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Picture Gesture Authentication (PGA)

A built-in feature in Microsoft Windows 8

« 60 million Windows 8 licenses have been
sold

* 400 million computers and tablets will run
Windows 8 in one year



How PGA Works

Welcome to picture
password

Picture password is a new way to help
you protect your touchscreen PC. You
choaose the picture -- and the gestures
you use with it -- to create a password
that's uniquely yours.

When you've chosen a picture, you
"draw” directly on the touchscreen to
create a combination of taps, straight
lines, or circles. The size, position, and
direction of your gestures become part
of your picture password.
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How PGA Works

* Three types of gestures are allowed
* Tap
* Circle
* Line

Set up your gestures

Draw three gestures on your picture.
You can use any combination of circles,
straight lines, and taps.

Remember, the size, position, and
direction of your gestures -- and the
ord hich you make them
become part of your picture password
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Research Questions

|. How to understand user-choice patterns in
PGA!
* Background Pictures
* Gesture Location
* Gesture Type
* Gesture Order

2. How to use these patterns to guess PGA
password!?



Outline

Part |: Analysis of more than 10,000 PGA
passwords collected from user studies

Part 2: A fully automated attack framework on
PGA

Part 3: Attack results on collected passwords



Part |: User Studies

|. Web-based PGA system
* Similarity to Windows PGA
*  Workflow

* Appearance
2. Data collection
3. Analysis: survey and results



Part |: User Studies
* Dataset-
*  ASU undergraduate computer security class (Fall 2012)
* 56 participants
* 58 unique pictures
* 86 passwords

2,536 login attempts
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Part |: User Studies

Dataset-2
* Scenario:The password is used to protect your bank
account

*  Amazon MTurk
* |5 pictures selected in advance

* 762 participants

10,039 passwords

243 jpg 316.jpg
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Part |: User Studies

* Survey questions
* General information of the subject
* General feeling towards PGA
* How she/he selects a background picture

* How she/he selects a password
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Part |: User-choice Patterns
Background Picture

People, Civilization, Landscape, Computer-generated, , Others

Dataset- | Dataset-2 Survey
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Part |: User-choice Patterns
Why or why not picture of people

* Advocates:

i) it is more friendly
‘The image was special to me so | enjoy seeing it when | log in’

ii) it is easier for remembering passwords
‘Marking points on a person is easier to remember’

iii) it makes password more secure
‘The picture is personal so it should be much harder for someone to guess the
password’

 Others:
i) leak his or her identify or privacy
‘revealing myself or my family to anyone who picks up the device’
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Part |: User-choice Patterns
Background Picture

People, Civilization, Landscape, Computer-generated, , Others

Dataset- | Dataset-2 Survey

045 0s -

0.45 - 0.45+

=
=

0.4+

Percentage
- - -
— = b = i
m 2 m [WH} m
Percentage
] ]
(] ] LT

=
—
=

0.0a 0.0s

2 5
Picture Category Picture Category

2 5




Part |: User-choice Patterns

Why computer-generated pictures

* Dataset-| population characteristics:
* 81.8% Male
* 63.6% Age 18-24, 24.0% Age 25-34
* [00% College students

* Survey answers:

* ‘computer game is something | am interested [in] it’
* ‘computer games picture is personalized to my interests and enjoyable to
look at’

15



Part |: User-choice Patterns

Why computer-generated pictures

The background picture tells much about

the user's identity, personality and interests.
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Part |: User-choice Patterns

Gesture Locations

Which of the following best describes what you are
considering when you choose locations to perform

gestures!

Dataset-1 Dateset-2
| try to find locations where special objects are. 72.7% 59.6%
| try to find locations where some special shapes 24.29% 21.99%
are.
| try to f||.1d Iocatlon.? where colors are different 0% 8.79%
from their surroundings.
| randomly choose a location to draw without 3.0% 10.1%

thinking about the background picture.
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Part |: User-choice Patterns

Gesture Locations

Most users tend to draw passwords on
Points-of-Interest (Pols) in the background
picture.
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Part |: User-choice Patterns

Gesture Locations (Picture of People)

* Dataset-|
* 22 subjects uploaded 27 pictures of people
* 3| passwords (93 gestures)

Attributes # Gesture # Password # Subject

Eye ‘ 36 (38.7%) H 20 (64.5%) H 19 (86.3%)

Nose 21 (22.5%) 13 (48.1%) 10 (45.4%)
Hand/Finger 6 (6.4%) 5 (18.5%) 4 (18.2%)
Jaw 5 (5.3%) 3 (11.1%) 3 (13.7%)

Face 4 (4.3%) 2 (7.4%) 2 (9.1%)
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Part |: User-choice Patterns

Gesture Locations (Civilization)

* Dataset-|
* Two versions of Starry Night uploaded by two participants
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Part |: User-choice Patterns

Gesture Locations (Civilization)

* Dataset-|
* Two versions of Starry Night uploaded by two participants

Gesture |:Tap a star Gesture |:Tap a star
Gesture 2:Tap a star Gesture 2:Tap a star
Gesture 3:Tap a star Gesture 3:Tap a star
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Part |: User-choice Patterns

Gesture Locations (Civilization)

e Dataset-|

* Two versions of Starry Night uploaded by two participants

Users have the tendencies to choose Pols
with the same attributes to draw on.
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Part |: User-choice Patterns
Windows PGA Advertisements

Asia
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Part |: User-choice Patterns
Windows PGA Advertisements

Asia

Circle an
eye

Circle an
eye

Circle an
ear
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Part |: User-choice Patterns
Windows PGA Advertisements

Circle an
eye

i Circle an
Asia
eye
-
8
South .

America

Circle an
ear




Part |: User-choice Patterns
Windows PGA Advertisements

Asia

South
America

Circle an
eye

Circle an
eye

Line an arm

Circle an
ear

Circle a
head

Line an arm
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Part |: User-choice Patterns
Windows PGA Advertisements

Asia

South
America

Europe

Circle an
eye

Circle an
eye

Line an arm

Circle an
ear

Circle a
head

Line an arm




Part |: User-choice Patterns
Windows PGA Advertisements

Asia

South
America

Europe

Circle an
eye

Line an arm

Line an arm

Circle an Circle an
eye ear
Circle a T
ine an arm
head
Circle a Circle a
head head

26



Part 2: Attack Framework

* To generate dictionaries that have potential passwords
*  Picture-specific dictionary
* Rank passwords with likelihood

*  Work on previously unseen pictures

* Our approach

* Automatically learns user-choices patterns in the training
pictures and corresponding passwords

* Then applies these patterns to the target picture for
dictionary generation
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Part 2: Attack Framework

Selection Function

e Selection function

* Models the password creating process that users
go through

* Takes two types of parameters
* Gesture type, such as tap, circle, line
* Pol attribute, such as face, eye, ...

* Generates a group of gestures
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Part 2: Attack Framework

Selection Function (Examples)

s :{tap,circle,line} x Pol Attributes”

s(circle, face)
Circle a face in the picture

s(line, nose, nose)
Line a nose to another nose in the picture

s(tap, nose)
Tap a nose in the picture
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Part 2: Attack Framework

Extract Selection Functions

Password

Xl S
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Part 2: Attack Framework

Extract Selection Functions
circle Password

Al
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Part 2: Attack Framework

Extract Selection Functions

Password

Function |: s(circle ,face)
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Part 2: Attack Framework

Extract Selection Functions

Password
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Part 2: Attack Framework

Extract Selection Functions

Password

Function 2: s(line, nose, nose)
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Part 2: Attack Framework

Extract Selection Functions

Password
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Part 2: Attack Framework

Extract Selection Functions

Password

Function 3: s(tap, nose)
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Part 2: Attack Framework
Apply Selection Functions
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s(circle, face)
Output: 4 gestures
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Part 2: Attack Framework
Apply Selection Functions
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s(line, nose, nose)
Output: |2 gestures
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Part 2: Attack Framework
Apply Selection Functions

Function 3:
s(tap, nose)
Output: 4 gestures
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Part 2: Attack Framework
Apply Selection Functions

AT B

Number of potential passwords: 4% 12x4 = |92
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Part 2: Attack Framework

Rank Selection Functions

|. BestCover algorithm
* Derived from emts (Zhang et al., CCS’|0)

* Optimizes guessing order for passwords in the
training dataset

2. Unbiased algorithm

e Reduces the biased Points-of-Interest distributions
in the training set
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Part 3:Attack Results
Automatically Identify Pols

* OpenCV as the computer vision framework
* Object detection
* Face, eye, nose, mouth, ear, body
* Low-level feature detection
* Circle
* Color
* Objectness measure: Alexe et al. (TPAMI’|2)

* Other standout regions
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Part 3: Attack Results

Points-of-Interest Sets

 Pols of Dataset-|
Pi_4o* Identified by OpenCV
40 Pols at most

e Pols of Dataset-2
P%_,,¢ Identified by OpenCV
e 40 Pols at most

e Pols of Dataset-2
Manually labeled
e |5 Pols at most
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Part 3: Attack Results
Methodology

* Guessability on passwords of previously unseen
pictures

* Dictionary size: 2|9 = 524,288
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Part 3: Attack Results
Dateset-| vs. Dateset-2
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Part 3: Attack Results

BestCover vs. Unbiased

~9400 training passwords
BestCover 24.03% Unbiased 24.09%
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Part 3: Attack Results

BestCover vs. Unbiased

60 training passwords
Unbiased 23.44%
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Part 3:Attack Results
Labeled Pol set vs. OpenCV-Ildentified Pol set
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Part 3:Attack Results
Simple Pictures (Unbiased algorithm)
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Part 3:Attack Results
Portraits (Unbiased algorithm)

Number of Passwords Cracked
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Part 3:Attack Results
Complex Picture (Unbiased algorithm)
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Part 3: Attack Results
Online Attacks on Dataset-2

Number of Passwords Cracked
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PGA Password Strength Meter

e https://honeyprojectl.fulton.asu.edu/stmidx

* BestCover algorithm

* Generate dictionary and calculate strength in 20
seconds ‘
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https://honeyproject1.fulton.asu.edu/stmidx

Summary and Future Work

*  We have presented an analysis of user-choice
patterns in PGA passwords

*  We have proposed an attack framework on PGA

*  We have evaluated our approach on collected
datasets

*  We plan to improve online attack results by
integrating shoulder-surfing and smudge attacks into
our framework
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Thank you!
Q&A



