Microsoft Research

Performance Inconsistency in Large
Scale Data Processing Clusters

Mingyuan Xia, Nan Zhu, Yuxiong He,
Sameh Elnikety, Xue Liu

Large Computing Clusters

* e.g., MapReduce, Hadoop, Cosmos
— Enable large data processing applications

e Sharing

— Each user pays for using a fraction of the entire
cluster (virtual cluster)

— Fixed capacity, but resources can be shared
among VCs to promote utilization

Production trace

average job slow down

(compared with ideal run time) ®

/
I

VC stretch
w
fal
0

| I |

0 2 4 6 8

Load
- the total work (server hours)
/VC capacity (number of servers)

Production trace

6
5 L *
. a
4
o
% .
‘33 ¢ 1 o
O
>
®
2 °
l.‘
4
Load

Performance Inconsistency

Cosmos

Physical clusters

Cosmos
Management VMs

Virtual Cluster (6)

VM
VM
» : . .

Virtual Cluster (4)

Physical clusters

Cosmos

_ Management VMs
Virtual Cluster (6)

. .

Virtual Cluster (4)

Physical clusters

VC1

Job execution model

alloc=0
cap=6

VC2

alloc=0
cap=8

Job execution model

Job1l demands at 66 Input_file_size/DFS_block_size
most 4 VMs

OR <mapred.map.tasks> 99

VC2
alloc=0
cap=6

[1] http://wiki.apache.org/hadoop/HowManyMapsAndReduces

Job execution model

VC1

alloc=4
cap=6

VC2

@ I_

cap=8 |

Job execution model

%

cap=6 job2

VC2

alloc=4 I
cap=8 I

Sharing promotes overall system utilization

Job execution model

\/@
scheduler
VC1
alloc=8
cluster
scheduler
VC2
alloc=4 |

Our work tackles fairness at the cluster scheduler level.

Instantaneous fairness

* Consider parameters at a given time point

e MaxMin: Maximize the minimum allocation

— Hadoop’s fair scheduler is a variation

MaxMin: how it works

e Maximize the minimum allocation
VC1

(cap=6)

VC2

(cap=8)

VC3

(Ca:“) VC1=4/6 VC1=8/6 VC1=8/6

VC2=4/8 VC2=8/8 VC2=0/8
Total VMs =18 Vv(C3=0/4 VC3=0/4 VC3=10/4

MaxMin

Allocation

Demand 8 0 12
Capacity 6 8 4
Allocation 6 0 4
Demand 2 0

Capacity 6 8

Allocation 6+2 0 4+2
Demand 0 0 6

Capacity 6 8 4

Long-term?

* Previous contribution is not rewarded
o

(cap=4)

VC2

(cap=4)

VC3

(cap=4) VC1=0/4 VC1=6/4

VC2=8/4 VC2=6/4
VC3=0/4 VC3=0/4

Long-term?

e Large VCs win fewer resources

VC1 -
(cap=10) .
VC2
(cap=4) l '
: !
vC3 | '
(cap=8) VC1=0/10 VC1=14/10
VC2=8/4 VC2=8/4

VC3=0/8 VC3=0/8

Trace-driven simulation

e Build a simulator

* Production trace from a commercial cluster
— 50,000 servers shared by 115 VCs
— One month period
— Job submit time, size, etc

* Pick 6 VCs (two under-loaded, three full-

loaded and one over-loaded) to assess the
performance inconsistency

Machine hours

140000
120000
100000
80000
60000
40000
20000
0

Overall load fluctuation

VG, " VC, ®VC, ®Vyc m\VC, = V(g

1234567 8 91011121314151617181920212223242526272829303132
Day

VC Stretch
O L N W B U O N 0 W

Overall VC performance

9

* v,

e V(G

Load

Load fluctuation

=% Fast VC
2.5 1 == Slow VC

1234567 8 91011121314151617181920212223242526272829303132
Day

Fast VC: under-loaded days

3 :
—®= 'Fast VC
2.5 1 -x— Slow VC
2 -

T
©
o

]

1.5 - x
%" N

%-%

®

1234567 8 91011121314151617181920212223242526272829303132
Day

18 under-loaded days

Slow VC: under-loaded days

== 'Fast VC
2.5 1 == Slow VC

0 | I | | I | I 1 I | | I | | | I |

1234567 8 91011121314151617181920212223242526272829303132
Day

20 under-loaded days

VC stretch

35

30

25

20

15

10

|

j

Mx-"-"-"*""‘*-«.—&&"

Performance

|

X
\
X

=®= Fast VC
-x= Slow VC

!

-o-o-o-o-o-o-o-’o‘:x-x |

123456 7 8 91011121314151617181920212223242526272829303132

Day

(b) The VC stretch. Lower is better.

VC stretch

35

30

25

20 -

15

10 -

Fast VC: Under-loaded day

performance

%
ﬂ == Fast VC

-x= Slow VC

[| I [| I I | | I I | | I I 'w-‘ I | | I I | | I [| I T [
1234567 8 91011121314151617181920212223242526272829303132
Day

The fast VC performs optimally when it is under-loaded

VC stretch

35

30

25

20

15

10

Slow VC: Under-loaded day

performance

X

R

’\ | x\/x.x\

x'

.-o-o-o-o—o-o-o-o—x-x'x'x-O-""“X-o-o-&’.‘:X

X
\

X

l

=®= Fast VC
-x= Slow VC

X X

JX

X
a \.

-o-o-o-o-o-o-o-o-x-x |

123456 7 8 91011121314151617181920212223242526272829303132

Day

The slow VC performs optimally in most under-loaded days

VC stretch

35
30
25
20

15 -

o

J
%X

0-0-0-0-0-05 ¢ o X:X:X:X0-X:XeX 00 XXX,

X X

\V/

"X

Congestion

%
ﬂ ~®= Fast VC
-x- Slow VC
%
’
%
/ Q | ¥

0-0-0-0-0-0-0-X-X

I 1 1

123456 7 8 91011121314151617181920212223242526272829303132

Day

Congestion: a slow day may affect the next upcoming day

Contending days

3 -
'Fast VC
= Slow VC
2]
e
€ 15 -

A
/\

1234567 8 91011121314151617181920212223242526272829303132
Day

| |

Six contending days: both VCs are overloaded

VC stretch

35

30

25

20

15

10

|

Contending day performance

[]
Fast VC
Slow VC

/™
x EOSSAD -x
123456 7 8 91011121314151617181920212223242526272829303132

Day

Slow VC loses totally to the fast VC

Summary

_ slow VC

Capacity 900 350
Load characteristic 20 under, 11 over 18 under, 13 over
(both~=1) (bursty) (smooth)
- 14 days stretch™~=1
SEEHEREEE CET | 6 day stretch >1 due to Stretch~=1

performance .
congestion

Summary (cont.)

_ slow VC

Capacity 900 350
Load characteristic 20 under, 11 over 18 under, 13 over
(both~=1) (bursty) (smooth)
- 14 days stretch~=1
Unelsrleseiselehy | 6 day stretch >1 due to Stretch~=1
performance .
congestion
. . Stretch =10 ~ 35
gSalxl CeniEmeing - contribution not rewarded Stretch~=1
Y - Small VC bias
(Five) Overloaded Stretch=4~10

days - Meets full-utilized days S =0

VC Stretch
O P N W BB U O N 0w

VC
VG,

0.5

Summary

e Contribution not rewarded
e Small VC bias
* Congestion

* VC,

Load

Solutions?

* Consider usage history

— Idea: gain credits when contributing; lose credits
when overusing

— Higher credits more allocation
— Deficit Round-Robin (DRR) for network switches
— Xen credit scheduler

— Lottery-based scheduler: accumulate “lottery” to
increase the chances of wining more resources

A straightforward accounting method

* Open a “saving account” for free resource
contribution

— Contributing free resources -> gain credits

— Overusing -> lose credits

* Allocate more VMs to VCs with higher credits

Challenges

gScenarios o * Give credits as long as
— Capacity VCs are underutilized
—a—-VC1 .
ve2 " Make promise for more
—a—VC3 .
future allocation
/-/'\ W) Users further decrease
| load to gain more credits

/ .l‘s
) The system becomes
even more underutilized

13 14 15 16 17 18 19

Challenges

 The counting scheme should provide “good”
incentives of user behaviors

 We desire the users to
— Contribute resources
— Promote overall system utilization

— Shape their workload and avoid peaks

e Straightforward scheme may not be enough!

Conclusions

Show the performance inconsistency with
nstantaneous fair schedulers

dentify three causes

Usage history should be considered when
making scheduling decisions

Credit counting should enforce fairness while
providing incentives to promote overall
utilization

Microsoft Research

Performance Inconsistency in Large
Scale Data Processing Clusters

Mingyuan Xia, Nan Zhu, Yuxiong He,
Sameh Elnikety, Xue Liu

Backup

VC

demand

Parallelism estimation

avaN

demand

¥

N Future work: use

job info to refine

T~

— estimated —— actual

Short-term or long-term fairness

 MapReduce jobs are long (~“hours), especially
in large clusters like Cosmos

* Scheduling decisions are made on a minute
basis

 Short-term fairness -> accumulated effects ->
observe unfairness at job level

DRF scheduler

* Dominant Resource Fairness
— Find the dominant resource type

— Make MaxMin decision on that type (still only at a
given time point)

Challenges

40 E Scenario 1 E E Scenario 2 E E Scenario 3 E
35 - | A — Capacity
—8—VC1
——VC2
—&—VC3

0*—1 T v
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Time

I I I I I I 1 I 1

More credits lead to more allocation in the future

Burstiness impact

 MaxMin: If you peak meets others’ peak you
ose

* |deal long term fairness: you will be treat
petter

Dynamic joining/leaving users

