

Poor Man's Social Network

Consistently Trade Freshness For Scalability

Zhiwu Xie, Jinyang Liu, Herbert Van de Sompel, Johann van Reenen and Ramiro Jordan

Outline

- Scaling feed following
- Algorithm
- Experiment and results
- Conclusions

Feed Following

Feed Following Scalability

Give me the 20 *most recent* tweets sent by *all* the people *I* follow

- Individualized queries
- Fast changing global state
- Partitioning, replication, and caching
- NoSQL: trade consistency for scalability

Consistency

 Atomicity, Linearizability, or One-copy Serializability (1SR)

Invent the Future

Retweet Anomaly

New Approach: TimeMap Query

Who have created new tweets during the past scheduled release periods?

- Global time across partitions
- Schedule releasing
- Client-side processing and caching
- Consistently trade freshness for scalability

CAP Theorem

- Preconditioned on the asynchronous network model: the only way to coordinate the distributed nodes is to pass messages
- In the partially synchronous model, where global time is assumed to be available, CAP may indeed be simultaneously achievable most of the time

Global Time

 "One of the mysteries of the universe is that it is possible to construct a system of physical clocks which, running quite independently of one another, will satisfy the Strong Clock Condition."

 Time, Clocks and the Ordering of Events in a Distributed System, by Leslie Lamport

Scheduled Release Algorithm

Who have created new tweets during the past scheduled release periods?

Partitioning: Send A New Tweet

Partitioning: TimeMap

Client Side Processing

If the current time is 1:05:37PM, please tell me who (no matter if I follow any of them or not) have sent new tweets from 1:05:30PM to 1:05:35PM. I'll figure out by myself if any of these new tweets are relevant to be, and if so, I'll retrieve these tweets separately by myself.

Cache!

Trade Freshness For Scalability

- Mass transit system vs. private car
- Lose flexibility, but gain overall efficiency by sharing resources
- Stale up to the length of the schedule release period, e.g., 5 seconds.

Experiment

- Implemented on AWS
- A Twitter like feed following application
- Server side: Python/Django, PostgreSQL, PL/pgSQL
- Client side: emulated browser, implemented in Python/Django and PostgreSQL

Experiment: Configurations

- Used ~ 100 cloud instances from Amazon
- Most are used for emulated browsers
- 3 to 6 c1.medium as servers
- Use memcached to simulate caches

Invent the Future

Experiment: Workload

- Work load similar to the Yahoo! PNUTS experiment
- A following network of ~ 200,000 users
- Synthetic workload generated by Yahoo! Cloud Serving Benchmark

		PNUTS	This
Number of producers		67,921	67882
Number of consumers		200,000	196,283
Consumers per producer	Average	15.0	13.38
	Zipf parameter	0.39	0.39
Producers per consumer	Average	5.1	4.63
	Zipf parameter	0.62	0.62
Per-producer rate	Average	1/hour	1/hour
	Zipf parameter	0.57	0.57
Per-consumer rate	Average	5.8/hour	varied
	Zipf parameter	0.62	0.62

Experiment Result: Query Rate

Experiment Result: Latency

Experiment Results: Caching

🛄 Virginia Tech

Invent the Future

21

Experiment Results: CPU Load

Conclusions

- Consistently scale feed following
- Linear scalability
- Practical low cost solution

Thank You

• Questions?

