Robustness in the Salus scalable
block store

Yang Wang, Manos Kapritsos, Zuocheng Ren,
Prince Mahajan, Jeevitha Kirubanandam,
Lorenzo Alvisi, and Mike Dahlin

University of Texas at Austin

Storage: Do not lose data

Past Fsck, IRON, ZFS, ...

Bl Applications

& & l—' ' l
DataA::ﬁss{ramework '|
& &

Backup & Recovery
Deployment
Security
Management

Now &
Future

Adding robustness to scalable systems

Strong protections: Arbitra ry failure
(BFT, End-to-end verification, ...) Salus

& O

Scalable systems: Crash failure + certain disk corruption
(GFS/Bigtable, HDFS/HBase, WAS, ...)

Salus: A robust and scalable block store

Maintain scalability H

Strong robustness
Clients never read corrupted data.
Durable and available despite f failures.

Low overhead
Better performance in certain cases
Comparable performance in other cases

Start from scalable key-value store

[File system} LKey-vaIue} LDatabase}

Scalable architecture

Clients

Parallel data
transfer

Data
servers

Metadata
server

Computing node:

* No persistent storage

Storage nodes

Data is replicated for durability and availability

Problems

* No ordering guarantees for writes

* Single points of failures:
— Computing nodes can corrupt data.

— Client can not verify data integrity.

?

1. No ordering guarantees for writes

Y
- ..

\

\.

has

\

J

Metadata server

|

Data servers

Block store requires barrier semantics

—

11 |2

L

2. Computing nodes can corrupt data

a: @ @ @

111
- ..

_\
Eaa

\. J

Metadata server

|

Data servers

Single point of failure

3. Client can read corrupted data

a: @ @ @

111
- ..

\

7 A

\o J

Metadata server

|

Data servers

Does a disk checksum work?
Can not prevent errors in memory, etc.

Single point of failure

Salus: Overview
End-to-end Block drivers
verification (single driver per virtual disk)
Pipelined I I I []
commit - - - Metadata server
I \\

r A

_ Failure model:
Active Almost arbitrary but no impersonation

storage
EEE

Pipelined commit

e Goal: barrier semantics

 Naive solution:

— Waits at a barrier: Lose parallelism

 Look similar to distributed transaction

— Well-known solution: Two phase commit (2PC)

Barriers
T
Batch i
1121 3
Driver
Batch i+1
415

Problem of 2PC

Servers

Prepared

Driver

®

Problem of 2PC

Servers

Commit

Leader

Problem can still happen.
Need ordering guarantee between different batches.

Batch i+1

4

5

Commit

Pipelined commit

Servers Lead of batch i-1
Batch i-1

Batch i 113 committed

i Leader
Driver 2
Sequential
O Parallel data '
| transfer Batch |
Batch i+1 o
Commit

Outline

* Challenges

e Salus
— Pipelined commit

— Active storage

 Evaluation

Active storage

* Goal: A single node cannot corrupt data

 Well-known solution: BFT replication

— Problem: Requires at least 2f+1 replicas

* Salus’ approach: Decouple safety and liveness
— For safety, unanimous consent of f+1 replicas

— How about availability/liveness?

Active storage: Restore availability
4

Computing nodes \

&
N
-i-

_ Storage nodes)

* What if something goes wrong?
— Problem: We may not know which one is faulty.

* Replace all computing nodes

— Computing nodes have only soft states.

Active storage: Restore availability
4)

Computing nodes

T

_ Storage nodes)

* What if something goes wrong?
— Problem: We may not know which one is faulty.

* Replace all computing nodes

— Computing nodes have only soft states.

Active storage: Better performance
4

Computing nodes

_ Storage nodes)

 Additional benefit:

— Colocate computing and storage: Save network bandwidth

Outline

* Challenges

e Salus
— Pipelined commit

— Active storage

 Evaluation

Evaluation

 |s Salus robust against failures?

e What is the overhead of Salus?

* Does the overhead grow with the scale of the
system?

Is Salus robust against failures?

Failures HBase Salus

Safe Live Safe Live
—)

1-2 storage node Yes Yes Yes Yes

disk failures
3 storage node disk Yes No Yes No
failures
1-2 computing node - Yes Yes
memory failures

3 computing node - - Yes No

memory failures - -

What is the overhead of Salus?

Throughput (MB/s)

120
100
80
60
40
20

0

112 112 108 108

22

With sufficient network bandwidth

20

2.7 2.7 3.1 3.1 m
[T N
L X N X BN \\\,g X BN N X L X W x
D Q2 0 o DT QD o D QD o D Q2 0 9
Qg’ Q)Q’g = %'z}\> \2@ Qg,?’% % %’z}\) Qg’ Qg,‘go = "o(z}\} Qg’ &’Z’% = ‘b’z}\\)

Sequential read Random read

Sequential write

Random write

HBase | Salus
Throughput (MB/s) L27 47)
Network consumption (network bytes per 5.3 2.4
byte written by the client)

With limited network bandwidth

Does the overhead grow with the
scale of the system?

J

(MB/s)

ughput per region server

o)

9
& &
Sequential write Random write

Thro

() —_ (\) o) ~ N (@) ~J
)
%‘9@ o
o o
N

Conclusion

High robustness # Low performance

* Pipelined commit

— Write in parallel

— Provide ordering guarantees
* Active Storage

— Eliminate single point of failures

— Consume less network bandwidth

