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Storage: Do not lose data
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Adding robustness to scalable systems

Strong protections: Arbitra ry failure
(BFT, End-to-end verification, ...) Salus
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Scalable systems: Crash failure + certain disk corruption
(GFS/Bigtable, HDFS/HBase, WAS, ...)



Salus: A robust and scalable block store

Maintain scalability H

Strong robustness
Clients never read corrupted data.
Durable and available despite f failures.

Low overhead
Better performance in certain cases
Comparable performance in other cases



Start from scalable key-value store

[File system} LKey-vaIue} LDatabase}




Scalable architecture

Clients

Parallel data
transfer

Data
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Computing node:

* No persistent storage

Storage nodes

Data is replicated for durability and availability



Problems

* No ordering guarantees for writes

* Single points of failures:
— Computing nodes can corrupt data.

— Client can not verify data integrity.
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1. No ordering guarantees for writes

Y
- ..

\

\.

has

\

J

Metadata server

|

Data servers

Block store requires barrier semantics

—

11 |2

L



2. Computing nodes can corrupt data
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3. Client can read corrupted data
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Does a disk checksum work?
Can not prevent errors in memory, etc.

Single point of failure



Salus: Overview
End-to-end . . . . Block drivers
verification (single driver per virtual disk)
Pipelined I I I [ ]
commit - - - Metadata server
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_ Failure model:
Active Almost arbitrary but no impersonation

storage
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Pipelined commit

e Goal: barrier semantics

 Naive solution:

— Waits at a barrier: Lose parallelism

 Look similar to distributed transaction

— Well-known solution: Two phase commit (2PC)
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Problem of 2PC
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Problem can still happen.
Need ordering guarantee between different batches.
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Pipelined commit
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Outline

* Challenges

e Salus
— Pipelined commit

— Active storage

 Evaluation



Active storage

* Goal: A single node cannot corrupt data

 Well-known solution: BFT replication

— Problem: Requires at least 2f+1 replicas

* Salus’ approach: Decouple safety and liveness
— For safety, unanimous consent of f+1 replicas

— How about availability/liveness?



Active storage: Restore availability
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* What if something goes wrong?
— Problem: We may not know which one is faulty.

* Replace all computing nodes

— Computing nodes have only soft states.



Active storage: Restore availability
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* What if something goes wrong?
— Problem: We may not know which one is faulty.

* Replace all computing nodes

— Computing nodes have only soft states.



Active storage: Better performance
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 Additional benefit:

— Colocate computing and storage: Save network bandwidth



Outline

* Challenges

e Salus
— Pipelined commit

— Active storage

 Evaluation



Evaluation

 |s Salus robust against failures?

e What is the overhead of Salus?

* Does the overhead grow with the scale of the
system?



Is Salus robust against failures?

Failures HBase Salus

Safe Live Safe Live
— )

1-2 storage node Yes Yes Yes Yes

disk failures
3 storage node disk Yes No Yes No
failures
1-2 computing node - Yes Yes
memory failures

3 computing node - - Yes No

memory failures - -




What is the overhead of Salus?

Throughput (MB/s)
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Does the overhead grow with the
scale of the system?
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Conclusion

High robustness # Low performance

* Pipelined commit

— Write in parallel

— Provide ordering guarantees
* Active Storage

— Eliminate single point of failures

— Consume less network bandwidth



