K-Scope:

Online Performance Tracking
for Dynamic Cloud Applications

Li Zhang, Xiaoqiao Meng, Shicong Meng, Jian Tan

System Analysis & Optimization Group
IBM T. J. Watson Research Center

Motivation

» Applications in Dynamic Cloud
Environment
= Continuous delivery
= Shared platform services
= Auto scaling to satisfy SLA

» Challenges for Performance Modeling

= Continuous monitoring of appropriate metrics

= Changing workload and resource consumption
e Intensity, service (processing) time

= Changing share of resource in Cloud
e CPU, 10, Network

= Multi-tier or more complex deployment

Auto Scaling Service

‘{ EC2 Instance ‘—- Py

:': Elastic Load > rvo ey s p—
ol 2> —
- Balancer

= g

Amazon CloudWatch

J ScaleUp _ |

Rule
EC2 Instance r

Scale
Down <€<—
Rule
Predefined
) Scaling
Auto Scaling Activity
Group

» Auto scaling allows cloud applications to scale its resource usage
up and down automatically according to load and SLA

» Auto scaling requires a model that can dynamically correlate the
application performance with resource assumption

Queueing Network Model

N

LB

@ front end back end
Ai = Arrival rate of class 7 jobs.
Sij = Average service time of class i jobs at tier .
d; = Additional delay for class i jobs in system.
up;j = Background utilization for tier ;.
u; = Average utilization for tier j.
R; = Average response time for class i jobs in system.

Under appropriate assumptions, the system performance & resource
utilization can be approximated by the queueing analytic relations:

Observable B ‘A

In vector form: z := (_H[.HQ.RI.RQ.R};)T = h(x).

Unknown

Kalman Filter Dynamics

» Estimate values of hidden state variables of a dynamic
system excited by stochastic disturbances and
stochastic measurement noise.

- - T L] ¥ ¥ ¥] T
X = (uo1,uo2.dy,d>.dz,S11,521,531,512,522.532)" (3)

@ = F)x(r—1)+w(r) = x(r—1)+w(r),(4)
(2() = H©x(@—1)+v(), 5

» Variables:

x(t): State variable that is not observed

F(t): State transition model

w(t): Process noise (zero mean, multivariate Gaussian)
z(t): Measurement vector

H(t): Observation model, maps true state into observation
space

v(t): Observation noise (zero mean, multivariate Gaussian)

Kalman Filter Algorithm

Predict:
X(tlt—1) = F@)x(r—1|r—1) (6)
Ptlt—1) = F)P(r—1t—DF (1)+2(r) (7)
Update:
Ho = |52]Gen-1) 5)
X
S(r) = H()P(t|lr— 1A (r)+ 2(1) (9)
K(r) = P(|r—1)H (1)S™'(r) (10)
X(rlr) = X(t|r—1)+K(r)(z(r) —h(X(z]r —1)))11)
P(t[r) = (I-K()H())P(t|r—1) (12)

» Apply Predict & Update iteratively over time

Adapt to changing service times x(t) &
observations z(t)

SOABench Experiment

Model T
Fitting |
B i - |
EEE = :;] !II:[flfl‘lzme {SE,C;;I sé: 7::‘: = . jj I:Iu :éc 3;] ‘:FII-'JI'I'.E TSEECII:; ;;J 7;] EII:E =
(a) CPU utilizations (b) Response time

Predicted and Measured Throughput Predicted and Measured Response Time

4000

0.035

Type 1 mea
[\ Typa 1 pred
35001 e 3 oo3l - — —Type 2 mea

4 - & —Type z pred

Prediction

....... 3! 3
3000+ Typa 2 mea

E.
= / ‘g .ozt | =-¥- Typa 3 pred |
ﬂ_ / ™ a II|
@ 2800 g e % \
5 / P s E 00
3 i =
g 2000 Pt P @ "
- E - & DO15F v
= = = S
2 1500 2 i &
P st - 7]
o = o it}
a 1000k a7 Type 1 mea | i d
= i T Type 1 pred
= / o~ — ——Typs 2 mea ~ % e
sonE™ -~ — & —Type 2 pred 0.005F R e ot A ’
7 - Type 3 mea & ey G B
-o-e- Typa 3 pred =
0 L L L L ! 0 1 1 L L
1 2 3 4 5 5 7 8 1 2 3 4 5] 7 8
Number of cores on server Mumber of cores on server

(a) Predicted throughput when reduc- (b) Predicting response time when re-
ing CPU cores on server ducing CPU cores on server

Conclusion
Approach

» Queueing network based model to quantify performance
» Model based capacity planning, problem identification ...

Key problem

» Inference formulation to find best fit parameters
» Kalman filter for online parameter inference

Extensive Experiments

» Validate the quality of the solution
» Apply to real scenarios

