerized data-intensive applications running on
a shared infrastructure by different tenants. We enable the
dynamic provisioning of scalable storage systems per ten-
ant through the Polytropon toolkit [2]. Polytropon includes
the libservice abstraction as a stackable user-level storage
component derived from existing I/O libraries [3]. Based on
the components of Polytropon, we build complex filesystem
services that implement the storage client of a host or the
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local filesystems of the storage servers. We apply the same
design pattern at either the client or the server to connect the
libservices of a tenant to the application or server container
processes through shared-memory interprocess communica-
tion.

Containers and existing storage options

Containers are a lightweight virtualization abstraction pro-
vided by the operating system of a host to isolate a group of
processes. They are typically supported by a userspace run-
time, and kernel control mechanisms for resource allocation
and isolation [6].

An image is a read-only set of application binaries and
system packages organized as a stacked series of file archives
(layers). It is made available from a registry running on an
independent machine. A new container is typically created on
the local storage of the host. The root filesystem is prepared by
copying an image and expanding it into a file tree under a pri-
vate directory. An additional writable layer is added over the
expanded image to enable file modifications by the container
execution. A storage driver of the container runtime allows
sharing image layers across different containers through a
union filesystem or snapshot storage.

A union filesystem offers a single logical view from multi-
ple stacked directories (branches) supporting copy-on-write
at the file level. The upper branch can be writable, while the re-
maining branches are read-only and shareable. The branches
are stored on a local filesystem, or a distributed filesystem
for scalability. Snapshot storage provides block-level copy-
on-write. It is implemented by either a local filesystem, a
local block device manager, or a remote block volume on
network-attached storage.

For the storage of application data, a container can mount
additional filesystems from the host (e.g., bind mount) or the
network (e.g., volume plugin). The host provides persistence
over a local or distributed filesystem. Alternatively, a volume
plugin can mount from network storage either a filesystem
or a block volume formatted with a local filesystem (e.g.,
Amazon EFS, EBS). The volume plugin is executed by the
container runtime with the necessary support from the kernel
(e.g., NFS kernel module). Finally, a container application
may access cloud object storage (e.g., Amazon S3) through a
RESTful API.

Applications access a filesystem with a system call that
involves I/O directly (e.g., open) or indirectly (e.g., exec). The
I/O requests are served inside the kernel or redirected from
the kernel to a user-level process (e.g., FUSE [8]). Another
option is to link an application to a library and implement the
I/O functionality at user level, either as part of the application
or at a different process over IPC.

Functional Requirements

The application hosts and storage servers require differ-
ent types of data, filesystems, sharing, caching or dedupli-
cation [3].

Container Storage Systems A storage system consists
of clients and servers, dynamically provisioned (e.g., root,
application) or permanently operated (e.g., registry) by the
provider. They serve the (i) image registry, (ii) the root filesys-
tems that boot the containers, or (iii) the application filesys-
tems with the application data. The image registry stores the
container images of the root or application filesystem servers,
and the applications. The root filesystem servers of a tenant
are launched by having their images copied from the registry.
The applications and filesystem servers are launched through
clients accessing their images from the root filesystem servers.
The application data is accessed through clients from the ap-
plication filesystem servers.

File-based vs Block-based Storage A network storage
client accesses the binaries or data in the form of blocks,
files, or objects. We focus on block-based or file-based clients,
which can efficiently serve the container storage needs. A
block-based client serves the block volume on which we run
a local filesystem. Treating entire volumes as regular files
facilitates common management operations, such as migra-
tion, cloning and snapshots, at the backend storage. Despite
this convenience, a block volume is only accessible by a sin-
gle host and incurs the overhead of mounting the volume
and running on it a local filesystem. In contrast, a file-based
client natively accesses the files from a distributed filesystem.
Multiple hosts directly share files through distinct clients, but
with the potential server inconvenience of managing applica-
tion files rather than volumes. The file-based or block-based
clients are widely used in container storage and we should
support them both.

Caching and Deduplication The root filesystems of a ten-
ant should be isolated and managed efficiently. The efficiency
refers to the storage space of the backend servers, the mem-
ory space of the container hosts, and the memory or network
bandwidth.

The block-based storage accommodates a root filesystem
over a separate block volume possibly derived from an image
template. The backend storage supports volume snapshots to
efficiently store the same blocks of different volumes only
once. Under the volume clients, a shared cache transfers once
the common volume blocks of the tenant over the network. A
separate cache in the root filesystem lets the container reuse
the recently accessed blocks without additional traffic to the
shared client cache.

Alternatively, the file-based storage accommodates a root
filesystem over a shared network filesystem accessed by the
client of the tenant. A separate union filesystem over each
root filesystem deduplicates the files of different container
clones to store them once at the backend. We transfer once to
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Figure 1: Typical approach for serving multiple tenants in
existing cloud infrastructures.

the host the common files of the root filesystems with a shared
cache inside the distributed filesystem client. The caching and
deduplication procedures described above can be similarly
applied to application filesystems.

Overview

We target the data-intensive applications running in a multi-
tenant cloud infrastructure. Both the applications and their
storage servers run in containers launched by an orchestration
system over images retrieved from a scalable storage sys-
tem. We introduce the Diciclo unified framework to provision
per tenant container storage systems with the following five
goals [3, 6]:

1. Isolation Improve the performance isolation and the
fault containment of data-intensive tenants colocated on
the same client machine.

2. Compatibility Provide native container access to scal-
able persistent storage through a backward-compatible
POSIX-like interface (e.g., open, fork, exec).

3. Efficiency Serve the root and application filesystems of
containers through the effective utilization of the proces-
sor, memory and storage resources.

4. Elasticity Permit the dynamic resource allocation per
tenant according to the configured reservations and uti-
lization measurements.

5. Flexibility Enable flexible tenant configuration of the
sharing and caching policies (e.g., files, consistency).

Our key idea is to move parts of the system kernel to user
level and provide separate instances of critical services to
each tenant on every machine. Accordingly, we introduce a
unified architecture that allows each tenant to run both the ap-
plications and I/O services at user level on per-tenant reserved
resources (e.g., cores, memory, ports) and avoid contention
with colocated entities. The cloud applications typically run
at client machines that access server machines over the data-
center network. In existing infrastructures, the applications
run inside containers over the shared operating system of
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Figure 2: Diciclo uses distinct user-level services per tenant
at both the client and server side of storage.

each client machine. Correspondingly, the server machines
run common services (e.g., distributed storage) that are shared
across the different tenants (Fig. 1).

In the Diciclo architecture, we recognize that both the ap-
plications and their remote services can fully run at user level
rather than relying heavily on the local system kernel (Fig. 2).
Essentially, both the client and server machines run the ap-
plication and the server processes in containers on resources
separately reserved for each tenant. The application and server
containers run at user level and access over user-level interpro-
cess communication their local services. The local services
themselves run at user level and provide access to local de-
vices, such as storage, network and accelerator cards. Thus,
we devote to each tenant its own application and server con-
tainers along with their interprocess-communication and local
services.

Diciclo achieves several benefits. (i) We offer more pre-
dictable behavior because each tenant depends on private re-
sources and software components. (ii) We achieve resilience
because we minimize the reliance on the common attack sur-
face of the operating-system kernel. (iii) We provide elasticity
because we can dynamically deploy the software infrastruc-
ture for each tenant. This includes not only the applications,
but also the client and server side of distributed storage sys-
tems and other facilities (e.g., storage engine, local filesystem,
network stack software).

Design

The container pool is a collection of containers and names-
paces on a machine from a tenant. The filesystem service is
a collection of user-level I/O services implementing a local
or network filesystem (Fig. 3). The libservice is a user-level
layer implementing a particular filesystem component. The
container engine is responsible to initiate the container pools
and allocate resources elastically according to the recorded
reservations and utilizations. A process obtains access to the
filesystem service through a preloaded or linked filesystem
library and communicates with the filesystem service over
shared memory.
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Figure 3: Diciclo provides a common framework for the im-
plementation of both the client and server services.

In order to achieve our goals, our design is based on the
following four principles [6]:

1. Dual interface Support common application I/O calls
through the filesystem library, and only use the kernel
for legacy software or system calls with implicit I/O.

2. Filesystem integration The libservices of a filesystem
instance interact directly with each other through func-
tion calls for speed and efficiency.

3. User-level execution The filesystem service and the de-
fault communication path both run at user level for iso-
lation, flexibility and reduced kernel overhead.

4. Path isolation A filesystem service isolates the storage
I/O of a container pool at the client side in order to reduce
the interference among the colocated pools of the same
or different tenants and improve their flexibility.

Libservices The libservice is a standalone component of
a filesystem service [3]. It provides a storage function, such
as caching, deduplication, key-value store, local filesystem,
network access to a file or block storage system. A libservice
is derived from an existing library that runs a storage function
at user level and makes it accessible through a POSIX-like
interface (e.g., FUSE, LKL, Rump).

An existing library cannot be used out-of-the-box as lib-
service for several reasons. First, if a library is linked or
preloaded directly to a process, it complicates the multipro-
cess sharing. Second, the I/O routing through the kernel (e.g.,
FUSE) introduces overheads from frequent mode switches
and memory copies. The cost is even higher if more than
one libraries are combined to a complex service. Third, the
I/O routing through the kernel causes the shared structure
contention that we strive to avoid. We overcome the above
limitations by separating the filesystem libraries from their
framework interface (e.g., FUSE). We port the library to an
independent libservice with POSIX-like I/O functions ex-
panded to include the libservice object as parameter without
dependencies from global variables. A filesystem service is

constructed from a list of stacked libservices, or a tree of
libservices more generally.

Client The client side serves the data-processing applica-
tions, the container engines that instantiate the application or
server containers of the tenants, and the orchestration system
that loads the container images to the root filesystem servers.
The filesystem service of an application filesystem provides
either (i) a shared cache with the client of a network filesys-
tem, or (ii) a shared local filesystem with cache on a network
block volume. On the other hand, the filesystem service of a
container root filesystem provides either (i) a union filesystem
on a shared network filesystem client with cache, or (ii) a
local filesystem with cache over a network block volume with
shared block cache.

Server The filesystem service of a storage server main-
tains data and metadata chunks on the local storage devices.
Depending on their I/O characteristics (e.g., size, rate), the
chunks can be stored over a single local filesystem, or a local
filesystem and a key-value store. Each local filesystem or
key-value store can have a separate cache. For fast recovery
from a crash, the received chunk updates can be appended to
the write-ahead log of the key-value store and the journal of
the local filesystem, or a write-ahead log over a common local
filesystem used for both the data and metadata. We can use
a separate libservice to implement each of the local filesys-
tem, key-value store, write-ahead log or journal. The server
processes communicate over shared memory with the filesys-
tem service and over the network with the clients. The server
processes and filesystem services run isolated in the container
pool of the tenant on the storage server machines.

Interprocess Communication (IPC) A filesystem service
is invoked by an application or server process through user-
level IPC to minimize mode switches and processor cache
stalls. The dual interface that we support, alternatively allows
an application to invoke regular system calls for increased
legacy compatibility. The user-level IPC component is im-
plemented with circular queues over shared memory inside
the IPC namespace of the container pool. We relax the order-
ing semantics of the queue items in order to combine high
concurrency with low latency [4]. The I/O requests of the
application and server processes are placed in the circular
queue to be extracted by the filesystem service. The request
passes through the top libservice of the filesystem service
before it will reach the local storage device or the network
client if necessary. The response is sent back without queue
involvement through a shared-memory buffer prepared by the
sender and referenced by the request. We have developed the
Asterope optimization methodology to achieve fast memory
copy through the specific architectural characteristics of each
system platform [5].

Local Resource Management The resource and device
management at each host critically isolate the container pools
running the applications, servers, and their libservices. The
resource reservation approximately guarantees a specified
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amount of cpu shares, memory space, local storage space,
and I/O bandwidth of local network or storage devices. The
resource management tracks the resources, accounts them to
processes and dynamically allocates them according to the
current reservation and utilization. The device management
provides protected operation of the local devices among the
processes of the colocated tenants.

For the resource and device management we rely on kernel
mechanisms, such as the Linux cgroups (v1/v2) and device
drivers. This decision is justified by the satisfactory accuracy
of their hardware resource accounting to user-level processes.
Based on the above kernel mechanisms, we build the filesys-
tem services and their interprocess communication running
at user level. Alternatively, it is possible to also manage the
network cards and storage devices directly from user level to
achieve high-performance access.

Example Storage Systems

Below we describe examples of container storage systems
that can be built from libservices. The clients and servers are
initiated by the container engines or the orchestration system.

Container image storage system is a registry of container
images maintained by the provider or a tenant. The server
stores image archive files over libservices for persistent local
storage with cache and block-level deduplication (e.g., ZFS).
The client uses a libservice for network storage access with
cache (e.g., NFS). The system distributes the container im-
ages of the root filesystem servers, the application filesystem
servers, or the applications.

Root filesystem storage system is dynamically provi-
sioned to boot the applications and application filesystem
servers. The server provides persistent local storage with
cache and block-level deduplication. It is based on libservices
of a local journaled filesystem (e.g., ext4) or a recoverable
key-value store (e.g., RocksDB). The client supports efficient
container cloning based on libservices of a union filesystem
(e.g., OverlayFS) over a shared network storage client and
cache (e.g., CephFS). Alternatively, it is built from the libser-
vices of the journaled filesystem with cache (e.g., ext4) on a
network block device (e.g., RBD) and a shared cache (e.g.,
Redis). A container engine starts a client in a pool to mount
the root filesystems of the containers running the applications
or the application filesystem servers.

Application filesystem storage system is dynamically
provisioned to serve the data-intensive or stateful applica-
tions. The server provides persistent local storage with cache
based on the libservice of a local journaled filesystem (e.g.,
ext4) or a recoverable key-value store (e.g., RocksDB). The
client libservice provides network storage access with cache
(e.g., CephFS).

Danaus Prototype The Danaus client [6] consists of the
filesystem library linked to each application, the filesystem
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Figure 4: Implementation of the Danaus user-level filesystem
client based on Diciclo.

services that handle the storage I/O, and the interprocess com-
munication that connects the applications with the services
(Fig. 4). The front driver of the filesystem library passes
the incoming requests at user level to the back driver of a
filesystem service over shared memory. A filesystem service
is a standalone user-level process that runs the filesystem in-
stances mounted to the containers. A filesystem instance is
implemented as a stack of libservices. Our prototype imple-
mentation currently supports the union libservice of the union
filesystem and the client libservice of the backend client. The
union libservice invokes directly the client libservice to serve
the branch requests without extra context switching or data
copying.

Performance Evaluation

Our testbed consists of two 64-core AMD-based servers run-
ning Debian Linux (kernel v4.9) [6]. The one hosts the ap-
plication containers and the other uses 7 Xen VMs with
ramdisk devices to run a Ceph [9] storage cluster. We run
the RocksDB storage engine independently in 32 container
pools of the same machine. Each pool is configured with
one container over 2 cores and 8GB RAM. The container
runs RocksDB with 64MB memory buffer and 2 compaction
threads. The pool uses a dedicated Ceph client to mount a pri-
vate root filesystem holding the files of both the container and
RocksDB. We measured the average put latency of RocksDB
for 1-32 pools over clients based on Danaus (D), FUSE (F)
or kernel (K) [6]. In Fig. 5a, D is faster than F and K up to
5.9x and 16.2x (32 pools). In another experiment, we run an
out-of-core read-intensive workload per pool. In Fig. 5b, D is
faster than F and K up to 1.4x and 2.2x (32 pools).

With extensive kernel profiling, we found that the kernel
path limits the tenant I/O isolation for two reasons. First,
the pools compete in the kernel on shared data structures
(e.g., filesystem metadata) causing excessive lock wait time.
Second, the I/O handling leads to kernel background activity
(e.g., dirty page flushing) on resources (e.g., cores) of pools
unrelated to the activity.
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Figure 5: Average latency of RocksDB put and get in scaleout
(a,b) and scaleup (c,d) settings of container pools.

We also explored a scaleup setting running multiple cloned
containers in a single pool. Each container runs a private
RocksDB instance. A container mounts its root filesystem
through a private filesystem instance consisting of a distinct
union filesystem and a shared Ceph client. The Ceph client
lets the containers share the lower read-only layer of their root
filesystem. We measured the RocksDB latency on Danaus
or different combinations of a union filesystem over a Ceph
client, each implemented in FUSE or inside the kernel (F/F,
F/K, K/K). With respect to put latency, D is faster than F/F,
F/K and K/K up to 12.6x, 3.9x and 3.6x, respectively (Fig. 5c).
In contrast, the get workload (Fig. 5d) leads to mixed results
with D up to 5.4x faster than F/F at 32 clones but up to 2x
slower than K/K at 2 clones.

We conclude that Danaus reduces the kernel lock con-
tention and resource consumption by running and accessing
at user level either a distinct client per container, or a shared
client across the cloned containers.

Related Work and Discussion

A library operating system (libOS) reduces the isolation de-
pendence from the kernel resource management because it
shifts functionality from the kernel to the user level (e.g.,
Demikernel [10]). Yet, the typical linking of a libOS to a
single process complicates the multiprocess state sharing of
typical applications. In a similar sense, a filesystem provides
flexible resource management when it is accessed through
the kernel but runs at user level. However, it sacrifices perfor-
mance and efficiency due to the extra data copying and mode
or context switching (e.g., FUSE [8]). The container isola-
tion and resource efficiency can be addressed with improved
scalability in the state management of the system kernel [1].

Nevertheless, refactoring the kernel for scalability is a long-
standing challenging problem.

As a pragmatic alternative, we relocate to user level both
the system functionality and the interprocess communication.
Our approach can be beneficial for a broad range of system
components, including the local and remote access to different
types of data storage, or the network communication.

Lessons Learned

We learned several lessons from our experience with the devel-
opment of Diciclo: (i) The system kernel can become hotspot
for the colocated containers. (ii) The user-level execution and
interprocess communication of filesystems improve perfor-
mance and isolation. (iii) The user-level implementation of a
filesystem service facilitates the code development because it
reduces the kernel dependencies. (iv) The user-level execution
of I/O services improves the latency and throughput stability
under contention conditions. (v) Danaus can provide an inte-
grated approach to serve both the root images and application
data of containers. (vi) In scaleout workloads, the colocated
tenants can be served by distinct user-level filesystems for
improved scalability, while in scaleup workloads avoiding
completely the kernel also prevents several overheads.
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