

ArrayTrack: A Fine-Grained Indoor Location System

Jie Xiong, Kyle Jamieson

University College London

April 3rd, 2013 USENIX NSDI '13

Precise location systems are important

- Outdoors: GPS
 - Accurate for navigation (meters)
 - Signals fade in indoor environments

- Precise and rapid indoor location enables:
 - Augmented reality on the smartphone, wearable or glasses
 - Fine-grained location in supermarkets, libraries or museums
 - Controlling network access based on desk or room

 Known technologies: not accurate enough (WiFi), require dedicated infrastructure (ultrasound) or require cameras and good light conditions (vision)

Timeline of indoor location systems

Two observations about WiFi

1. Increasing number of antennas on an access point (AP)

- 802.11n MIMO links: improve capacity and coverage
- Draft 802.11ac (2014): 8 MIMO spatial streams (8 antennas)

Cisco Aironet 3600

Cisco Aironet 1250

RUCKUS ZoneFlex 7982

Xirrus XR7630

Two observations about WiFi

1. Increasing number of antennas on an access point (AP)

- 802.11n MIMO links: improve capacity and coverage
- Draft 802.11ac (2014): eight MIMO spatial streams

2. WiFi is ubiquitous and densely deployed

- WiFi is now available on airplanes, subways and buses
- APs density is ever-increasing in the urban environment

Our Approach

- AP overhears a client's transmission
- AP leverages multiple antennas to generate physical angles of arrival (AoA) of a client's signals:
 - AoA spectrum: power versus bearing at one AP
- With multiple APs, central server synthesizes AoA spectra to obtain a location estimate for the client

Client

AP 2

Basic theory of operation

Basic theory of operation

In a solely line-of-sight environment, phase measurements give client's bearing to AP θ

$$\theta = \arcsin\left(\frac{\angle x_2 - \angle x_1}{\pi}\right)$$

The challenge: multipath reflections

- Problem #1: Strong multipath reflections indoors
- Problem #2: Direct path attenuated or completely blocked
 - Direct path signal may not be the strongest

ArrayTrack's multipath suppression algorithm

 <u>Key observation</u>: direct path bearing is more stable than reflection path bearings when client moves slightly

ArrayTrack's multipath suppression algorithm

- 1. Given: AoA spectra from two nearby locations
- 2. Find the peak bearings in each AoA spectrum
- 3. Discard any peak not paired with a peak in the other AoA spectrum

Two peak bearings within five degrees are considered *paired*

Step 1: detection and recording

- Content of packet and modulation type do not matter
- Works with any part of a packet
 - ArrayTrack utilizes the most robust preamble part

Step 1: detection and recording

- Very small part of a packet needed
 - For a 40 MHz sampling rate, one sample is **25 ns**
 - In the absence of noise, one sample works
 - Employ multiple samples for averaging to remove noise

Packet body

Preamble part

Step 1: detection and recording

- **Diversity synthesis:** existing 802.11 radios record the 1st half of the preamble from antenna 1 and the 2nd half from antenna 2
- ArrayTrack's diversity synthesis algorithm
 - Record 10 samples from the first preamble half and another 10 samples from the second preamble half with different antennas
 - Double the number of antennas we can utilize for ArrayTrack

Step 2: AoA spectrum generation

- MUSIC algorithm [Schmidt, 1986] for AoA spectrum estimation
 - Does not work well for indoor environment because of *coherent signals:*

• Spatial smoothing (SS) [Shan et al, 1985] handles coherent signals

Step 3: AoA spectra synthesis

• N APs generate N AoA spectra

 For a random position X, the likelihood of being at X is a multiplication of probabilities from multiple APs

Step 4: search for highest probability position

Implementation

- **AP:** two WARPs, each with four radio boards (eight antennas)
 - Custom FPGA design using Xilinx System Generator for packet synchronization, diversity synthesis, RF oscillator synchronization
 - 4-16 antennas placed in a linear arrangement, spaced at $\lambda/2$ (6.13 cm)
- Clients: Soekris boxes equipped with 802.11 radios
- **Backend location server:** implemented in Matlab (1,000+ LoC)

Floorplan: client and AP positions

Backend server has knowledge of each AP's location

Evaluation

- How accurate is MUSIC + SS?
- ArrayTrack's multipath suppression improvement
- Effect of number of antennas on each AP
- Effect of client-AP differences in height

Effects of number of APs

Heatmap example of increasing number of APs

MUSIC + SS achieves 26 cm accuracy

• In general, with increasing number of APs, more accurate location information can be obtained

Evaluation

- How accurate is MUSIC + SS?
- ArrayTrack's multipath suppression improvement
- Effect of number of antennas on each AP
- Effect of client-AP differences in height

Multipath suppression improves accuracy

Median: 23 cm 0.5 ArrayTrack (6 APs) (ArrayTrack with 6 APs) MUSIC + SS (6 APs) 0 500 1000 1500 2000 2500 ArrayTrack (5 APs) 0.5 With multipath MUSIC + SS (5 APs) suppression, the long 0, 500 1000 1500 2000 2500 tail is removed CDF 0.5 ArrayTrack (4 APs) MUSIC + SS (4 APs) 00 500 1000 1500 2000 2500 The fewer APs, the more important is 0.5 ArrayTrack (3 APs) MUSIC + SS (3 APs) multipath suppression 0, 500 1000 1500 2000 2500 Location error (cm)

Optimal subset of APs

- On average, 6 APs present the best result
- It's not true for a particular position

Evaluation

- Effect of number of APs on accuracy
- Multipath suppression improvement
- Effect of number of antennas on each AP
- Effect of client-AP differences in height/orientation

Number of antennas at AP

Evaluation

- Effect of number of APs on accuracy
- Multipath suppression improvement
- Effect of number of antennas on each AP
- Effect of client-AP differences in height

UCL

High accuracy despite AP-client height difference

Other characteristics of ArrayTrack

Robust against collision

Conclusions

- ArrayTrack: a robust, fast and responsive localization system with a median accuracy level of 23 cm (6 APs) and one meter (3 APs)
 - Novel multipath suppression and diversity synthesis algorithms
 - Uses only the WiFi infrastructure nearby
 - Robust against low SNR and packet collisions
 - Fast and responsive: requires only 1-3 packets
- Three dimensional tracking with two-dimensional array for future work

Thanks you!

Implementation challenges

- Wire connects WARPs to share the same sampling clock and RF oscillator
- USRP2 calibrates WARPs to remove WARP internal phase offsets
- Remove phase offsets due to hardware imperfections
 - Cables labeled with the same lengths are not exactly the same
 - SMA splitters are not fully balanced

AP-client antenna orientations

• Circularly-polarized antennas mitigate the performance drop

