
Demystifying Page Load
Performance with WProf

Xiao (Sophia) Wang, Aruna Balasubramanian,
Arvind Krishnamurthy, and David Wetherall

University of Washington

Web is the critical part of the Internet

1

Page load is critical

● Amazon can increase 1% revenue by
decreasing page load time by 0.1s.

2

Page load is critical

● Amazon can increase 1% revenue by
decreasing page load time by 0.1s.

● Page load is slow even on top 200 websites

 but slow

2

Page load is critical

● Amazon can increase 1% revenue by
decreasing page load time by 0.1s.

● Page load is slow even on top 200 websites

Median page load
time is 3 seconds.

 but slow

2

Page load is critical

● Amazon can increase 1% revenue by
decreasing page load time by 0.1s.

● Page load is slow even on top 200 websites

A few top pages
take more than 10
seconds to load.

 but slow

2

Many techniques aim to optimize
page load time

● Optimization techniques
○ Server placement: CDNs
○ Web pages and cache: mod_pagespeed, Silo
○ Application level: SPDY
○ TCP/DNS: TCP fast open, ASAP, DNS pre-

resolution, TCP pre-connect
● Problem

○ Unclear whether they help or hurt page loads*

3

*http://www.guypo.com/technical/not-as-spdy-as-you-thought/.
*http://www.stevesouders.com/

Many techniques aim to optimize
page load time

● Optimization techniques
○ Server placement: CDNs
○ Web pages and cache: mod_pagespeed, Silo
○ Application level: SPDY
○ TCP/DNS: TCP fast open, ASAP, DNS pre-

resolution, TCP pre-connect
● Problem

○ Unclear whether they help or hurt page loads*

3

*http://www.guypo.com/technical/not-as-spdy-as-you-thought/.
*http://www.stevesouders.com/

Page load process is poorly understood.

Difficult to understand page load

● Factors that affect page load
○ Page structure
○ Inter-dependencies between network and

computation activities
○ Browser implementations

4

Difficult to understand page load
<html>
 <script src="b.js"></script>

</html>

<html>

 <script src="b.js"></script>
</html>

5

Difficult to understand page load
<html>
 <script src="b.js"></script>

</html>

<html>

 <script src="b.js"></script>
</html>

5

html
b.js

c.png

Difficult to understand page load
<html>
 <script src="b.js"></script>

</html>

<html>

 <script src="b.js"></script>
</html>

5

html
b.js

c.png

html

b.js

c.png

Difficult to understand page load
<html>
 <script src="b.js"></script>

</html>

<html>

 <script src="b.js"></script>
</html>

Understanding dependencies is the key to
understand page load.

5

html
b.js

c.png

html

b.js

c.png

Overview of our work

● Model the page load process
● Build the WProf tool
● Study page load on real pages

Overview of our work

● Model the page load process
○ How a page is loaded?
○ How to infer dependencies?

● Build the WProf tool
● Study page load on real pages

How a page is loaded

6

How a page is loaded

Concurrencies among
the four components

6

How a page is loaded

Dependencies: one
component can block
others

6

How a page is loaded

A page load starts with a user-initiated request.

http://www.example.com/

6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

Object Loader downloads the corresponding Web page.
6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

Upon receiving the first chunk of the root page, the HTML
Parser starts to parse the page. 6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

HTML Parser requests embedded objects, i.e., JavaScript.
6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

Object Loader requests the inlined JS and sends it for
evaluation.

main.js
...

6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

JS evaluation can modify the DOM and its completion
resumes HTML parsing.

main.js
...

6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

HTML continues being parsed and added to the DOM.
6

How a page is loaded

index.html
1 <html>
2 <script src="main.js"/>
3 </html>

Rendering Engine progressively renders the page (i.e.,
layout and painting).

http://www.example.com/

6

How to infer dependencies

● Goal
○ Extract as many dependencies as possible across

browsers
● Methodology

○ Design test pages
○ Examine documents
○ Inspect browser code

7

How to infer dependencies

● Goal
○ Extract as many dependencies as possible across

browsers
● Methodology

○ Design test pages
○ Examine documents
○ Inspect browser code

7

Reverse engineer page loads with
test pages

● Design test pages

8

Reverse engineer page loads with
test pages

● Design test pages

HTML

JS CSSIMG

IMG HTML IMG

An example Web page
8

Reverse engineer page loads with
test pages

● Design test pages

HTML

JS CSSIMG

IMG HTML IMG

○ An object follows another

An example Web page
8

Reverse engineer page loads with
test pages

● Design test pages

HTML

JS CSSIMG

IMG HTML IMG

○ An object follows another
○ An object embeds another

An example Web page
8

img

Reverse engineer page loads with
test pages

● Design test pages
● Observe timings from DevTools

9

HTML

JS IMG

HTML

IMG JS

html

html

js

js

img

img

Reverse engineer page loads with
test pages

● Design test pages
● Observe timings from DevTools

9

HTML

JS IMG

HTML

IMG JS

html

html

js

js

img

Dependency policy categories

● Flow dependency
○ Natural order that activities occur

10

Dependency policy categories

● Flow dependency
● Output dependency

○ Correctness of execution when multiple processes
access to the same resource

10

Dependency policy categories

● Flow dependency
● Output dependency
● Lazy/Eager binding

○ Tradeoffs between data downloads and page load
latencies

10

Dependency policy categories

● Flow dependency
● Output dependency
● Lazy/Eager binding
● Resource constraints

○ Limited computing power or network resources (#
TCP conn.)

10

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html
Elapsed time

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html
Elapsed time

c.css

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html
Elapsed time

c.css

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html
Elapsed time

c.css

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html

f.js

Elapsed time

c.css

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html

f.js

Elapsed time

c.css

11

Output dependency
index.html
1 <html>
2 <link rel="stylesheet" href="c.css">
3 <script src="f.js"/>
 ...

html

f.js

Elapsed time

c.css

11

Dependency policies

12

Dependency policies

12

Flow 6
Output 3
Lazy/Eag
er binding 3
Resource
constraint 2

Dependency policies across browsers

Dependency IE Firefox WebKit

Output all no O3 no O3

Late binding all all all

Eager binding Preloads
img, js, css

Preloads
img, js, css

Preloads
css, js

Net resource 6 conn. 6 conn. 6 conn.

13

Dependency policies across browsers

Dependency IE Firefox WebKit

Output all no O3 no O3

Late binding all all all

Eager binding Preloads
img, js, css

Preloads
img, js, css

Preloads
css, js

Net resource 6 conn. 6 conn. 6 conn.

O3: CSS downloads and evaluation block HTML parsing.

13

Overview of our work

● Model the page load process
● Build the WProf tool

○ Profiling in browsers
○ Generating dependency graphs
○ Analyzing critical paths

● Study page load on real pages

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine Activity
timing

Dependen
cies

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine Activity
timing

Dependen
cies

- Log activity timings
- Track dependencies
by using HTML tags
under parsing when an
activity occurs

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine Activity
timing

Dependen
cies

Lightweight
Our evaluation
suggests negligible
performance
overhead.

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine Activity
timing

Dependen
cies

Implementation
- Built on WebKit
- Extended in Chrome
and Safari
- Written in C++

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine Activity
timing

Dependen
cies

Dependency graphs

Critical paths

14

WProf architecture

Web page instances

Browser extension/plug-in
framework

Native browser

Browser Stack

WProf profiler

O
bject

Loader

H
TM

L
P

arser

C
S

S

E
ngine

JavaS
cript

E
ngine

R
endering
E

ngine Activity
timing

Dependen
cies

Dependency graphs

Critical paths

14

<html>
 <head>
 <link rel="stylesheet" src="./main.css">
 <script src="./main.js" />
 </head>
 <!--request a JS-->
 <body onload="...">

 </body>
</html>

Dependency graph

15

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

16

Critical path analysis

Critical path: the longest bottleneck path.

Improving activities off
the critical path doesn't
help page load.

16

Overview of our work

● Model the page load process
● Build the WProf tool
● Study page load with real pages

Experimental setup

● Location
○ UW Seattle campus network

● Browser
○ WProf-instrumented Chrome

● Web pages
○ 150 out of top 200 Alexa pages

● Page load time
○ Minimum out of 5 repeats

17

How much does computation contribute
to page load time?

18

Computation is significant

19

Network/Computation as a fraction of page load time

Network

Computation

Computation is significant

19

Network/Computation as a fraction of page load time

Network

Computation

Computation is ~35% of page load time
(median) on the critical path.

How much does caching help page
load performance?

20

● Caching eliminates 80% Web object
loads

● It doesn't reduce page load time as
much

21

How much does caching help?

● Caching eliminates 80% Web object
loads

● It doesn't reduce page load time as
much

● Caching only eliminates 40% Web
object loads on the critical path

21

How much does caching help?

Summary of other results

● Most object downloads are not critical
● JS blocks parsing on 60% top pages
● SPDY doesn't help much as expected
● Minification with mod_pagespeed doesn't

reduce received bytes on the critical path

22

Related work

● Industry tools
○ DevTools, Pagespeed Insights

● Academic
○ WebProphet [NSDI'2010]

■ Only consider network time

23

Conclusion

● Model page load process
● WProf automatically extracts dependencies

and analyzes critical paths
● WProf can be used to

○ Understand performance of any page load
○ Explain behaviors of current optimizations
○ Perform what-if analysis

Project website: wprof.cs.washington.edu

24

