
Robustness	 in	 the	 Salus	 scalable	
block	 store

Yang	 Wang,	 Manos	 Kapritsos,	 Zuocheng	 Ren,	
Prince	 Mahajan,	 Jeevitha	 Kirubanandam,	

Lorenzo	 Alvisi,	 and	 Mike	 Dahlin
University	 of	 Texas	 at	 AusIn

Storage:	 Do	 not	 lose	 data

Fsck, IRON, ZFS, …Past

Now &
Future

Adding	 robustness	 to	 scalable	 systems

Scalable	 systems:	 Crash	 failure	 +	 certain	 disk	 corrupIon
(GFS/Bigtable,	 HDFS/HBase,	 WAS,	 …)	 	 	

Strong	 protecIons:	 Arbitrary	 failure	
(BFT,	 End-‐to-‐end	 verificaIon,	 …)	 Salus

Salus:	 A	 robust	 and	 scalable	 block	 store

4

Low overhead
Better performance in certain cases
Comparable performance in other cases

Maintain scalability

Strong robustness
Clients never read corrupted data.
Durable and available despite f failures.

Start	 from	 scalable	 key-‐value	 store

File	 system Key-‐value DatabaseBlock	 storeBlock	 store

Scalable	 architecture

Metadata	
server

Data	
servers

Clients

Parallel	 data	
transfer

Data	 is	 replicated	 for	 durability	 and	 availability

CompuIng	 node:
• No	 persistent	 storage

Storage	 nodes

Problems

?

• No	 ordering	 guarantees	 for	 writes

• Single	 points	 of	 failures:
– CompuIng	 nodes	 can	 corrupt	 data.

– Client	 can	 not	 verify	 data	 integrity.

1.	 No	 ordering	 guarantees	 for	 writes

Metadata	 server

Data	 servers

Clients

Block	 store	 requires	 barrier	 semanIcs

1 2 3

1 2

2.	 CompuIng	 nodes	 can	 corrupt	 data

Single	 point	 of	 failure

Clients

Metadata	 server

Data	 servers

3.	 Client	 can	 read	 corrupted	 data

Single	 point	 of	 failure	

Does	 a	 disk	 checksum	 work?
Can	 not	 prevent	 errors	 in	 memory,	 etc.

Clients

Metadata	 server

Data	 servers

Salus:	 Overview

Metadata	 server

Block	 drivers
(single	 driver	 per	 virtual	 disk)

Pipelined	
commit

AcIve	
storage

End-‐to-‐end	
verificaIon

Failure	 model:	
Almost	 arbitrary	 but	 no	 impersonaIon

Pipelined	 commit

• Goal:	 barrier	 semanIcs

• Naïve	 soluIon:
– Waits	 at	 a	 barrier:	 Lose	 parallelism	

• Look	 similar	 to	 distributed	 transacIon
– Well-‐known	 soluIon:	 Two	 phase	 commit	 (2PC)

Problem	 of	 2PC

1 2 3

4 5 4 5

Prepared

Driver

Servers

Leader

Prepared

Leader

Batch	 i

Batch	 i+1

1 3

2

1 2 3 4 5

Barriers

Problem	 of	 2PC

1 2 3

4 5 4 5

Driver

Servers

Leader

Leader

Batch	 i

Batch	 i+1

1 3

2

Commit

Commit

Problem	 can	 sIll	 happen.
Need	 ordering	 guarantee	 between	 different	 batches.

Pipelined	 commit

1 2 3

4 5

1 3

2

4 5

Lead	 of	 batch	 i-‐1

Driver

Servers

Leader

Commit

Commit
Leader

Batch	 i

Batch	 i+1

Parallel data
transfer

Batch	 i-‐1	
commieed

Batch	 i	
commieed

Sequential
commit

Outline

• Challenges

• Salus
– Pipelined	 commit

– AcIve	 storage

– Scalable	 end-‐to-‐end	 checks

• EvaluaIon

AcIve	 storage

• Goal:	 A	 single	 node	 cannot	 corrupt	 data

• Well-‐known	 soluIon:	 BFT	 replicaIon
– Problem:	 Requires	 at	 least	 2f+1	 replicas

• Salus’	 approach:	 Decouple	 safety	 and	 liveness
– For	 safety,	 unanimous	 consent	 of	 f+1	 replicas

– How	 about	 availability/liveness?

AcIve	 storage:	 Restore	 availability
Computing nodes

Storage nodes

• What	 if	 something	 goes	 wrong?
– Problem:	 We	 may	 not	 know	 which	 one	 is	 faulty.

• Replace	 all	 compuIng	 nodes	
– CompuIng	 nodes	 have	 only	 sog	 states.

AcIve	 storage:	 Restore	 availability
Computing nodes

Storage nodes

• What	 if	 something	 goes	 wrong?
– Problem:	 We	 may	 not	 know	 which	 one	 is	 faulty.

• Replace	 all	 compuIng	 nodes
– CompuIng	 nodes	 have	 only	 sog	 states.

AcIve	 storage:	 Beeer	 performance
Computing nodes

Storage nodes

• AddiIonal	 benefit:	
– Colocate	 compuIng	 and	 storage:	 Save	 network	 bandwidth

Outline

• Challenges

• Salus
– Pipelined	 commit

– AcIve	 storage

– Scalable	 end-‐to-‐end	 checks

• EvaluaIon

EvaluaIon

• Is	 Salus	 robust	 against	 failures?

• What	 is	 the	 overhead	 of	 Salus?

• Does	 the	 overhead	 grow	 with	 the	 scale	 of	 the	
system?

Is	 Salus	 robust	 against	 failures?

Failures HBaseHBase SalusSalusFailures
Safe Live Safe Live

1-‐2	 storage	 node	
disk	 failures

Yes Yes Yes Yes

3	 storage	 node	 disk	
failures

Yes No Yes No

1-‐2	 compuIng	 node	
memory	 failures

No -‐ Yes Yes

3	 compuIng	 node	
memory	 failures

-‐ -‐ Yes No

What	 is	 the	 overhead	 of	 Salus?

 0

 20

 40

 60

 80

 100

 120

Sequential read Random read Sequential write Random write

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

112

2.7

25 22

112

2.7

58
54

108

3.1

22 20

108

3.1

46 45

 H
B
as

e

 H
B
as

e

 H
B
as

e

 H
B
as

e

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

S
al
us

S
al
us

S
al
us

S
al
us

S
al
us

-N

S
al
us

-N

S
al
us

-N

S
al
us

-N

Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;

 0

 1

 2

 3

 4

 5

 6

 7

Sequential write Random write

T
h
ro

u
g
h
p
u
t

p
er

 r
eg

io
n
 s

er
v
er

 (
M

B
/s

)

5.3 5.1

4
3.7

5.5

2

4.5

1.5

H
B
as

e-
9

H
B
as

e-
9

S
al
us

-9

S
al
us

-9

H
B
as

e-
10

8

H
B
as

e-
10

8

S
al
us

-1
08

S
al
us

-1
08

Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-

12

 0

 20

 40

 60

 80

 100

 120

Sequential read Random read Sequential write Random write

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

112

2.7

25 22

112

2.7

58
54

108

3.1

22 20

108

3.1

46 45

 H
B
as

e

 H
B
as

e

 H
B
as

e

 H
B
as

e

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

S
al
us

S
al
us

S
al
us

S
al
us

S
al
us

-N

S
al
us

-N

S
al
us

-N

S
al
us

-N

Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;

 0

 1

 2

 3

 4

 5

 6

 7

Sequential write Random write

T
h
ro

u
g
h
p
u
t

p
er

 r
eg

io
n
 s

er
v
er

 (
M

B
/s

)

5.3 5.1

4
3.7

5.5

2

4.5

1.5

H
B
as

e-
9

H
B
as

e-
9

S
al
us

-9

S
al
us

-9

H
B
as

e-
10

8

H
B
as

e-
10

8

S
al
us

-1
08

S
al
us

-1
08

Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-

12

With sufficient network bandwidth

With limited network bandwidth

Does	 the	 overhead	 grow	 with	 the	
scale	 of	 the	 system?

28%

Conclusion

• Pipelined	 commit
– Write	 in	 parallel	

– Provide	 ordering	 guarantees

• AcIve	 Storage
– Eliminate	 single	 point	 of	 failures

– Consume	 less	 network	 bandwidth

High robustness ≠ Low performance

