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Storage:	
  Do	
  not	
  lose	
  data

Fsck, IRON, ZFS, …Past

Now & 
Future



Adding	
  robustness	
  to	
  scalable	
  systems

Scalable	
  systems:	
  Crash	
  failure	
  +	
  certain	
  disk	
  corrupIon
(GFS/Bigtable,	
  HDFS/HBase,	
  WAS,	
  …)	
  	
  	
  

Strong	
  protecIons:	
  Arbitrary	
  failure	
  
(BFT,	
  End-­‐to-­‐end	
  verificaIon,	
  …)	
   Salus



Salus:	
  A	
  robust	
  and	
  scalable	
  block	
  store

4

Low overhead
Better performance in certain cases
Comparable performance in other cases

Maintain scalability

Strong robustness
Clients never read corrupted data.
Durable and available despite f failures.



Start	
  from	
  scalable	
  key-­‐value	
  store

File	
  system Key-­‐value DatabaseBlock	
  storeBlock	
  store



Scalable	
  architecture

Metadata	
  
server

Data	
  
servers

Clients

Parallel	
  data	
  
transfer

Data	
  is	
  replicated	
  for	
  durability	
  and	
  availability

CompuIng	
  node:
• No	
  persistent	
  storage

Storage	
  nodes



Problems

?

• No	
  ordering	
  guarantees	
  for	
  writes

• Single	
  points	
  of	
  failures:
– CompuIng	
  nodes	
  can	
  corrupt	
  data.

– Client	
  can	
  not	
  verify	
  data	
  integrity.



1.	
  No	
  ordering	
  guarantees	
  for	
  writes

Metadata	
  server

Data	
  servers

Clients

Block	
  store	
  requires	
  barrier	
  semanIcs

1 2 3

1 2



2.	
  CompuIng	
  nodes	
  can	
  corrupt	
  data

Single	
  point	
  of	
  failure

Clients

Metadata	
  server

Data	
  servers



3.	
  Client	
  can	
  read	
  corrupted	
  data

Single	
  point	
  of	
  failure	
  

Does	
  a	
  disk	
  checksum	
  work?
Can	
  not	
  prevent	
  errors	
  in	
  memory,	
  etc.

Clients

Metadata	
  server

Data	
  servers



Salus:	
  Overview

Metadata	
  server

Block	
  drivers
(single	
  driver	
  per	
  virtual	
  disk)

Pipelined	
  
commit

AcIve	
  
storage

End-­‐to-­‐end	
  
verificaIon

Failure	
  model:	
  
Almost	
  arbitrary	
  but	
  no	
  impersonaIon



Pipelined	
  commit

• Goal:	
  barrier	
  semanIcs

• Naïve	
  soluIon:
– Waits	
  at	
  a	
  barrier:	
  Lose	
  parallelism	
  

• Look	
  similar	
  to	
  distributed	
  transacIon
– Well-­‐known	
  soluIon:	
  Two	
  phase	
  commit	
  (2PC)



Problem	
  of	
  2PC

1 2 3
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Prepared

Driver

Servers

Leader

Prepared

Leader

Batch	
  i

Batch	
  i+1
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Problem	
  of	
  2PC

1 2 3

4 5 4 5

Driver

Servers

Leader

Leader

Batch	
  i

Batch	
  i+1

1 3

2

Commit

Commit

Problem	
  can	
  sIll	
  happen.
Need	
  ordering	
  guarantee	
  between	
  different	
  batches.



Pipelined	
  commit

1 2 3
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1 3
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4 5

Lead	
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  batch	
  i-­‐1

Driver

Servers

Leader

Commit

Commit
Leader

Batch	
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Batch	
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Parallel data 
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Batch	
  i-­‐1	
  
commieed

Batch	
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commit



Outline

• Challenges

• Salus
– Pipelined	
  commit

– AcIve	
  storage

– Scalable	
  end-­‐to-­‐end	
  checks

• EvaluaIon



AcIve	
  storage

• Goal:	
  A	
  single	
  node	
  cannot	
  corrupt	
  data

• Well-­‐known	
  soluIon:	
  BFT	
  replicaIon
– Problem:	
  Requires	
  at	
  least	
  2f+1	
  replicas

• Salus’	
  approach:	
  Decouple	
  safety	
  and	
  liveness
– For	
  safety,	
  unanimous	
  consent	
  of	
  f+1	
  replicas

– How	
  about	
  availability/liveness?



AcIve	
  storage:	
  Restore	
  availability
Computing nodes

Storage nodes

• What	
  if	
  something	
  goes	
  wrong?
– Problem:	
  We	
  may	
  not	
  know	
  which	
  one	
  is	
  faulty.

• Replace	
  all	
  compuIng	
  nodes	
  
– CompuIng	
  nodes	
  have	
  only	
  sog	
  states.



AcIve	
  storage:	
  Restore	
  availability
Computing nodes

Storage nodes

• What	
  if	
  something	
  goes	
  wrong?
– Problem:	
  We	
  may	
  not	
  know	
  which	
  one	
  is	
  faulty.

• Replace	
  all	
  compuIng	
  nodes
– CompuIng	
  nodes	
  have	
  only	
  sog	
  states.



AcIve	
  storage:	
  Beeer	
  performance
Computing nodes

Storage nodes

• AddiIonal	
  benefit:	
  
– Colocate	
  compuIng	
  and	
  storage:	
  Save	
  network	
  bandwidth



Outline

• Challenges

• Salus
– Pipelined	
  commit

– AcIve	
  storage

– Scalable	
  end-­‐to-­‐end	
  checks

• EvaluaIon



EvaluaIon

• Is	
  Salus	
  robust	
  against	
  failures?

• What	
  is	
  the	
  overhead	
  of	
  Salus?

• Does	
  the	
  overhead	
  grow	
  with	
  the	
  scale	
  of	
  the	
  
system?



Is	
  Salus	
  robust	
  against	
  failures?

Failures HBaseHBase SalusSalusFailures
Safe Live Safe Live

1-­‐2	
  storage	
  node	
  
disk	
  failures

Yes Yes Yes Yes

3	
  storage	
  node	
  disk	
  
failures

Yes No Yes No

1-­‐2	
  compuIng	
  node	
  
memory	
  failures

No -­‐ Yes Yes

3	
  compuIng	
  node	
  
memory	
  failures

-­‐ -­‐ Yes No



What	
  is	
  the	
  overhead	
  of	
  Salus?
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Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;
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Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-
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Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

tive replication of region servers, introduced to improve
robustness, can reduce network bandwidth and signifi-
cantly improve performance when the total disk band-
width exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region server
and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;
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Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3GB
of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-
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With sufficient network bandwidth

With limited network bandwidth



Does	
  the	
  overhead	
  grow	
  with	
  the	
  
scale	
  of	
  the	
  system?

28%



Conclusion

• Pipelined	
  commit
– Write	
  in	
  parallel	
  

– Provide	
  ordering	
  guarantees

• AcIve	
  Storage
– Eliminate	
  single	
  point	
  of	
  failures

– Consume	
  less	
  network	
  bandwidth

High robustness ≠ Low performance


