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Storage:	  Do	  not	  lose	  data

Fsck, IRON, ZFS, …Past

Now & 
Future



Adding	  robustness	  to	  scalable	  systems

Scalable	  systems:	  Crash	  failure	  +	  certain	  disk	  corrupIon
(GFS/Bigtable,	  HDFS/HBase,	  WAS,	  …)	  	  	  

Strong	  protecIons:	  Arbitrary	  failure	  
(BFT,	  End-‐to-‐end	  verificaIon,	  …)	   Salus



Salus:	  A	  robust	  and	  scalable	  block	  store

4

Low overhead
Better performance in certain cases
Comparable performance in other cases

Maintain scalability

Strong robustness
Clients never read corrupted data.
Durable and available despite f failures.



Start	  from	  scalable	  key-‐value	  store

File	  system Key-‐value DatabaseBlock	  storeBlock	  store



Scalable	  architecture

Metadata	  
server

Data	  
servers

Clients

Parallel	  data	  
transfer

Data	  is	  replicated	  for	  durability	  and	  availability

CompuIng	  node:
• No	  persistent	  storage

Storage	  nodes



Problems

?

• No	  ordering	  guarantees	  for	  writes

• Single	  points	  of	  failures:
– CompuIng	  nodes	  can	  corrupt	  data.

– Client	  can	  not	  verify	  data	  integrity.



1.	  No	  ordering	  guarantees	  for	  writes

Metadata	  server

Data	  servers

Clients

Block	  store	  requires	  barrier	  semanIcs

1 2 3

1 2



2.	  CompuIng	  nodes	  can	  corrupt	  data

Single	  point	  of	  failure

Clients

Metadata	  server

Data	  servers



3.	  Client	  can	  read	  corrupted	  data

Single	  point	  of	  failure	  

Does	  a	  disk	  checksum	  work?
Can	  not	  prevent	  errors	  in	  memory,	  etc.

Clients

Metadata	  server

Data	  servers



Salus:	  Overview

Metadata	  server

Block	  drivers
(single	  driver	  per	  virtual	  disk)

Pipelined	  
commit

AcIve	  
storage

End-‐to-‐end	  
verificaIon

Failure	  model:	  
Almost	  arbitrary	  but	  no	  impersonaIon



Pipelined	  commit

• Goal:	  barrier	  semanIcs

• Naïve	  soluIon:
– Waits	  at	  a	  barrier:	  Lose	  parallelism	  

• Look	  similar	  to	  distributed	  transacIon
– Well-‐known	  soluIon:	  Two	  phase	  commit	  (2PC)



Problem	  of	  2PC

1 2 3

4 5 4 5

Prepared

Driver

Servers

Leader

Prepared

Leader

Batch	  i

Batch	  i+1

1 3

2

1 2 3 4 5

Barriers



Problem	  of	  2PC

1 2 3

4 5 4 5

Driver

Servers

Leader

Leader

Batch	  i

Batch	  i+1

1 3

2

Commit

Commit

Problem	  can	  sIll	  happen.
Need	  ordering	  guarantee	  between	  different	  batches.



Pipelined	  commit

1 2 3

4 5

1 3

2

4 5

Lead	  of	  batch	  i-‐1

Driver

Servers

Leader

Commit

Commit
Leader

Batch	  i

Batch	  i+1

Parallel data 
transfer

Batch	  i-‐1	  
commieed

Batch	  i	  
commieed

Sequential 
commit



Outline

• Challenges

• Salus
– Pipelined	  commit

– AcIve	  storage

– Scalable	  end-‐to-‐end	  checks

• EvaluaIon



AcIve	  storage

• Goal:	  A	  single	  node	  cannot	  corrupt	  data

• Well-‐known	  soluIon:	  BFT	  replicaIon
– Problem:	  Requires	  at	  least	  2f+1	  replicas

• Salus’	  approach:	  Decouple	  safety	  and	  liveness
– For	  safety,	  unanimous	  consent	  of	  f+1	  replicas

– How	  about	  availability/liveness?



AcIve	  storage:	  Restore	  availability
Computing nodes

Storage nodes

• What	  if	  something	  goes	  wrong?
– Problem:	  We	  may	  not	  know	  which	  one	  is	  faulty.

• Replace	  all	  compuIng	  nodes	  
– CompuIng	  nodes	  have	  only	  sog	  states.



AcIve	  storage:	  Restore	  availability
Computing nodes

Storage nodes

• What	  if	  something	  goes	  wrong?
– Problem:	  We	  may	  not	  know	  which	  one	  is	  faulty.

• Replace	  all	  compuIng	  nodes
– CompuIng	  nodes	  have	  only	  sog	  states.



AcIve	  storage:	  Beeer	  performance
Computing nodes

Storage nodes

• AddiIonal	  benefit:	  
– Colocate	  compuIng	  and	  storage:	  Save	  network	  bandwidth



Outline

• Challenges

• Salus
– Pipelined	  commit

– AcIve	  storage

– Scalable	  end-‐to-‐end	  checks

• EvaluaIon



EvaluaIon

• Is	  Salus	  robust	  against	  failures?

• What	  is	  the	  overhead	  of	  Salus?

• Does	  the	  overhead	  grow	  with	  the	  scale	  of	  the	  
system?



Is	  Salus	  robust	  against	  failures?

Failures HBaseHBase SalusSalusFailures
Safe Live Safe Live

1-‐2	  storage	  node	  
disk	  failures

Yes Yes Yes Yes

3	  storage	  node	  disk	  
failures

Yes No Yes No

1-‐2	  compuIng	  node	  
memory	  failures

No -‐ Yes Yes

3	  compuIng	  node	  
memory	  failures

-‐ -‐ Yes No



What	  is	  the	  overhead	  of	  Salus?
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Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;
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Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-
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Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;
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Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-
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With sufficient network bandwidth

With limited network bandwidth



Does	  the	  overhead	  grow	  with	  the	  
scale	  of	  the	  system?

28%



Conclusion

• Pipelined	  commit
– Write	  in	  parallel	  

– Provide	  ordering	  guarantees

• AcIve	  Storage
– Eliminate	  single	  point	  of	  failures

– Consume	  less	  network	  bandwidth

High robustness ≠ Low performance


