Power-Aware Throughput Control for Database Management Systems

Zichen Xu, Xiaorui Wang, Yi-Cheng Tu^{*} The Ohio State University * The University of South Florida

Power-Aware Computer Systems (PACS) Lab

Problem Overview and Motivation

- Data centers are energy starving
- Database management system (DBMS) is one of the major services in data centers
- Control the DBMS throughput to save energy

- Power saving to the setpoint: low power hardware states
- Balanced performance: performance control
 PACS LAB

<u>Power-Aware Throughput Control (PAT)</u>

- Goal: minimize power consumption of a database system while maintaining its desired performance
- Challenges
 - Energy and DBMS: power consumption minimization
 - Control and DBMS: performance guarantee

- Contributions:
 - Energy profiling in DBMS
 - Feedback control design in DBMS

<u>Power-Aware Throughput Control (PAT)</u>

 Goal: minimize power consumption of a database system while maintaining its desired performance

Challenges

- Energy and DBMS: power consumption minimization
- Control and DBMS: performance guarantee

Contributions:

- Energy profiling in DBMS
- Feedback control design in DBMS

Characterization Study – Memory

 Low power state in memory may not be a good choice for power saving in DBMS workloads
 PACS LAB

 Low power state in memory may not be a good choice for power saving in DBMS workloads
 PACS LAB

Characterization Study – CPU

 CPU provides great power-saving and the relationship can be approximated as a linear model
 PACS LAB

Characterization Study – DBMS Workloads

Characterization Study – DBMS Workloads

 The ratio of I/O intensive queries (λ) is the key in the workload statistics for power control
 PACS LAB

Characterization Study – DBMS Workloads

 The ratio of I/O intensive queries (λ) is the key in the workload statistics for power control
 PACS LAB

Characterization Study – Insights

- Low power state in CPU provides great opportunities for power-saving
- DBMS throughput and CPU frequency can be approximated as a linear model

•
$$r = A * f + B$$

 The ratio of I/O intensive queries (λ) is the key in the workload statistics for power control

•
$$r = \lambda A * f + B$$

Framework

Fuzzy Workload Classifier

- One fuzzy rule base
 - Compute the membership of query to each learnt cluster
- The procedure of workload classification
 - Evaluation of antecedents
 - Implication calculation of consequents
 - Aggregation result of consequents

The Controller Design

- System model
 - $\Delta r(i) = \lambda A * f(i) + B$
- Control model (PI control)
 - Zero steady-state error
 - Short settling time
 - Stability

Methodology

- Testbed
 - Hardware: a DELL PowerEdge R710 with 12-core Intel Xeon E5645, 16GB memory and 1TB storage
 - Software: Redhat 5 (V3.0.0) + PostgreSQL (V8.3.18)
 - Workload: TPC and SDSS
 - Power measurement: WattsUp power meter
- System Contention
 - Ideal: running DBMS alone
 - Competing: running DBMS with other processes with equal priority.
 - Preemptive: running DBMS with other processes with higher priority.

Baselines

- State-of-the-Practice Baselines
 - NORMAL: no power management, performance first
 - SPEEDSTEP: IntelTM build-in power management
- State-of-the-Art Baselines
 - TRADITION: Open-loop control based on known workload statistics
 - HEURISTIC: Ad-hoc control based on performancepower model
 - SCTRL: System-level power control for DBMS performance

A Snapshot of PAT in Competing Setup

How PAT Performs in All Scenarios

 PAT saves energy cost (15% more than the SPEEDSTEP, 51.3% more than NORMAL)

A Snapshot of Comparison

Comparison with Other Control Methods

 PAT has the smallest overshoot and the best energy saving
 PACS LAB

Conclusion

- Minimizing power consumption of DBMS under a user-specified performance bound
- Controller design on the system characteristics is the solution
- Empirically study the relationship between energy and DBMS processing
- PAT: a feedback control framework with system characteristics
- Thanks

ΡΔCS LΔΒ

Acknowledge

 This research was supported by the US National Science Foundation (NSF) grants IIS-1117699, IIS-1156435, and CSR-1143607

Related Work

- Control in DBMS
 - Feedback Control in DBMS [Tu et al. VLDB 2007]
- Other Applications
 - Power Shaving
 - Power Over-commitment
 - Proportional Energy Consumption

A Snapshot of PAT in Ideal Setup

T · H · E OHIO SIAIE UNIVERSITY

A Snapshot of PAT in Competing Setup

25

Backup: Errors From Modeling

 FWC could produce almost 10% error in the system, The designed maximum overshoot is 40% in PAT.
 PACS LAB

Backup Characterization Study – Energy and

Backup: Rule-based Workload Classifier

Outline

- Problem Overview & Motivation
- Characterization Study: DBMS and Energy
- Overall Framework
- Fuzzy Workload Classifier
- The Controller Design
- Evaluation
- Conclusion

Fuzzy Workload Classifier

One fuzzy rule base

PACS LAP

• If
$$[d^{i}_{CPU}, d^{i}_{I/O}] \in \text{cluster } X_{j}$$
,
then $[u^{i}_{CPU}, u^{i}_{I/O}] = M_{j}[d^{i}_{CPU}, d^{i}_{I/O}] + N_{j}$

- The procedure of workload classification
 - Evaluation: $[d_{CPU}^{i}, d_{I/O}^{i}] \rightarrow [u_{CPU}^{i}, u_{I/O}^{i}]$ per X_j
 - Implication calculation: $\frac{\Sigma(p_j) p_j}{\Sigma(p_i)} \rightarrow t^i_j$ of X_j
 - Aggregation result: $[\sum t_{j}^{i} u_{CPU}^{i}, \sum t_{j}^{i} u_{I/O}^{i}]^{T}$

