
Robustness	
 in	
 the	
 Salus	
 scalable	

block	
 store

Yang	
 Wang,	
 Manos	
 Kapritsos,	
 Zuocheng	
 Ren,	

Prince	
 Mahajan,	
 Jeevitha	
 Kirubanandam,	

Lorenzo	
 Alvisi,	
 and	
 Mike	
 Dahlin
University	
 of	
 Texas	
 at	
 AusIn

Storage:	
 Do	
 not	
 lose	
 data

Fsck, IRON, ZFS, …Past

Now &
Future

Adding	
 robustness	
 to	
 scalable	
 systems

Scalable	
 systems:	
 Crash	
 failure	
 +	
 certain	
 disk	
 corrupIon
(GFS/Bigtable,	
 HDFS/HBase,	
 WAS,	
 …)	
 	
 	

Strong	
 protecIons:	
 Arbitrary	
 failure	

(BFT,	
 End-­‐to-­‐end	
 verificaIon,	
 …)	
 Salus

Salus:	
 A	
 robust	
 and	
 scalable	
 block	
 store

4

Low overhead
Better performance in certain cases
Comparable performance in other cases

Maintain scalability

Strong robustness
Clients never read corrupted data.
Durable and available despite f failures.

Start	
 from	
 scalable	
 key-­‐value	
 store

File	
 system Key-­‐value DatabaseBlock	
 storeBlock	
 store

Scalable	
 architecture

Metadata	

server

Data	

servers

Clients

Parallel	
 data	

transfer

Data	
 is	
 replicated	
 for	
 durability	
 and	
 availability

CompuIng	
 node:
• No	
 persistent	
 storage

Storage	
 nodes

Problems

?

• No	
 ordering	
 guarantees	
 for	
 writes

• Single	
 points	
 of	
 failures:
– CompuIng	
 nodes	
 can	
 corrupt	
 data.

– Client	
 can	
 not	
 verify	
 data	
 integrity.

1.	
 No	
 ordering	
 guarantees	
 for	
 writes

Metadata	
 server

Data	
 servers

Clients

Block	
 store	
 requires	
 barrier	
 semanIcs

1 2 3

1 2

2.	
 CompuIng	
 nodes	
 can	
 corrupt	
 data

Single	
 point	
 of	
 failure

Clients

Metadata	
 server

Data	
 servers

3.	
 Client	
 can	
 read	
 corrupted	
 data

Single	
 point	
 of	
 failure	

Does	
 a	
 disk	
 checksum	
 work?
Can	
 not	
 prevent	
 errors	
 in	
 memory,	
 etc.

Clients

Metadata	
 server

Data	
 servers

Salus:	
 Overview

Metadata	
 server

Block	
 drivers
(single	
 driver	
 per	
 virtual	
 disk)

Pipelined	

commit

AcIve	

storage

End-­‐to-­‐end	

verificaIon

Failure	
 model:	

Almost	
 arbitrary	
 but	
 no	
 impersonaIon

Pipelined	
 commit

• Goal:	
 barrier	
 semanIcs

• Naïve	
 soluIon:
– Waits	
 at	
 a	
 barrier:	
 Lose	
 parallelism	

• Look	
 similar	
 to	
 distributed	
 transacIon
– Well-­‐known	
 soluIon:	
 Two	
 phase	
 commit	
 (2PC)

Problem	
 of	
 2PC

1 2 3

4 5 4 5

Prepared

Driver

Servers

Leader

Prepared

Leader

Batch	
 i

Batch	
 i+1

1 3

2

1 2 3 4 5

Barriers

Problem	
 of	
 2PC

1 2 3

4 5 4 5

Driver

Servers

Leader

Leader

Batch	
 i

Batch	
 i+1

1 3

2

Commit

Commit

Problem	
 can	
 sIll	
 happen.
Need	
 ordering	
 guarantee	
 between	
 different	
 batches.

Pipelined	
 commit

1 2 3

4 5

1 3

2

4 5

Lead	
 of	
 batch	
 i-­‐1

Driver

Servers

Leader

Commit

Commit
Leader

Batch	
 i

Batch	
 i+1

Parallel data
transfer

Batch	
 i-­‐1	

commieed

Batch	
 i	

commieed

Sequential
commit

Outline

• Challenges

• Salus
– Pipelined	
 commit

– AcIve	
 storage

– Scalable	
 end-­‐to-­‐end	
 checks

• EvaluaIon

AcIve	
 storage

• Goal:	
 A	
 single	
 node	
 cannot	
 corrupt	
 data

• Well-­‐known	
 soluIon:	
 BFT	
 replicaIon
– Problem:	
 Requires	
 at	
 least	
 2f+1	
 replicas

• Salus’	
 approach:	
 Decouple	
 safety	
 and	
 liveness
– For	
 safety,	
 unanimous	
 consent	
 of	
 f+1	
 replicas

– How	
 about	
 availability/liveness?

AcIve	
 storage:	
 Restore	
 availability
Computing nodes

Storage nodes

• What	
 if	
 something	
 goes	
 wrong?
– Problem:	
 We	
 may	
 not	
 know	
 which	
 one	
 is	
 faulty.

• Replace	
 all	
 compuIng	
 nodes	

– CompuIng	
 nodes	
 have	
 only	
 sog	
 states.

AcIve	
 storage:	
 Restore	
 availability
Computing nodes

Storage nodes

• What	
 if	
 something	
 goes	
 wrong?
– Problem:	
 We	
 may	
 not	
 know	
 which	
 one	
 is	
 faulty.

• Replace	
 all	
 compuIng	
 nodes
– CompuIng	
 nodes	
 have	
 only	
 sog	
 states.

AcIve	
 storage:	
 Beeer	
 performance
Computing nodes

Storage nodes

• AddiIonal	
 benefit:	

– Colocate	
 compuIng	
 and	
 storage:	
 Save	
 network	
 bandwidth

Outline

• Challenges

• Salus
– Pipelined	
 commit

– AcIve	
 storage

– Scalable	
 end-­‐to-­‐end	
 checks

• EvaluaIon

EvaluaIon

• Is	
 Salus	
 robust	
 against	
 failures?

• What	
 is	
 the	
 overhead	
 of	
 Salus?

• Does	
 the	
 overhead	
 grow	
 with	
 the	
 scale	
 of	
 the	

system?

Is	
 Salus	
 robust	
 against	
 failures?

Failures HBaseHBase SalusSalusFailures
Safe Live Safe Live

1-­‐2	
 storage	
 node	

disk	
 failures

Yes Yes Yes Yes

3	
 storage	
 node	
 disk	

failures

Yes No Yes No

1-­‐2	
 compuIng	
 node	

memory	
 failures

No -­‐ Yes Yes

3	
 compuIng	
 node	

memory	
 failures

-­‐ -­‐ Yes No

What	
 is	
 the	
 overhead	
 of	
 Salus?

 0

 20

 40

 60

 80

 100

 120

Sequential read Random read Sequential write Random write

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

112

2.7

25 22

112

2.7

58
54

108

3.1

22 20

108

3.1

46 45

 H
B
as

e

 H
B
as

e

 H
B
as

e

 H
B
as

e

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

S
al
us

S
al
us

S
al
us

S
al
us

S
al
us

-N

S
al
us

-N

S
al
us

-N

S
al
us

-N

Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;

 0

 1

 2

 3

 4

 5

 6

 7

Sequential write Random write

T
h
ro

u
g
h
p
u
t

p
er

 r
eg

io
n
 s

er
v
er

 (
M

B
/s

)

5.3 5.1

4
3.7

5.5

2

4.5

1.5

H
B
as

e-
9

H
B
as

e-
9

S
al
us

-9

S
al
us

-9

H
B
as

e-
10

8

H
B
as

e-
10

8

S
al
us

-1
08

S
al
us

-1
08

Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-

12

 0

 20

 40

 60

 80

 100

 120

Sequential read Random read Sequential write Random write

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

112

2.7

25 22

112

2.7

58
54

108

3.1

22 20

108

3.1

46 45

 H
B
as

e

 H
B
as

e

 H
B
as

e

 H
B
as

e

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

H
B
as

e-
N

S
al
us

S
al
us

S
al
us

S
al
us

S
al
us

-N

S
al
us

-N

S
al
us

-N

S
al
us

-N

Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;

 0

 1

 2

 3

 4

 5

 6

 7

Sequential write Random write

T
h
ro

u
g
h
p
u
t

p
er

 r
eg

io
n
 s

er
v
er

 (
M

B
/s

)

5.3 5.1

4
3.7

5.5

2

4.5

1.5

H
B
as

e-
9

H
B
as

e-
9

S
al
us

-9

S
al
us

-9

H
B
as

e-
10

8

H
B
as

e-
10

8

S
al
us

-1
08

S
al
us

-1
08

Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-

12

With sufficient network bandwidth

With limited network bandwidth

Does	
 the	
 overhead	
 grow	
 with	
 the	

scale	
 of	
 the	
 system?

28%

Conclusion

• Pipelined	
 commit
– Write	
 in	
 parallel	

– Provide	
 ordering	
 guarantees

• AcIve	
 Storage
– Eliminate	
 single	
 point	
 of	
 failures

– Consume	
 less	
 network	
 bandwidth

High robustness ≠ Low performance

