/ 2
WVirginiaTech " o5 1152 Alamos

Invent the Future \]clnella tal:rpm . LUs FAAITIVS

EST. 1943

THE UNIVERSITY of
- NEW MEXICO

Poor Man's Social Network

Consistently Trade Freshness For Scalability

Zhiwu Xie, Jinyang Liu, Herbert Van de Sompel,
Johann van Reenen and Ramiro Jordan

Outline

» Scaling feed following
 Algorithm

* Experiment and results
» Conclusions

mVlrgmlaTech

nt the Futur

Feed Following:

@

& VirginiaTech
Invent the Future

Feed FoIIowig caability

Give me the 20 most recent tweets sent
by all the people I follow

 |ndividualized queries

« Fast changing global state

 Partitioning, replication, and caching
 NoSQL: trade consistency for scalability

& VirginiaTech
Invent the Future

Consistency

» Atomicity, Linearizability, or One-copy
Serializability (1SR)

o

Oo

Feed Following:

o

.
Tl

Time

QVirg}niaTech

5 nvent the Future

Retweet Anomaly

Feed Following:

O z
Feed Following:

& VirginiaTech

6 Invent the Future

New Approach: TimeMap Query

Who have created new tweets during the
past scheduled release periods?

» Global time across partitions

* Schedule releasing

 Client-side processing and caching

» Consistently trade freshness for scalability

& VirginiaTech
Invent the Future

CAP Theorem

* Preconditioned on the asynchronous network model:
the only way to coordinate the distributed nodes is to

PaSS messages

* In the partially synchronous model, where global time
Is assumed to be available, CAP may indeed be
simultaneously achievable most of the time

mVlrglmaTech

nt the Futur

Global Time

* “One of the mysteries of the universe is that it is
possible to construct a system of physical clocks
which, running quite independently of one another,
will satisfy the Strong Clock Condition.”

— Time, Clocks and the Ordering of Events in a
Distributed System, by Leslie Lamport

mVlrglmaTech

nt the Futur

10

Scheduled Release Algorlthm

. start committed
Query 2 | |
start committed
Query 1 |]
start committed quefry visible
Update 2 | | |
start committed query visible
Update 1 [| |
l:i t|+1 Timé
Who have created new tweets during the
past scheduled release periods? ¥ VirginiaTech

Partltlonmg Send A New Tweet

User id: 0,
5,10, 15,..

X

1

X

User id: 2,
7,12, 17,...

X

User id: 3,
8,13, 18,...

X

User id: 1,
6, 11, 16,...

User id: 4
9, 14,19,...

-

& VirginiaTech

Invent the Future

13

Client Side Processing

If the current time is 1:05:37PM, please tell me who (no matter if | follow any of
them or not) have sent new tweets from 1:05:30PM to 1:05:35PM. P'll figure out by

myself if any of these new tweets are r e, and if so, I'll retrieve these
tweets separately by myself.

v

4@

If the current time is (no matter if | follow any of
them or not) have sent new t s from 1:05:30PM to 1:05:35PM. I'll figure out by
myself if any of these new tweets are relevant to me, and if so, I'll retrieve these
tweets separately by myself.

v

@

& VirginiaTech

Invent the Future

Staleness vs. Latency

*
1:00 2:00 -

14

Time
How were you at | was fine (as of 12:55)
12:557?
1:00 1:05 Time,
& VirginiaTech
Invent the Future

15

Trade Freshness For Scalability

« Mass transit system vs. private car

» Lose flexibility, but gain overall
efficiency by sharing resources

» Stale up to the length of the schedule

release period, e.g., 5 seconds.

& VirginiaTech
Invent the Future

16

Experiment

* Implemented on AWS

* A Twitter like feed following application

» Server side: Python/Django,
PostgreSQL, PL/pgSQL

* Client side: emulated browser,

implemented in Python/Django and

PostgreSQL

& VirginiaTech
Invent the Future

17

« Used ~ 100 cloud instances from Amazon
 Most are used for emulated browsers

 3to 6 cl.medium as servers ..c..

c1.xlarge
Httperf + autobench

« Use memcached to simulate ...
caches

haproxy

Cache
m2.2xlarge
memcached

Experiment. Configurations

|| POST Only [GETOnly

Emulated Browser

c1.xlarge I, 1...

Django + httpd +

PostgreSQL |

Server

c1.medium

Django + httpd +
PostgreSQL + memcached

& VirginiaTech

Invent the Future

Experiment: oklod

* Work load similar to the Yahoo! PNUTS experiment
* A following network of ~ 200,000 users

« Synthetic workload generated by Yahoo! Cloud
Serving Benchmark

PNUTS This
67,921 67882
200,000 196,283
15.0 13.38
er 0.39 0.39
5.1 4.63
er 0.62 0.62
1/hour 1/hour
er 0.57 0.57
5.8/hour varied
er 0.62 0.62

@i \' usuua ACTLUL
Invent the Future

19

Peak query rate (1/s)

& —_ o
o o o

o
|

e ————————— i —————————————————————————————————————

Number of servers

& VirginiaTech

Invent the Future

20

Latency (ms)

1000

800

600

400

200

On=3

<n=4

+n=5

Xn=6

0 25

50 75
Query load (1/s)

100

125

& VirginiaTech

Invent the Future

Experiment Results: Caching

Memcached Standalone - memcached memcached_operations - 15:25:06 PST

21

JJ ﬂHJJ[
Wy JL
A
AR
M‘H M(ﬂﬁ /
o A M %ﬁ Hbf :
mVlrglnlﬁ'f}“c;:gh

22

Server .

Experlment Results CPU

80

40

I,"f“l ‘m J|‘||”||II||I IIH |

Client -

100

80

40

twitter-emulated-browser-64bit v1 - cpu-0 cpu_overvie

& VirginiaTech

Invent the Future

23

Conclusions

» Consistently scale feed following
* Linear scalability
* Practical low cost solution

mVlrglmaTech

nt the Futur

24

Thank You

e Questions?

& VirginiaTech
Invent the Future

