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Outline 
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•  Experiment and results 
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Feed Following Scalability 
Give me the 20 most recent tweets sent 
by all the people I follow 
•  Individualized queries 
•  Fast changing global state 
•  Partitioning, replication, and caching 
•  NoSQL: trade consistency for scalability 
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Consistency 
•  Atomicity, Linearizability, or One-copy 

Serializability (1SR) 
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Retweet Anomaly 
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New Approach: TimeMap Query 
Who have created new tweets during the 
past scheduled release periods? 
•  Global time across partitions 
•  Schedule releasing 
•  Client-side processing and caching 
•  Consistently trade freshness for scalability 
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CAP Theorem 
•  Preconditioned on the asynchronous network model: 

the only way to coordinate the distributed nodes is to 
pass messages 

•  In the partially synchronous model, where global time 
is assumed to be available, CAP may indeed be 
simultaneously achievable most of the time 
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Global Time 
•  “One of the mysteries of the universe is that it is 

possible to construct a system of physical clocks 
which, running quite independently of one another, 
will satisfy the Strong Clock Condition.”  
 
– Time, Clocks and the Ordering of Events in a 
Distributed System, by Leslie Lamport 
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Scheduled Release Algorithm 
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Who have created new tweets during the 
past scheduled release periods? 



Partitioning: Send A New Tweet 
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User_id: 0, 
5, 10, 15,… 

User_id: 1, 
6, 11, 16,… 

User_id: 2, 
7, 12, 17,… 

User_id: 3, 
8, 13, 18,… 
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Partitioning: TimeMap 

12 

0 1 2 3 N-1 

…… 

…… 



Client Side Processing 
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A

If the current time is 1:05:37PM, please tell me who (no matter if I follow any of 
them or not) have sent new tweets from 1:05:30PM to 1:05:35PM. I’ll figure out by 
myself if any of these new tweets are relevant to me, and if so, I’ll retrieve these 
tweets separately by myself. 

B

If the current time is 1:05:39PM, please tell me who (no matter if I follow any of 
them or not) have sent new tweets from 1:05:30PM to 1:05:35PM. I’ll figure out by 
myself if any of these new tweets are relevant to me, and if so, I’ll retrieve these 
tweets separately by myself. 

Cache! 



Staleness vs. Latency 
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Time 

How are you? I’m fine (as of 2:00) 

1:00 2:00 

Time 

How were you at 
12:55? 

I was fine (as of 12:55) 

1:00 1:05 

Fresh, but 1 
hour latency 

10 minutes stale 
but only 5 
minutes latency 



Trade Freshness For Scalability 
•  Mass transit system vs. private car 
•  Lose flexibility, but gain overall 

efficiency by sharing resources 
•  Stale up to the length of the schedule 

release period, e.g., 5 seconds. 
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Experiment 
•  Implemented on AWS 
•  A Twitter like feed following application 
•  Server side: Python/Django, 

PostgreSQL, PL/pgSQL 
•  Client side: emulated browser, 

implemented in Python/Django and 
PostgreSQL 
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Experiment: Configurations 
•  Used ~ 100 cloud instances from Amazon 
•  Most are used for emulated browsers 
•  3 to 6 c1.medium as servers 
•  Use memcached to simulate 

caches 
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Experiment: Workload 
•  Work load similar to the Yahoo! PNUTS experiment 
•  A following network of ~ 200,000 users 
•  Synthetic workload generated by Yahoo! Cloud 

Serving Benchmark  
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Experiment Result: Query Rate 
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Experiment Result: Latency 
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Experiment Results: Caching 

21 



Experiment Results: CPU Load 
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Conclusions 
•  Consistently scale feed following 
•  Linear scalability 
•  Practical low cost solution 
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Thank You 
•  Questions? 
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