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Geo-distributed datacenters
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Source: Google
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Request routing
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Data is replicated across the wide area
How to route requests to datacenters?
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Prior work
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Price aware request routing:
A. Qureshi et al., Cutting the Electricity Bill for Internet-scale Systems, SIGCOMM 2009
Z. Liu et al., Greening Geographical Load Balancing, SIGMETRICS 2011

$35.83

$52.64

$44.20

$61.55

Price in $USD/MWh. 
Source: Federal Energy Regulatory Commission, etc.
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Two missing aspects...
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Cooling system

Temperature Cooling mode PUE

35 C (95 F) Mechanical 1.30

21.1 C (70 F) Mechanical 1.21

15.6 C (60 F) Mixed 1.17

10 C (50 F) Outside air 1.10

-3.9 C (25 F) Outside air 1.05

Source: Emerson® Liebert DSETM cooling system with an EconoPhase air-side 
economizer
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Cooling energy efficiency (PUE) is a constantCooling energy efficiency is NOT a constant
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Temperature diversity

Selected Google DC locations. Source: National Climate Data Center
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First idea
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3C

20C

10C

25C

Route more requests to cooler locations to 
reduce energy consumption and cost.
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Interactive
Workload

Second idea
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delay-tolerant,
resource elastic

At cooling efficient locations, allocate more 
capacity to interactive workload.

Batch
Workload

User requests

Capacity allocation is fixed
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This work
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Temperature aware workload management

1. System model and formulation

2. A distributed optimization algorithm (ADMM)

3. Trace-driven simulations
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System model [1/2]
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In our model In reality

User A unique IP prefix
Common practice, e.g. 

Akamai [34] ✓
Request 
traffic

Arbitrarily splittable 
among datacenters

Common practice, e.g. 
DNS, HTTP proxies  

[17,29,34]
✓

Time 
scale

Hourly 
optimization

Common practice, traffic 
predictable, electricity 

price known [28, 32, 34]
✓
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System model [2/2]
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in order to dynamically adjust datacenter operations to the
ambient conditions, and to save the overall energy costs.

3. MODEL
In this section, we introduce our model first and then for-

mulate the temperature aware workload management prob-
lem of joint request routing and capacity allocation.

3.1 System Model
We consider a discrete time model where the length of

a time slot matches the time scale at which request routing
and capacity allocation decisions are made, e.g., hourly. The
joint optimization is periodically solved at each time slot.
We therefore focus only on a single time slot.

We consider a provider that runs a set of datacenters J
in distinct geographical regions. Each datacenter j 2 J
has a fixed capacity C

j

in terms of the number of servers.
To model datacenter operating costs, we consider both the
energy cost and utility loss of request routing and capacity
allocation, which are detailed below.

3.2 Energy Cost and Cooling Efficiency
We focus on servers and cooling system in our energy cost

model. Other energy consumers, such as network switches,
power distribution systems, etc., have constant power draw
independent of workloads [15] and are not relevant.

For servers, we adopt the empirical model from [15] that
calculates the individual server power consumption as an
affine function of CPU utilization, Pidle + (Ppeak � Pidle)u.
Pidle is the server power when idle, Ppeak is the server power
when fully utilized, and u is the CPU load. This model is
especially accurate for calculating the aggregated power of a
large number of servers [15]. Thus, assuming workloads are
perfectly dispatched and servers have a uniform utilization
as a result, the server power of datacenter j can be modeled
as C

j

Pidle + (Ppeak � Pidle)Wj

, where W denotes the total
workload in terms of the number of servers required.

For the cooling system, we take an empirical approach
based on production CRACs to model its energy consump-
tion. We choose not to rely on simplifying models for the in-
dividual components of a CRAC and their interactions [40],
because of the difficulty involved in and the inaccuracy re-
sulted from the process, especially for hybrid CRACs with
both outside air and mechanical cooling. Therefore, we study
CRACs as a black box, with outside temperature as the in-
put, and its overall energy efficiency as the output.

Specifically, we use partial PUE (pPUE) to measure the
CRAC energy efficiency. As in Sec. 2.2, pPUE is defined as

pPUE =

Server power + Cooling power
Server power

.

A smaller value indicates a more energy efficient system. We
apply regression techniques to the empirical pPUE data of
the Emerson CRAC [14] introduced in Table 1. We find that
the best fitting model describes pPUE as a quadratic function
of the outside temperature as plotted below.
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pPUE=7.1705e−5 T2+0.0041T+1.0743

Figure 3: Model fitting of pPUE as a function of the out-
side temperature T for Emerson’s DSETM CRAC [14].
Small circles denote empirical data points.

The model can be calibrated given more data from mea-
surements. For the purpose of this paper, our approach yields
a tractable model that captures the overall CRAC efficiency
for the entire spectrum of its operating modes. Our model is
also useful for future studies on datacenter cooling energy.

Given the outside temperature T
j

, the total datacenter en-
ergy as a function of the workload W

j

can be expressed as

E
j

(W
j

) = (C
j

Pidle + (Ppeak � Pidle)Wj

) · pPUE(T
j

). (1)

Here we implicitly assume that T
j

is known a priori and do
not include it as the function variable. This is valid since
short-term weather forecast is fairly accurate and accessible.

A datacenter’s electricity price is denoted as P
j

. The price
may additionally incorporate the environmental cost of gen-
erating electricity [17], which we do not consider here. In
reality, electricity can be purchased from local day-ahead or
hour-ahead forward markets at a pre-determined price [34].
Thus, we assume that P

j

is known a priori and remains fixed
for the duration of a time slot. The total energy cost, includ-
ing server and cooling power, is simply P

j

E
j

(W
j

).

3.3 Utility Loss
Request routing. The concept of utility loss captures the

lost revenue due to the user-perceived latency for request
routing decisions. Latency is arguably the most important
performance metric for most interactive services. A small
increase in the user-perceived latency can cause substantial
revenue loss for the provider [25]. We focus on the end-to-
end propagation latency, which largely accounts for the user-
perceived latency compared to other factors such as request
processing times at datacenters [31]. The provider obtains
the propagation latency L

ij

between user i and datacenter j
through active measurements [30] or other means.

We use ↵
ij

to denote the volume of requests routed to
datacenter j from user i 2 I, and D

i

to denote the demand of
each user that can be predicted using machine learning [28,
32]. Here, a user is an aggregated group of customers from a
common geographical region, which may be identified by a
unique IP prefix. The lost revenue from user i then depends
on the average propagation latency

P
j

↵
ij

L
ij

/D
i

through
a generic delay utility loss function U

i

. U
i

can take various
forms depending on the interactive service. Our algorithm

4

Energy cost at data center j:

−25 −15 −5 5 15 25 35 45
1

1.1

1.2

1.3

1.4

1.5

Outside temperature (C)

pP
U

E

 

 
pPUE=7.1705e−5 T2+0.0041T+1.0743

Google cluster measurements [15] Our empirical data

Pj
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Formulation
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User i Datacenter j
↵ij

: Batch workload�j

Energy cost Utility loss+

Latency

Workload conservation

Capacity constraint

Revenue loss due 
to performance

min
↵,�⌫0

X

j

Ej

�X

i

↵ij

�
+

X

i

Ui (L(↵i))

+
X

j

Ej(�j) +
X

j

Vj(�j)

s.t.: 8i :
X

j

↵ij = Di,

8j :
X

i

↵ij + �j  Cj .
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Challenges
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Convex optimization

O(105) IP prefixes, O(107) variables, O(105) constraints

Large-scale problems

Distributed optimization algorithms

Dual decomposition with subgradient methods

Two drawbacks:

Delicate step size adjustment

Very slow convergence
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ADMM
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Alternating Direction Method of Multipliers
[S. Boyd et al., 2011]

Fast convergence for large-scale distributed 
convex optimization in data mining and machine 
learning

Limitation: It only works for problems with 2 
sets of variables linked by an equality constraint

Does NOT work for our problem
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Generalized ADMM
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Minimize utility loss for interactive

Minimize energy cost for interactive

Dual update

per-user sub-problems

per-DC sub-problems

Minimize total cost for batch

per-DC sub-problems

penalty(αk, ak-1)

penalty(ak, αk)

penalty(βk, αk)

ak

αk

βk
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Convergence
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It works for problems with any sets of 
variables.

Theorem: Generalized ADMM 
converges to the optimal 
solution.

Applicable to problems in other domains.
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Evaluation: Setup
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Google DC locations, Wikipedia request traces, 
empirical temperature, latency, and electricity price 
data

Benchmarks:
Joint opt: Our work

Baseline: State-of-the-art, no temperature 
aware request routing, no capacity allocation

Cooling optimized

Capacity optimized
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Benefits breakdown
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Overall improvement
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Convergence
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Result: Generalized ADMM converges much faster 
than existing algorithms.

Iteration
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Thank you!

Google “Henry Xu”
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