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Geo-distributed datacenters
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Request routing
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Data is replicated across the wide area
How to route requests to datacenters!
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Prior work
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Price in $USD/MWh.
Source: Federal Energy Regulatory Commission, etc.

Price aware request routing:

A. Qureshi et al., Cutting the Electricity Bill for Internet-scale Systems, SIGCOMM 2009
Z. Liu et al., Greening Geographical Load Balancing, SIGMETRICS 201 |
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Iwo missing aspects...




Cooling system
Codliing energy effiiciency (PUEDE a constant
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Source: Emerson® Liebert DSET ™ cooling system with an EconoPhase air-side
economizer
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Temperature diversity
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Selected Google DC locations. Source: National Climate Data Center
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First idea
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Second idea

Interactive Batch

Workload Workload

delay-tolerant,

resource elastic
User requests

At coolipg efficient locations, allocate more

| . pacity allocation i
.capacity to'interactive workload.
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This work

Temperature aware workload management

|. System model and formulation
2. A distributed optimization algorithm (ADMM)

3. Trace-driven simulations
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System model [ /2]

In our model In reality

Common practice, e.g.

User | A unique IP prefix Akamai [34]

Common practice, e.g.

DNS, HT TP proxies
[17,29,34]

Request |Arbitrarily splittable
traffic | among datacenters

Common practice, traffic

predictable, electricity
price known [28, 32, 34]

Time Hourly
scale optimization
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System model [2/2]

Energy cost at data center j:

Ej(Wj) — (CjPidle + (Ppeak — Pidle) Wj) ' pPUE(Tj)P]

Google cluster measurements [|5] Our empirical data
1.5
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Formulation

User i » Datacenter j 53 Batch workload

ar,%iélo Z E Z Oé” + Z l@ ‘ Latency
Energy cost+Ultility loss

A Z E 69 i Z @53 Revenuel/ovss due

to performance
S g O = L Workload conservation

V] Z aij + B3 < Cj.  Capacity constraint
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Challenges

Convex optimization

Large-scale problems

IP prefixes, variables, constraints

Distributed optimization algorithms

Dual decomposition with subgradient methods

Two drawbacks:

Delicate step size adjustment

Very slow convergence
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ADMM

Alternating Direction Method of Multipliers

[S. Boyd et al,, 201 | ]

Fast convergence for large-scale distributed
convex optimization in data mining and machine

learning

Limitation: It only works for problems with 2
sets of variables linked by an equality constraint

Does NOT work for our problem
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Generalized ADMM

Minimize utility loss for interactive

penalty(ol, a*') ok | per-user sub-problems

Minimize energy cost for interactive

penalty(ak, ak) aX per-DC sub-problems

Minimize total cost for batch

penalty(B*, o) B* |  per-DC sub-problems

Dual update
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Convergence

- Theorem: Generalized ADMM

converges to the optimal
solution.

't works for problems with any sets of
variapbles.

Applicable to problems in other domains.




Evaluation: Setup

Google DC locations, Wikipedia request traces,
empirical temperature, latency, and electricity price
data

Benchmarks:

Joint opt: Our work

Baseline: State-of-the-art, no temperature
aware request routing, no capacity allocation

Cooling optimized

Capacity optimized
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Benefits breakdown
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Cooling energy savings
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Utility loss reductions
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Overall improvement
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Result: 5%-20% total cost savings, consistent
aCross seasons
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Convergence
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Result: Generalized ADMM converges much faster
than existing algorithms.

21

(c01) [enpisaJ [ewlid

Wednesday, 3 July, 13



Related work
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Thank you!

Google “Henry Xu”
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