
Control-Flow Integrity For
COTS Binaries

Mingwei Zhang and R. Sekar
Stony Brook University
USENIX Security 2013

Work supported in part by grants from AFOSR, NSF
and ONR

Talk Outline

Motivation

Static analysis

Binary instrumentation

CFI properties and metric

Evaluation

Summary

Background

What is Control-Flow Integrity?

• Program execution follows a statically-

constructed control-flow graph (CFG)

Why CFI?

• a foundation for other low-level code defenses,

e.g., SFI, sandboxing untrusted code, …

• defeats low level attacks on binaries

• Code injection, ROP, JOP, …

• deterministic, not probabilistic defense

Motivation for this work

• Many previous works closely related to CFI

• CFI [Abadi et al 05, Abadi et al 2009, Zhang et al 2013]

• Instruction bundling [MaCamant et al 2008, Yee et al 2009]

• Indexed Hooks [2011], Control-flow locking [Bletsch et al 2011]

• MoCFI [Davi et al 2012], Reins [Wartell et al 2012]…

• Require compiler support, or binaries that

contain relocation, symbol, or debug info

• Do not provide complete protection

• Leave out executable, libraries, or the loader

• Have a difficult time balancing strength of

protection and compatibility with large binaries

Preview of Results

• Robust on large and low-level binaries

� glibc, gimp-2.6, adobe reader 9, firefox 5

� executables as well as libraries

• Compatible yet strong policy

� 93% of ROP/JOP gadgets

• Good performance

� ~10% on CPU-intensive C/C++ benchmark (SPEC 2006),

(~4% if restricted to C-programs)

• Limitations

� Does not support obfuscated binaries or malware

� No runtime code generation or JIT (yet)

� Implemented for 32-bit Linux, tested with gcc and LLVM

Key Challenges

• Disassembly and Static analysis of COTS binaries

• Robust static binary instrumentation

• Without breaking low-level code

• Transparency for position-independent code, C++

exceptions, etc.

• Modular instrumentation

• Applied to executables and libraries

• Enables sharing library code across many processes

• Assess compatibility/strength tradeoff

Disassembly Errors

● Disassembly of non-code

● Tolerate these errors by leaving original code in place

● Incorrect disassembly of legitimate code

● Instruction decoding errors (not a real challenge)

● Instruction boundary errors

● Harmful – our technique geared to find and repair them

● Failure to disassemble (we avoid this)

Disassembly Algorithm

1 Linear disassembly

2 Error detection

• invalid opcode

• direct jump/call outside module address

• direct control into insn

3 Error correction

• Identify “gap:” data/padding disassembled as code

• Scan backward to preceding unconditional jump

• Scan forward to next direct or indirect target

• Indirect targets obtained from static analysis

4 Mark “gap,” repeat until no more errors

Static Analysis

Code pointers are needed:

● to correct disassembly errors

● to constrain indirect control flow (ICF) targets

We classify code pointers into categories:

● Code Pointer Constants (CK)

● Computed Code Pointers (CC)

● Exception handlers (EH)

● Exported symbols (ES)

● Return addresses (RA)

Static Analysis

• Code pointer constants

� Scan for constants :

� at any bye offset within code and data segments

� fall within the current module

� point to a valid instruction boundary

• Computed code pointers

•Does not support arbitrary arithmetic, but targets

jump tables

•Uses static analysis of code within a fixed-size window

preceding indirect jump

Talk Outline

Motivation

Static analysis

Binary instrumentation

CFI properties and metric

Evaluation

Summary

Instrumented Module

• Translating function pointers

� Appear as constants in code, but can’t statically translate

� Solution (from DBT): Runtime address translation

• Full transparency: all code pointers, incl. dynamically
generated ones, target original code [Bruening 2004]

� Important for supporting unusual uses of code pointers

� To compute data addresses (PIC-code , data embedded in

code)

� C++ exception handling

ELF header

phdr

Original code

metadata,

.rodata

Original data

..bss

New code

New data

Static Instrumentation for CFI

• Goal: constrain branch targets to those

determined by static analysis

� Direct branches: nothing to be done

� Indirect branches: check against a table of (statically

computed) valid targets

• Key observation

•CFI enforcement can be combined with address translation!

Modularity

Intra-module control transfer: MTT

...

.new_text:
func_entry:
…
#ret
jmp retjmp_lkup

push L_next
jmp call_lkup
...

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

executable

What if the target is out side of the module ?

Modularity

Inter-module control transfer: GTT

...

.new_text:

#call to libfunc
push L_next
jmp call_lkup

call_lkup_glbl

retjmp_lkup_glbl

...

.new_text:

...
libfunc:
...
...
#return
jmp retjmp_lkup

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

libc.so.6executable

Global Table
GTT

(initialized by ld.so)

exe mtt2mtt1

libc mtt2mtt1

update of GTT is done in ld.so

Modularity

Code injection: null GTT entry

...

.new_text:

#call to libfunc
push L_next
jmp call_lkup

call_lkup_glbl

retjmp_lkup_glbl

...

.new_text:

...
libfunc:
...
...
#return
jmp retjmp_lkup

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

libc.so.6executable

Global Table
GTT

(initialized by ld.so)

exe mtt2mtt1

libc mtt2mtt1

GTT only maps code !

Talk Outline

Motivation

Static analysis

Binary instrumentation

CFI properties and metric

Evaluation

Summary

Basic version of CFI

● return: target next of call
● call/jmp: target any function whose address is take n

● Obtainable from relocation info (“reloc-CFI”)
● matches implementation described in [Abadi et al 2005]

● How to cope with missing relocation info?

• Use static analysis to over-approximate function
addresses taken

● “Strict-CFI”

CFI Real-World Exceptions

● special returns

a. as indirect jumps (lazy binding in ld.so)

b. going to function entries (setcontext(2))

c. not going just after call (C++ exception)

● calls used to get PC address

● jump as a replacement of return

binCFI Policy

bin-CFI Returns (RET), Indirect
Jumps (IJ)

Indirect Calls (IC),
PLT jumps (PLT)

Return addresses
(RA)

Y

Exception handling
addresses (EH)

Y
(C++)

Exported symbol
addresses (ES)

Y

Code pointer
constants (CK)

Y
(C++, Context switch)

Y
(GNU_IFUNC)

Computed code
addresses (CC)

Y
(return as jump)

Y
(GNU_IFUNC)

Well, is this policy too weak ?

Measuring “Protection Strength”

● Average Indirect target Reduction (AIR)

a. T
j

: number of possible targets of jth ICF branch

b. S: all possible target addresses (size of binary)

● AIR is a general metric that can be applied to
other control-flow containment approaches

Coarser versions of CFI

bundle-CFI:

● all ICF targets aligned on 2n-byte boundary,
n = 4 (PittSFIeld) or 5 (Native Client)

instr-CFI: the most basic CFI
● all ICFTs target instruction boundaries

AIR metric (single module)

Name Reloc
CFI

Strict
CFI

Bin
CFI

Bundle
CFI

Instr
CFI

perlbench 98.49% 98.44% 97.89% 95.41% 67.33%

bzip2 99.55% 99.49% 99.37% 95.65% 78.59%

gcc 98.73% 98.71% 98.34% 95.86% 80.63%

gobmk 99.40% 99.40% 99.20% 97.75% 89.08%

…... …... …... …... …... …...

average 99.13% 99.08% 98.86% 96.04% 79.27%

• Loss due to use of static analysis is negligible
• Loss due to binCFI relaxation is very small

Evaluation

Disassembly testing

Real world program testing

Gadget elimination

Disassembly Testing

Module Package Size Instruction# errors

libxul.so firefox-5.0 26M 4.3M 0

gimp-console-2.6 gimp-2.6.5 7.7M 385K 0

libc.so glibc-2.13 8.1M 301K 0

libnss3.so firefox-5.0 4.1M 235K 0

…... …... …... …... …...

Total 58M 5.84M 0

“diff” compiler generated assembly and our disassemb ly

Real world program testing

Application Name Experiment

firefox 5 (no JIT) open web pages

acroread9 open 20 pdf files; scroll;print;zoom in/out

gimp-2.6 load jpg picture, crop, blur, sharpen, etc.

Wireshark v1.6.2 capture packets on LAN for 20 minut es

lyx v2.0.0 open a large report; edit; convert to pdf /dvi/ps

mplayer 4.6.1 play an mp3 file

…... ….........

Total: 12 real world programs

Gadget Elimination

Optimizations

• Branch prediction: Optimized translation of
calls and returns, avoiding indirect jumps

• Jump table: Avoid runtime address
translation in jump tables

• Transparency optimization: Avoid address
translation for returns (but check validity)

• Dynamic optimization for returns: Fast check
for most frequent target

Effect of Optimizations

Questions?

