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Large Computing Clusters

* e.g., MapReduce, Hadoop, Cosmos
— Enable large data processing applications

e Sharing

— Each user pays for using a fraction of the entire
cluster (virtual cluster)

— Fixed capacity, but resources can be shared
among VCs to promote utilization
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Job execution model

Job1l demands at 66 Input_file_size/DFS_block_size
most 4 VMs

OR <mapred.map.tasks> 99

VC2
alloc=0
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[1] http://wiki.apache.org/hadoop/HowManyMapsAndReduces
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Job execution model
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Sharing promotes overall system utilization



Job execution model
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Our work tackles fairness at the cluster scheduler level.



Instantaneous fairness

* Consider parameters at a given time point

e MaxMin: Maximize the minimum allocation

— Hadoop’s fair scheduler is a variation



MaxMin: how it works

e Maximize the minimum allocation
VC1
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MaxMin
____

Allocation

Demand 8 0 12
Capacity 6 8 4
Allocation 6 0 4
Demand 2 0

Capacity 6 8

Allocation 6+2 0 4+2
Demand 0 0 6

Capacity 6 8 4



Long-term?

* Previous contribution is not rewarded
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Long-term?

e Large VCs win fewer resources
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Trace-driven simulation

e Build a simulator

* Production trace from a commercial cluster
— 50,000 servers shared by 115 VCs
— One month period
— Job submit time, size, etc

* Pick 6 VCs (two under-loaded, three full-

loaded and one over-loaded) to assess the
performance inconsistency
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Load fluctuation
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Fast VC: under-loaded days
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18 under-loaded days



Slow VC: under-loaded days
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20 under-loaded days
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(b) The VC stretch. Lower is better.
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The fast VC performs optimally when it is under-loaded
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The slow VC performs optimally in most under-loaded days
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Congestion: a slow day may affect the next upcoming day



Contending days
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Six contending days: both VCs are overloaded
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Summary

_ slow VC

Capacity 900 350
Load characteristic 20 under, 11 over 18 under, 13 over
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Summary (cont.)

_ slow VC

Capacity 900 350
Load characteristic 20 under, 11 over 18 under, 13 over
(both~=1) (bursty) (smooth)
- 14 days stretch~=1
Unelsrleseiselehy | 6 day stretch >1 due to Stretch~=1
performance .
congestion
. . Stretch =10 ~ 35
gSalxl CeniEmeing - contribution not rewarded Stretch~=1
Y - Small VC bias
(Five) Overloaded Stretch=4~10

days - Meets full-utilized days S =0
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Solutions?

* Consider usage history

— Idea: gain credits when contributing; lose credits
when overusing

— Higher credits more allocation
— Deficit Round-Robin (DRR) for network switches
— Xen credit scheduler

— Lottery-based scheduler: accumulate “lottery” to
increase the chances of wining more resources



A straightforward accounting method

* Open a “saving account” for free resource
contribution

— Contributing free resources -> gain credits

— Overusing -> lose credits

* Allocate more VMs to VCs with higher credits



Challenges
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Challenges

 The counting scheme should provide “good”
incentives of user behaviors

 We desire the users to
— Contribute resources
— Promote overall system utilization

— Shape their workload and avoid peaks

e Straightforward scheme may not be enough!



Conclusions

Show the performance inconsistency with
nstantaneous fair schedulers

dentify three causes

Usage history should be considered when
making scheduling decisions

Credit counting should enforce fairness while
providing incentives to promote overall
utilization
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Short-term or long-term fairness

 MapReduce jobs are long (~“hours), especially
in large clusters like Cosmos

* Scheduling decisions are made on a minute
basis

 Short-term fairness -> accumulated effects ->
observe unfairness at job level



DRF scheduler

* Dominant Resource Fairness
— Find the dominant resource type

— Make MaxMin decision on that type (still only at a
given time point)



Challenges
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More credits lead to more allocation in the future



Burstiness impact

 MaxMin: If you peak meets others’ peak you
ose

* |deal long term fairness: you will be treat
petter




Dynamic joining/leaving users



