
Poor Man's Social Network
Consistently Trade Freshness For Scalability
 Zhiwu Xie, Jinyang Liu, Herbert Van de Sompel,
Johann van Reenen and Ramiro Jordan

2

Outline
•  Scaling feed following
•  Algorithm
•  Experiment and results
•  Conclusions

B

F

A

C

H
J

I

D

K

GE

Feed Following

3

blah

blah blah

consumer

producer

consumer
producer

blah

Feed Following:

blah blah blah blah

Feed Following Scalability
Give me the 20 most recent tweets sent
by all the people I follow
•  Individualized queries
•  Fast changing global state
•  Partitioning, replication, and caching
•  NoSQL: trade consistency for scalability

4

Consistency
•  Atomicity, Linearizability, or One-copy

Serializability (1SR)

5

blah blah blah blah
Feed Following:

blah blah blah blah

Feed Following:

blah blah blah blah

Time

Retweet Anomaly

6

B

A C

blah

Feed Following:

blah Retweet: blah

Feed Following:

Retweet: blah

New Approach: TimeMap Query
Who have created new tweets during the
past scheduled release periods?
•  Global time across partitions
•  Schedule releasing
•  Client-side processing and caching
•  Consistently trade freshness for scalability

7

CAP Theorem
•  Preconditioned on the asynchronous network model:

the only way to coordinate the distributed nodes is to
pass messages

•  In the partially synchronous model, where global time
is assumed to be available, CAP may indeed be
simultaneously achievable most of the time

8

Global Time
•  “One of the mysteries of the universe is that it is

possible to construct a system of physical clocks
which, running quite independently of one another,
will satisfy the Strong Clock Condition.”

– Time, Clocks and the Ordering of Events in a
Distributed System, by Leslie Lamport

9

Scheduled Release Algorithm

10

Who have created new tweets during the
past scheduled release periods?

Partitioning: Send A New Tweet

11

0 1 2 3 4

User_id: 0,
5, 10, 15,…

User_id: 1,
6, 11, 16,…

User_id: 2,
7, 12, 17,…

User_id: 3,
8, 13, 18,…

User_id: 4
9, 14, 19,…

Partitioning: TimeMap

12

0 1 2 3 N-1

……

……

Client Side Processing

13

A

If the current time is 1:05:37PM, please tell me who (no matter if I follow any of
them or not) have sent new tweets from 1:05:30PM to 1:05:35PM. I’ll figure out by
myself if any of these new tweets are relevant to me, and if so, I’ll retrieve these
tweets separately by myself.

B

If the current time is 1:05:39PM, please tell me who (no matter if I follow any of
them or not) have sent new tweets from 1:05:30PM to 1:05:35PM. I’ll figure out by
myself if any of these new tweets are relevant to me, and if so, I’ll retrieve these
tweets separately by myself.

Cache!

Staleness vs. Latency

14

Time

How are you? I’m fine (as of 2:00)

1:00 2:00

Time

How were you at
12:55?

I was fine (as of 12:55)

1:00 1:05

Fresh, but 1
hour latency

10 minutes stale
but only 5
minutes latency

Trade Freshness For Scalability
•  Mass transit system vs. private car
•  Lose flexibility, but gain overall

efficiency by sharing resources
•  Stale up to the length of the schedule

release period, e.g., 5 seconds.

15

Experiment
•  Implemented on AWS
•  A Twitter like feed following application
•  Server side: Python/Django,

PostgreSQL, PL/pgSQL
•  Client side: emulated browser,

implemented in Python/Django and
PostgreSQL

16

Experiment: Configurations
•  Used ~ 100 cloud instances from Amazon
•  Most are used for emulated browsers
•  3 to 6 c1.medium as servers
•  Use memcached to simulate

caches

17

Experiment: Workload
•  Work load similar to the Yahoo! PNUTS experiment
•  A following network of ~ 200,000 users
•  Synthetic workload generated by Yahoo! Cloud

Serving Benchmark

18

Experiment Result: Query Rate

19

Experiment Result: Latency

20

Experiment Results: Caching

21

Experiment Results: CPU Load

22

Server

Client

Conclusions
•  Consistently scale feed following
•  Linear scalability
•  Practical low cost solution

23

Thank You
•  Questions?

24

