
Extending the Lifetime of Flash-based Storage
through Reducing

Write Amplification from File Systems

Youyou Lu, Jiwu Shu, Weimin Zheng

Tsinghua University

Outline

• Background and Motivation

• Object-based Flash Translation Layer

• System Co-design with Flash Memory

• Evaluation

• Conclusion

Flash Memory

• Gained Popularity

– High performance, low energy, reduced cost

– Wide deployment: embedded devices ->
enterprise servers

• Endurance

– SLC (100,000)

– MLC (10,000)

– TLC (1,000)

Figure from “The Bleak Future of NAND Flash
Memory” in FAST’12

Existing Approach to Flash Endurance

• Wear Leveling

– To make all the blocks evenly worn out

– Fundamental part of the FTL

• Data Reduction

– To reduce the amount of data to be written

– Data De-duplication and Compression

– Used either in FTL or in FS

Write Amplification from File Systems

• Write Amplification from File Systems
– Pre-FS writes vs. Post-FS writes

• Journaling
– Keep the journals in the logs first,
– And then, checkpoint them in-place

• Metadata synchronization
– Frequent persistence in case of data lost or

inconsistency

• Page-aligned update
– Wasted space within one page

A simple example in ext3

• Echo “title” > foo.txt
– Effective Data: 6 bytes
– Flash Writes: 11 pages * 4KB/page = 44KB

• Echo “texttexttext…”(4KB) >> foo.txt
– Effective Data: 4KB
– Flash Writes: 9 pages * 4KB/page = 36KB

bmp data bmp inode

dirent C

bmp bmp inode data

dirent

C data

bmp data

inode

data

bmp data inode

Data Area Journal Area

Flash Opportunities

• No-overwrite
– Can the journaling use it without writing twice in

the file system?

• Page metadata
– Can we store the backpointer to lazily write back

the index while keeping consistency?

• Erase-before-Update
– Can we track the free space in a coarse-grained

way?

Outline

• Background and Motivation

• Object-based Flash Translation Layer

• System Co-design with Flash Memory

• Evaluation

• Conclusion

Architecture & Data Organization
• Intelligent Storage Mgmt.

• Optimized FS Mechanism

Object File System

Object-based Flash Translation Layer (OFTL)

Application

OBJ_READ, OBJ_WRITE, OBJ_FLUSH, OBJ_CREATE,
OBJ_DELETE, OBJ_SETATTR, OBJ_GETATTR

Raw Flash Device

FLASH_READ, FLASH_WRITE,
FLASH_ERASE

VFS Syscalls

Hardware

Namespace Mgmt.

Storage Mgmt.

Solid State Drive

File System
(Namespace Mgmt.

+
Storage Mgmt.)

Flash Translation Layer (FTL)

Application

Hardware

VFS Syscalls

File System

READ, WRITE

OFTL Data Layout

Block Info Segment

Block Info Segment

Block Info Segment

Object Index

Object
Metadata

Pages

Block Info Meta

Object Metadata
File Metadata

Layout

Object Metadata
File Metadata

Layout

MAGIC NUMBER

ADDR_BLK_INFO

ADDR_ATIME_LOGS

ADDR_OBJ_INDEX

Root Page

Object
Data
Pages

ADDR_UW_META

Diff-Layout

Diff-Data

Diff-Layout

Diff-Data

Lazy Indexing Compacted Update
Coarse-grained Block
State Maintenance

T1. Lazy Indexing
• Index Metadata

– The metadata that stores the pointers (the physical
addresses of other pages).

• Object Index -> Object Metadata Page -> Object
Data Page
– Type-specific backpointers

PAGE DATA

Page Metadata

(OOB)

TYPE
BACK-POINTER

(oid, offset, len)
ECC...Tid TcntVer

Updating Window

Updating Window & Checkpointing
Updating Window

1.Make sure the mappings are persistent
2.Write back the updating window metadata

• Transactional write

– <tid, tcnt>

– Count the total number of the pages with the
same tid, and compare with the stored tcnt

PAGE DATA
Page Metadata

(OOB)

TYPE
BACK-POINTER

(oid, offset, len)
ECC...Tid TcntVer

T2. Coarse-grained Block State
Maintenance

• Free space in flash block units

– Page states can be identified using the block state

• Pages in FREE blocks are all free

• Pages in USED blocks are all used

• Pages in UPDATING blocks need to be further identified

• Relaxed Metadata Persistence

UPDATING

FREE USED

Updatin
g W

in
dow

Ext
endin

g (A
llo

ca
tio

n)
Updating W

indow

Extending (Eviction)

Erase

T3. Compacted Update

• Compact multiple partial page updates into
one flash page

• Co-locate the diff-page with the metadata
page

Diff-Data (0)
Diff-Data (1)

Diff-Data (2)
Diff-Data (2)

Diff-Data (3)

Diff-Extent
(3712, 384, 0)

Diff-Extent
(4096, 768, 384)

Diff-Extent
(8192, 896, 1152)

Diff-Extent
(16384, 196, 2048)

o_off len addr

Diff-Page

Diff-Layout

0 511

An Example in OFSS

• Echo “title” > foo.txt

• Echo “texttexttext…”(4KB) >> foo.txt

Updating Window

[Inode], [diff-data: “title”]
OMP, <oid2, 0, 0>, ver1,

Tx1, 0, [ECC]

[dirent: “foo.txt”]
ODP, <oid1, 0, 4096>,

ver2, Tx1, 2, [ECC]

[data: “title texttexttext…”]
ODP, <oid2, 0, 4096>,

ver3, Tx2, 0, [ECC]

[Inode], [diff-data: “xttext”]
OMP, <oid2, 0, 0>, ver4,

Tx2, 2, [ECC]

Comparison of Ext3 and OFSS

• Journals => Transactional Metadata in Page
Metadata

• Inode => Reverse Index in Page Metadata

• Block/Inode Bitmap => Free Space Mgmt. in
Flash Block Units

• Page Un-aligned Update => Compaction and
Co-location

80 KB (ext3) -> 16 KB (OFSS)

Outline

• Background and Motivation

• Object-based Flash Translation Layer

• System Co-design with Flash Memory

• Evaluation

• Conclusion

Evaluation Method

• Evaluation Metric

– write amplification = flash_writes / app_writes

• System Evaluation Framework

– OFSS

– File system

Object File

System

OFTL

File System

PFTL

Block Trace

Utility

RWC Trace RWC Trace

Block Trace

Flash R/W/E Flash R/W/E

Overall Comparison (1)

Write Amplification:

OFSS = 15.1% * ext3 = 52.6% * ext2 = 10.6% * btrfs

Overall Comparison (2)

Write Amplification:

OFSS = 36.0% * ext3 = 80.2% * ext2 = 51.0% * btrfs

Metadata Amplification
iPhoto iPages LASR1 LASR2 LASR3 TPCC

Ext3 2.57 8.59 17.91 11.84 51.04 3.73

Ext2 1.06 2.68 2.00 0.91 4.11 1.04

OFSS 0.05 0.30 1.13 0.45 1.05 0.03

In OFSS, meta
ampl. is
dramatically
reduced

Ext3:

Journaling
Ext2: Bitmap

and Inode
Table

Refer to the paper
for more details of
the async mode

Flash Page Size Impact

• Write amplification gets worse and worse as the flash
page size increases

• The sync mode is much more worse than the async
Refer to the paper for more details of the async mode

Outline

• Background and Motivation

• Object-based Flash Translation Layer

• System Co-design with Flash Memory

• Evaluation

• Conclusion

Conclusion

• Metadata in file systems are frequently
written back for consistency and durability,
amplifying the writes to the flash memory

• Flash memory offers opportunities for
endurance-aware file system mechanisms
– Journaling: transactional write

– Metadata Synchronization: lazy indexing, coarse-
grained block state maintenance

– Page-aligned Update: compacted update

Thanks!

Questions?

Youyou Lu, Jiwu Shu, Weimin Zheng
(luyy09@mails.tsinghua.edu.cn)

http://storage.cs.tsinghua.edu.cn/~lu

mailto:luyy09@mails.tsinghua.edu.cn

Backup – ext3 layout

Super
Block

Group
Desp.

Inode
Bitmap

Block
Bitmap

Inode
Table

Data Blocks

Block Group Block Group Block Group

Backup – Metadata Amplification (async)

Backup – Impact of Flash Page Size (async)

Backup – Overhead of Window Extending

