Supporting Undo and Redo in Scientific Data Analysis

Xiang Zhao^{UM}, Emery R. Boose[♥], Yuriy Brun^{UM}, xiang@cs.umass.edu, boose@fas.harvard.edu, brun@cs.umass.edu Barbara Staudt Lerner^M, Leon J. Osterweil^{UM} blerner@mtholyoke.edu, ljo@cs.umass.edu UMUniversity of Massachusetts Amherst MIC Mount Holyoke College

♥Harvard University

http://laser.cs.umass.edu

Scientific Data Analysis

Scientific data goes through a series of complex transformations.

- Transformations may be revisited as more information is available.
- Undo and redo happen often
 - Undo and redo should not cause restarting from scratch.
 - Intermediate computations need to be taken advantage of.

- Automatically records detailed process execution history
 - data creations and modifications
 - step execution sequences

- Automatically records detailed process execution history
 - data creations and modifications
 - step execution sequences

- Automatically records detailed process execution history
 - data creations and modifications
 - step execution sequences

- Automatically records detailed process execution history
 - data creations and modifications
 - step execution sequences

- Automatically records detailed process execution history
 - data creations and modifications
 - step execution sequences
- Extracts process state at any given point

- Automatically records detailed process execution history
 - data creations and modifications
 - step execution sequences
- Extracts process state at any given point
- **Undo**: The provenance overrides the current state with the retrieved state, and drives the process.

The Scenario

• The scientist decides to apply another model.

Our system will

• present the user with a visualization of the DDG.

The Scenario

• The scientist decides to apply another model.

Our system will

• present the user with a visualization of the DDG.

The Scenario

• The scientist decides to apply another model.

Our system will

• present the user with a visualization of the DDG.

The Scenario

• The scientist decides to apply another model.

- present the user with a visualization of the DDG.
- retrieve the appropriate execution state the scientist picks

The Scenario

• The scientist decides to apply another model.

- present the user with a visualization of the DDG
- retrieve the appropriate execution state the scientist picks

The Scenario

• The scientist decides to apply another model.

- present the user with a visualization of the DDG
- retrieve the appropriate execution state the scientist picks
- output the execution state vector and override the current state of the process.

The Scenario

- The scientist decides to apply another model.
- New model applied, evaluation suggests the quality control procedure needs to be reverted.

- present the user with a visualization of the DDG
- retrieve the appropriate execution state the scientist picks
- output the execution state vector and override the current state of the process.

The Scenario

- The scientist decides to apply another model.
- New model applied, evaluation suggests the quality control procedure needs to be reverted.

- present the user with a visualization of the DDG
- retrieve the appropriate execution state the scientist picks
- output the execution state vector and override the current state of the process.

The Scenario

- The scientist decides to apply another model.
- New model applied, evaluation suggests the quality control procedure needs to be reverted.

- present the user with a visualization of the DDG
- retrieve the appropriate execution state the scientist picks
- output the execution state vector and override the current state of the process.

The Scenario

- The scientist decides to apply another model.
- New model applied, evaluation suggests the quality control procedure needs to be reverted.

- present the user with a visualization of the DDG
- retrieve the appropriate execution state the scientist picks
- output the execution state vector and override the current state of the process.

Process Support for Undo/Redo

A detailed model of the process (using Little-JIL)

- guides the scientist in undoing and redoing previously executed work in the new context
- allows for tracking & examining the history as the scientist executes it
- manages dataflow and control flow in undo and redo
 - Undo: Identify a previously executed step and invoke Revert
 - Redo: Restore artifact values to previously executed step's values

Process Support for Undo/Redo

A detailed model of the process (using Little-JIL)

- guides the scientist in undoing and redoing previously executed work in the new context
- allows for tracking & examining the history as the scientist executes it
- manages dataflow and control flow in undo and redo
 - Undo: Identify a previously executed step and invoke Revert
 - Redo: Restore artifact values to previously executed step's values

The scientist needs to design the process beforehand

Complete Scientific Data Processing Process Definition

 ∇

Complete Scientific Data Processing Process Definition

 ∇

Undo Update Model Step Elaboration

• Revert step retrieves the execution state vector at a selected point.

Undo Update Model Step Elaboration

- Revert step retrieves the execution state vector at a selected point.
- Update Model step is redone, followed by another Evaluation.

Undo Update Model Step Elaboration

- Revert step retrieves the execution state vector at a selected point.
- Update Model step is redone, followed by another Evaluation.
- Exception handlers can be recursive to assist repetitive undo/redo.

Related Work

• Provenance Visualization

- Provenance Map Orbiter[Seltzer et al. TaPP '11] captures large provenance graphs and provides navigation mechanism.
- Navigation model for scientific provenance[Anand et al. WORKS '09].
- DDG takes advantage of Little-JIL's hierarchical structure
- Undo Mechanism
 - [Leeman TPLS '86] proposed a formal approach to undo operations.
 - Selective undo model [Berlage TCHI '94] provides the user with the ability to undo an arbitrary operation in history.
 - Our approach takes into account both control flow and data flow
- Undo in WFMSs
 - Kepler tolerates faults by providing check-pointing and forward recovery [Mouallem et al. SSDBM '10].
 - Self-healing Kepler (periodically constructing checkpoints) [Hary et al. HPDC '10].
 - Our approach is complementary and allows undoing work and trying a different strategy when the results are unsatisfactory

Contributions and Future Work

Contributions:

- Undo tasks while remembering old artifacts and consequences
- Modify a data-processing step without losing the history
- Automatically redo set-aside tasks that are consistent with the modification

Our approach is implemented as a command-line tool.

Future Work:

- User interface for browsing and querying the DDG
- Detect conflicts in redo operations