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Motivation

» Applications in Dynamic Cloud
Environment
= Continuous delivery
= Shared platform services
= Auto scaling to satisfy SLA

» Challenges for Performance Modeling

= Continuous monitoring of appropriate metrics

= Changing workload and resource consumption
e Intensity, service (processing) time

= Changing share of resource in Cloud
e CPU, 10, Network

= Multi-tier or more complex deployment



Auto Scaling Service

‘{ EC2 Instance ‘—- Py

:': Elastic Load > rvo ey s p—
ol 2> —
- Balancer

= g

Amazon CloudWatch

J ScaleUp _ |

Rule
EC2 Instance r

Scale
Down <€<—
Rule
Predefined
) Scaling
Auto Scaling Activity
Group

» Auto scaling allows cloud applications to scale its resource usage
up and down automatically according to load and SLA

» Auto scaling requires a model that can dynamically correlate the
application performance with resource assumption



Queueing Network Model
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@ front end back end
Ai = Arrival rate of class 7 jobs.
Sij = Average service time of class i jobs at tier .
d; = Additional delay for class i jobs in system.
up;j = Background utilization for tier ;.
u; = Average utilization for tier j.
R; = Average response time for class i jobs in system.

Under appropriate assumptions, the system performance & resource
utilization can be approximated by the queueing analytic relations:
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In vector form: z := (_H[.HQ.RI.RQ.R};)T = h(x).

Unknown




Kalman Filter Dynamics

» Estimate values of hidden state variables of a dynamic
system excited by stochastic disturbances and
stochastic measurement noise.
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» Variables:

x(t): State variable that is not observed

F(t): State transition model

w(t): Process noise (zero mean, multivariate Gaussian)
z(t): Measurement vector

H(t): Observation model, maps true state into observation
space

v(t): Observation noise (zero mean, multivariate Gaussian)



Kalman Filter Algorithm

Predict:
X(tlt—1) = F@)x(r—1|r—1) (6)
Ptlt—1) = F)P(r—1t—DF (1)+2(r) (7)
Update:
Ho = |52]Gen-1) 5)
X
S(r) = H()P(t|lr— 1A (r)+ 2(1) (9)
K(r) = P(|r—1)H (1)S™'(r) (10)
X(rlr) = X(t|r—1)+K(r)(z(r) —h(X(z]r —1)))11)
P(t[r) = (I-K()H())P(t|r—1) (12)

» Apply Predict & Update iteratively over time

Adapt to changing service times x(t) &
observations z(t)



SOABench Experiment
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Conclusion
Approach

» Queueing network based model to quantify performance
» Model based capacity planning, problem identification ...

Key problem

» Inference formulation to find best fit parameters
» Kalman filter for online parameter inference

Extensive Experiments

» Validate the quality of the solution
» Apply to real scenarios



