Determinism Is Not Enough:
What Really Makes Multithreaded
Programs Hard to Get Right
and What Can Be Done about It?

Junfeng Yang, Heming Cui, Jingyue Wu,
Columbia University

One-slide summary

Multithreaded programs: critical but hard to get right

Many blamed nondeterminism

Deterministic multithreading (DMT): one input =2 one
schedule

But, determinism is neither sufficient nor necessary for
reliability!

True culprit is rather quantitative: too many schedules

Stable Multithreading (StableMT): all inputs =2 a small
set of schedules

Background and motivation

Multithreaded programs:
hard to get right

* Plagued with concurrency bugs

— Data races, atomicity violations, order violations,
deadlocks, etc

* Concurrency bugs: bad

— Have taken lives in the Therac 25 incidents and
caused the 2003 Northeast blackout

— May be exploited by attackers to violate
confidentiality, integrity, and availability of critical
systems [Hotpar 12]

Concurrency bug examples

Thread 0

mutex lock (M)
*obj = ..
mutex unlock (M)

Thread 1

mutex lock (M)
free (obj)
mutex unlock (M)

Thread 1

mutex lock (M)
free (obj)
mutex unlock (M)

Thread 0

mutex lock (M)
*obj = ..
mutex unlock (M)

Apache Bug #21287

Thread 0 Thread 1

barrier wait (B) barrier wait (B)
result += ..
print (result)

Thread 0 Thread 1

barrier wait (B) barrier wait (B)
print (result)
result += ..

FFT in SPLASH2

* Schedule: sequence of communication operations
* Buggy schedule: schedule that triggers concurrency bug

Challenges caused by nondeterminism

Inputs Schedules

Traditional
multithreading

* Testing: less effective
* Debugging: more challenging

Challenges caused by
too many schedules

Inputs Schedules
N~ '
|' |
| &S |
Il — 'l
I"yll _: —" i B ."J'
W ____/,.,,,Bu ggy

Traditional
multithreading

* m threads, k lock() = more than (m!)*k schedules
 Even more schedules aggregated over all inputs
* Finding buggy schedules is like finding needles in a haystack

Determinism: neither sufficient nor
necessary for reliability

Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules

Traditional Deterministic
multithreading multithreading

* One testing execution validates all future executions
on the same input

* Reproducing a concurrency bug requires only the input

Determinism: not sufficient

Inputs Schedules Inputs Schedules

TN y .

Traditional Deterministic
multithreading multithreading

* Determinism is a narrow property
— Same input + same program =2 same behavior
— Input or program changes slightly? Unstable

Determinism: not necessary

Inputs Schedules Inputs Schedules Inputs Schedules

Lo)
/ |

7N
/ .

Traditional Deterministic Stable
multithreading multithreading multithreading

 Determinism is a binary property
— Nondeterministic if one input = n > 1 schedules

 Smalln (e.g., 2) = challenges caused by
nondeterminism are easy to solve

Improving reliability
with stable multithreading

Are all exponentially many schedules
hecessary?

* |nsight 1: for many programs, a wide range of
inputs share the same equivalent class of
schedules

* |nsight 2: the overhead of enforcing a
schedule on different inputs is low (e.g., 15%)

Stable multithreading (StableMT):
all inputs =2 a small set of schedules

Inputs Schedules Inputs Schedules Inputs Schedules

/e 2\

= S
v Dl —~
\ Y
\ 2
.‘»ﬁ’;———r‘
\. /'/
~

S |
\ f
i /
[— /
\. /

Traditional Deterministic Stable
multithreading multithreading multithreading

* Vastly shrink the haystack =2 needles much
easier to find

* Provide anticipated robustness and stability

StableMT and DMT: orthogonal

Inputs Schedules Inputs Schedules Inputs Schedules
\
_,’”— P
e \\\/?/\
\"—
=\
Traditional Deterministic Stable deterministic

multithreading multithreading multithreading

Implementing and applying StableMT

e How can we compute the schedules to map
inputs to?
— Tern [OSDI 10]

* How can we enforce schedules deterministically
and efficiently?

— Peregrine [SOSP 11]

* How can we apply StableMT to effectively
analyze multithreaded programs?

— Schedule specialization [PLDI 12]

Conclusion

* Determinism: neither sufficient nor necessary
for reliability

e StableMT: map all inputs to vastly reduced
set of schedules, greatly improving reliability

Future work

e Systems level: more efficient, lightweight, scalable
* Application level: more applications

* Conceptual level: StableMT programming languages,
models, and methods

Applying StableMT to better analyze
multithreaded programs

. Analyzing multithreaded programs: hard

preC|S|on Total Schedules
Dynamic
AnaIyS|s @
Anz'mzed
Schegdles
Static Analyzed
Analysis Schedules
>

coverage (# of analyzed schedules / # of total schedules)

Schedule Specialization [PLDI 12]

* Precision: Analyze the program over a small set of schedules.
 Coverage: Enforce these schedules at runtime.

A
precision Total Schedules

Schedule
Specialization

Static
Analysis

Analyzed
Schedules

>
coverage (# of analyzed schedules / # of total schedules)

