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Background

What is Control-Flow Integrity?

• Program execution follows a statically-

constructed control-flow graph (CFG)

Why CFI?

• a foundation for other low-level code defenses,

e.g., SFI, sandboxing untrusted code, …

• defeats low level attacks on binaries

• Code injection, ROP, JOP, …

• deterministic, not probabilistic defense



Motivation for this work

• Many previous works closely related to CFI

• CFI [Abadi et al 05, Abadi et al 2009, Zhang et al 2013]

• Instruction bundling [MaCamant et al 2008, Yee et al 2009]

• Indexed Hooks [ 2011], Control-flow locking [Bletsch et al 2011]

• MoCFI [Davi et al 2012], Reins [Wartell et al 2012]…

• Require compiler support, or binaries that 

contain relocation, symbol, or debug info

• Do not provide complete protection

• Leave out executable, libraries, or the loader 

• Have a difficult time balancing strength of 

protection and compatibility with large binaries



Preview of Results

• Robust on large and low-level binaries

� glibc, gimp-2.6, adobe reader 9, firefox 5

� executables as well as libraries

• Compatible yet strong policy

� 93% of ROP/JOP gadgets

• Good performance

� ~10% on CPU-intensive C/C++ benchmark (SPEC 2006), 

(~4% if restricted to C-programs)

• Limitations

� Does not support obfuscated binaries or malware

� No runtime code generation or JIT (yet)

� Implemented for 32-bit Linux, tested with gcc and LLVM



Key Challenges

• Disassembly and Static analysis of COTS binaries

• Robust static binary instrumentation

• Without breaking low-level code

• Transparency for position-independent code, C++ 

exceptions, etc.

• Modular instrumentation

• Applied to executables and libraries

• Enables sharing library code across many processes

• Assess compatibility/strength tradeoff



Disassembly Errors

● Disassembly of non-code

● Tolerate these errors by leaving original code in place

● Incorrect disassembly of legitimate code

● Instruction decoding errors (not a real challenge)

● Instruction boundary errors 

● Harmful – our technique geared to find and repair them

● Failure to disassemble (we avoid this)



Disassembly Algorithm

1 Linear disassembly

2 Error detection

• invalid opcode

• direct jump/call outside module address

• direct control into insn

3 Error correction

• Identify “gap:” data/padding disassembled as code

• Scan backward to preceding unconditional jump

• Scan forward to next direct or indirect target

• Indirect targets obtained from static analysis

4 Mark “gap,” repeat until no more errors



Static Analysis

Code pointers are needed:

● to correct disassembly errors

● to constrain indirect control flow (ICF) targets

We classify code pointers into categories:

● Code Pointer Constants (CK)

● Computed Code Pointers (CC)

● Exception handlers (EH)

● Exported symbols (ES)

● Return addresses (RA)



Static Analysis

• Code pointer constants

� Scan for constants :

� at any bye offset within code and data segments  

� fall within the current module

� point to a valid instruction boundary

• Computed code pointers

•Does not support arbitrary arithmetic, but targets 

jump tables

•Uses static analysis of code within a fixed-size window 

preceding indirect jump
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Instrumented Module

• Translating function pointers

� Appear as constants in code, but can’t statically translate

� Solution (from DBT ): Runtime address translation

• Full transparency: all code pointers, incl. dynamically 
generated ones, target original code [Bruening 2004]

� Important for supporting unusual uses of code pointers

� To compute data addresses (PIC-code , data embedded in 

code)

� C++ exception handling

ELF header

phdr

Original code

metadata, 

.rodata

Original data

..bss

New code

New data



Static Instrumentation for CFI

• Goal: constrain branch targets to those 

determined by static analysis

� Direct branches: nothing to be done 

� Indirect branches: check against a table of (statically 

computed) valid targets

• Key observation

•CFI enforcement can be combined with address translation!



Modularity

Intra-module control transfer: MTT

...

.new_text:
func_entry:
…
#ret
jmp retjmp_lkup

push L_next
jmp call_lkup
...

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

executable

What if the target is out side of the module ?



Modularity

Inter-module control transfer: GTT

...

.new_text:

#call to libfunc
push L_next
jmp call_lkup

call_lkup_glbl

retjmp_lkup_glbl

...

.new_text:

...
libfunc:
...
...
#return
jmp retjmp_lkup

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

libc.so.6executable

Global Table
GTT

(initialized by ld.so)

exe mtt2mtt1

libc mtt2mtt1

update of GTT is done in ld.so



Modularity

Code injection:  null GTT entry

...

.new_text:

#call to libfunc
push L_next
jmp call_lkup

call_lkup_glbl

retjmp_lkup_glbl

...

.new_text:

...
libfunc:
...
...
#return
jmp retjmp_lkup

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

call_lkup: ……
.data MTT1

retjmp_lkup: ……
.data MTT2

libc.so.6executable

Global Table
GTT

(initialized by ld.so)

exe mtt2mtt1

libc mtt2mtt1

GTT only maps code ! 
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Basic version of CFI

● return: target next of call
● call/jmp: target any function whose address is take n

● Obtainable from relocation info (“reloc-CFI”)
● matches implementation described in [Abadi et al 2005]

● How to cope with missing relocation info?

• Use static analysis to over-approximate function 
addresses taken

● “Strict-CFI”



CFI Real-World Exceptions 

● special returns 

a. as indirect jumps  (lazy binding in ld.so)

b. going to function entries (setcontext(2))

c. not going just after call (C++ exception)

● calls used to get PC address

● jump as a replacement of return



binCFI Policy

bin-CFI Returns (RET), Indirect
Jumps (IJ)

Indirect Calls (IC), 
PLT jumps (PLT)

Return addresses 
(RA)

Y

Exception handling 
addresses (EH)

Y
(C++)

Exported symbol
addresses (ES)

Y

Code pointer
constants (CK)

Y
(C++, Context switch)

Y
(GNU_IFUNC)

Computed code
addresses (CC)

Y
(return as jump)

Y
(GNU_IFUNC)

Well, is this policy too weak ?



Measuring “Protection Strength”

● Average Indirect target Reduction (AIR)

a. T
j

: number of possible targets of  jth ICF branch

b. S: all possible target addresses (size of binary)

● AIR is a general metric that can be applied to 
other control-flow containment approaches



Coarser versions of CFI

bundle-CFI: 

● all ICF targets aligned on 2n-byte boundary,
n = 4 (PittSFIeld) or 5 (Native Client)

instr-CFI: the most basic CFI
● all ICFTs target instruction boundaries



AIR metric (single module)

Name Reloc
CFI

Strict
CFI

Bin
CFI

Bundle
CFI

Instr
CFI

perlbench 98.49% 98.44% 97.89% 95.41% 67.33%

bzip2 99.55% 99.49% 99.37% 95.65% 78.59%

gcc 98.73% 98.71% 98.34% 95.86% 80.63%

gobmk 99.40% 99.40% 99.20% 97.75% 89.08%

…... …... …... …... …... …...

average 99.13% 99.08% 98.86% 96.04% 79.27%

• Loss due to use of static analysis is negligible
• Loss due to binCFI relaxation is very small



Evaluation

Disassembly testing

Real world program testing

Gadget elimination



Disassembly Testing

Module Package Size Instruction# errors

libxul.so firefox-5.0 26M 4.3M 0

gimp-console-2.6 gimp-2.6.5 7.7M 385K 0

libc.so glibc-2.13 8.1M 301K 0

libnss3.so firefox-5.0 4.1M 235K 0

…... …... …... …... …...

Total 58M 5.84M 0

“diff” compiler generated assembly and  our disassemb ly



Real world program testing

Application Name Experiment

firefox 5 (no JIT) open web pages

acroread9 open 20 pdf files; scroll;print;zoom in/out

gimp-2.6 load jpg picture, crop, blur, sharpen, etc.

Wireshark v1.6.2 capture packets on LAN for 20 minut es

lyx v2.0.0 open a large report; edit; convert to pdf /dvi/ps

mplayer 4.6.1 play an mp3 file

…... ….........

Total: 12 real world programs



Gadget Elimination



Optimizations

• Branch prediction: Optimized translation of 
calls and returns, avoiding indirect jumps

• Jump table: Avoid runtime address 
translation in jump tables

• Transparency optimization: Avoid address 
translation for returns (but check validity)

• Dynamic optimization for returns: Fast check 
for most frequent target 



Effect of Optimizations



Questions?


