Automatic Wireless Protocol Reverse Engineering

Johannes Pohl and Andreas Noack

University of Applied Sciences Stralsund

August 13, 2019

Introduction	AWRE	Experiments	Conclusion
000			
La companya di Théo ng			

Proprietary wireless protocols everywhere

Example: Smart Home

- Increase comfort of users through wireless sockets, door locks, valve sensors . . .
- Devices are designed under size and energy constraints
- Limited resources for cryptography

Risks of Smart Home

- Manufactures design custom proprietary wireless protocols
- Hackers may take over households and, e.g., break in without physical traces

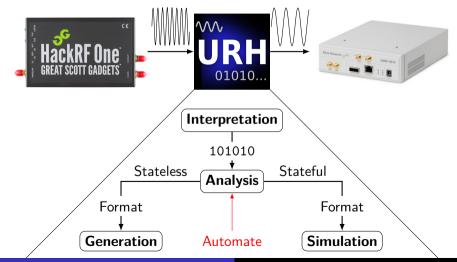
How can we speed up the security investigation of proprietary wireless protocols?

Introduction	AWRE	Experiments	Conclusion
0000			
Software Defined Radios			

Software Defined Radio

Why Software Defined Radios?

- Send and receive on nearly arbitrary frequencies^a
- Flexibility and extendability with custom software
- ^ae.g. HackRF: 1 MHz 6 GHz


(a) USRP N210

Introduction	AWRE	Experiments	Conclusion
0000			
Wireless Protocols			

Universal Radio Hacker

Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering

Introduction	AWRE			Experiments 0000	Conclusic 00
Wireless Protocols					
Structure c	of a Wireless Pro	otocol			
Preambl	e Synchronization	Length SRC	DST	Sequence Number	···· Checksum
Purpose of	of Fields				
Prea	mble: Synchronize	clocks with fi	xed prea	mble pattern, e.g.,	101010
Sync	hronization: Indica	ate start of tra	ansmissio	on with sync sequer	nce, e.g., 0x9a7d
Leng	th: Contains the size	ze of following	g data, ι	isually in bytes	

- **SRC/DST**: Source / Destination addresses of communicating devices
- Sequence Number: Increasing counters used for flow control and freshness
- Checksum: Verify integrity of received data (recognize transmission errors)

The **message format** determines the order and type of fields for a message. The **message type** describes which message format to use. A protocol can contain various message types such as DATA and ACK (acknowledgement).

Introduction	AWRE	Experiments	Conclusion
	000000		
Example			

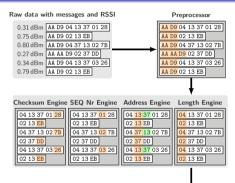
Example Protocol: Communication between two Smart Home Devices

Protocols Participants	Enter par	ttern	here					<i>8</i> 63	Search		þ - /	- ф								-00 0	18m							Time	estan	np: 20	18-03	3-19 1	6:42:	23.98	5527 ((+25,7	'5 µs)	
✓ not assigned		1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17 1	8 19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39 40
✓ CCU (C) ✓ Socket (S)	1 (C)	a	а	а	а	а	а	а	a e	9	c	а	е	9	c	а	0	2	4	а	б	4	0	3	9	2	7	c	c	3	1	0	1	c	c	0	2	1 1
	2 (S)	a	а	а	а	а	а	а	a e	9	c	а	e	9	c	а	1	2	4	а	0	0	2	3	1	0	1	с	с	3	9	2	7	с	c	0	4	3 f
	3 (C)	a	a	а	а	а	a	a	a e	9	c	а	е	9	c	а	1	2	4	а	0	0	3	3	9	2	7	с	с	3	1	0	1	с	c	b	0	c 5
	4 (S)	a	a	a	a	a	a	a	a (9	c	a	0	9	c	a	0	2	4	8	0	0	2	3	1	0	1	с	с	3	9	2	7	с	с	0	0	8 9
	5 (C)	a	a	а	а	а	a	a	a c	9	0	а	e	9	0	a	0	2	5	а	6	4	0	3	9	2	7	c	с	3	1	0	1	c	c	0	1	0 9
	6 (S)	a	a	а	а	а	a	a	ac	9	c	а	e	9	c	а	1	2	5	а	0	0	2	3	1	0	1	c	c	3	9	2	7	c	c	0	4	1 c
	7 (C)	a			a				a 6	9	0	a	e	9	0	a	1	2	5	a	0	0	3	3	9	2	7	0	0	3	1	0	1	0	•	9	3	2 d
liew data as: Hex 👻		a								0				9	0		0	2	5	8	0	0	2	3	1	0	1		0	3	0	2	7	0	0	0	0	4 f
ecoding: Non Return To Zero (NRZ) *		a						-			0			,	-		0	2	6		6	4	0	3		2	7	0	0	3	1	•	1	0	0	0	1	0 9
ecoding errors: No message selected			a		a	a	a	a	a (0	a		0	0	a	1	2	6	a	0	0	2	3		0	1	0	0	3	0	2	7	c	0	0	4	1 0
Mark diffs in protocol		a												9							0	0		9		0				3	*	•		0		0	3	2 d
Show only diffs in protocol					a	a	a		a (9		a	e	9		a			0	a	0	0	3	3		~			0	3	9		÷		c		0	
Show only labels in protocol	12 (8)	8	8	a	8	8	a	a	a (9	0	a	e	9	c	a	0	2	0	8	0	0	z	3	1	0	1	c	C	3	9	z	'	C	C	0	0	4 1
Analyze Protocol	Bit:								н	ĸ								Decin	val:																	0 cc	dumn	s) selec
Message types																	Labo	ls of D	e feuda																			
Name Edit Name		Col	or Di	anlau	lorm	100	lar f0ir	(Dear)] Value								Labe	IS OF L	eraurt																			
v Default →		00		shray	TOTT		er ton	/ byte	1 40106																													

Introd	uc	01	
0000			

AWRE

Experiments 0000 Conclusion


Example

Example Protocol after hitting the Analyze Protocol Button

Protocols Pa	irticipants			Enter	patte	rn her	0					6 Sear	ch	•	• /	- ø									-00	dBm							Tim	iestai	np: 2	018-03	3-19 1	6:42:	23.98	5552	(+25,0	13 µs)	i.	
🖌 not assigned					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
✓ CCU (C) [3927 ✓ Socket (S) [31]				1 (C)	а	а	а	а	а	а	а	а	е	9	с	а	е	9	с	а	0	ь	2	4	а	6	4	0	3	9	2	7	с	c	3	1	0	1	с	с	0	2	1	1
				2 (S)	а	а	а	а	а	а	а	а	е	9	с	8	е	9	с	а	1	1	2	4	а	0	0	2	3	1	0	1	с	с	3	9	2	7	с	с	0	4	3	1
				3 (C)	a	a	a	а	а	a	a	а	е	9	с	8	е	9	с	8	1	9	2	4		0	0	3	3	9	2	7	с	с	3	1	0	1	с	с	b	0	c	5
				4 (S)	a	a	а	а	а	а	a	а	0	9	с	а	e	9	с	а	0	•	2	4	8	0	0	2	3	1	0	1	с	c	3	9	2	7	c	с	0	0	8	9
				5 (C)	a	a	а	а	а	а	a	а	e	9		а	e	9	с	a	0	ь	2	5	а	6	4	0	3	9	2	7	с	c	3	1	0	1	c	с	0	1	0	9
				6 (S)			a	а	a		a	а		9	c	8	e	9	c	8	1	1	2	5		0	0	2	3	1	0	1	c	c	3	9	2	7	c	с	0	4	1	0
				7 (C)										0	0			0	0		1	0	2	5		0	0	3	3	0	2	7	0	0	3	1	0	1		0	9	3	2	d
View data as:	Hex		×	8 (S)										0	0			0	0		0		2	5	8	0	0	2	3	1	0	1	c	0	3	0	2	7	0	0	0	0		1
Decoding:	Non Return To	Zero	(NRZ) -	9 (C)										0				0			0	h	2	6		6	4	0	3		2	7	0	0	3	1	0	1			0	1	0	
Decoding errors: 0	(0,00%)			10 (S)									÷			÷					1		2			0	0	2	2	1	0		0		2		2	7			0	4		
Mark diffs in pr	otocol			11 (C)										~				~			1					0	0		3		0	-	0	0							9	3	2	d
Show only diffs	in protocol			12 (S)	ů								÷	~	0			~	0			,	2	0		0	0	0	3	2	2		C	0	3		0	-	0	0	0	0		f
Show only labe	Is in protocol			12 (5)			a	a	a		9	a	0	9	0	0	0	y	c	9	0	0	z	0	8	0	0	2	3	1	0		C	¢	3	9	2	/	c	C	0	0	1	•
Ana	lyze Protocol		*	Bit: 11	100								Hex	c								C	Decim	ial: 1	z																1 cc	lumn	(9) sel	lecte
Messa	ge types																				Lab	els fo	r mes	isage	#5																			
Nam	0	Edit	Name			Colo	or Dis	play fr	ormat	Orde	r (Bit	Byte]	Valu	,																														
✓ Default		afti	✓ pream	ble			Bit			MSB	/BE		1010	10101	0101	0101	01010	1010	10101	0																								
✓ Inferred #1		ali.	√ synch	ronization	•		Bit			MSB	/BE		1110	10011	1001	0101	11010	01110	00101	0																								
✓ Inferred #2		al in	✓ length				De	cimal		MSB	/BE		11																															
✓ Inferred #3		ali	✓ seque	nce numb	er		De	cimal		MSB	/BE		37																															
			✓ source	e address			He	×		MSB	/BE		3927	cc																														
			✓ destin	ation add	ress		He	×		MSB	/BE		3101	cc																														
			✓ check	sum			He	×		MSB	BE		5d10	(shoi	uld be	5d10	0)																											
+ Add new mess	age type																																											

Introduction 0000	AWRE	Experiments 0000	Conclusion
Overview			

Overview of Proposed Algorithm

Result: Aggregated protocol fields

Message Type 1 (DATA)

Preamble SYNC LEN DST SRC SEQ CRC

Message Type 2 (ACK)

Preamble SYNC LEN DST CRC

Design Goals

- Work on limited number of messages
- Tolerant against transmission errors
- Bootstrap unknown protocols but also consider **prior knowledge**
- Work solely on captured messages,
 - i.e., program binary is not accessible

Introduction	AWRE	Experiments	Conclusion
0000	000●0000	0000	
Preprocessor			

Preprocessing: Align messages on (unknown) sync words

Preprocessor

AA D9	04 13 37 01 28
AA D9	02 13 EB
AA D9	04 37 13 02 7B
AA AA	<mark>D9</mark> 02 37 DD
AA D9	04 13 37 03 26
AA D9	02 13 EB

Purpose of Preprocessing

- Identify **preamble**: $(a^n b^m)^k$ with $a, b \in \{0, 1\}$, $a \neq b$ and $n, m, k \in \mathbb{N}^+$, e.g., 10101010 with n = m = 1 and k = 4.
- Identify sync word(s)
- Align messages on sync word(s): Pass only data behind sync to subsequent engines

Introduction 0000	AWRE ○○○○● ○○ ○	Experiments 0000	Conclusion 00
Engines			
Overview Field	Type Inference		

- Assign messages to engine-specific **clusters**. For example, the length engine clusters messages based on their physical length in bytes.
- **②** Find **common ranges** inside and/or between clusters.

- Score common ranges with an engine-specific scoring function.
- 2 Return common ranges with highest score if they surpass a minimum score s_{min} .
- If possible, merge the resulting ranges.
- 3 Add found labels to the current *message type* or create a new one, if necessary.

Engines

Included Engines

Length Engine

- Cluster messages by physical length
- Give higher score to ranges those decimal value matches physical length

Sequence Number Engine

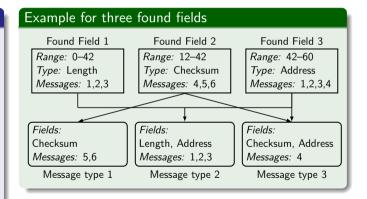
- Calculate a matrix *E* of decimal differences between adjacent messages
- Evaluate columns of *E* with only constants or zeros (when SeqNr is constant between some messages)

Address Engine

- Assign a participant to every message
- Infer participant address candidates
- Find fields with address candidates

Checksum Engine

- Find checksums such as CRC16-CCITT by testing common CRC parameters and other checksums
- CRC testing algorithm uses a CRC cache for increased performance


Introduction	AWRE	Experiments	Conclusion
0000	00000000	0000	

Engines

Message Type Creation and Assignment

Assignment of Message Types

- Engines return a set of labels
- Group these labels into message types based on their message indices
- Create message type for non-overlapping fields with matching message indices
- In conflict case: Choose range(s) that maximize the total score of message type

Experiments 0000

Prior Knowledge

Considering Prior Knowledge

Rules for prior knowledge

- Labels must not be changed.
- 2 Labels must not be removed from a message type.
- Messages must keep their assigned message type.

Dealing with prior knowledge

- Skip engines of already present fields
- Engines ignore all ranges of a message that are already labeled
- If new message type needs to be created: **split** original one (=copy over all labels)

Run this for each message type to consider prior knowledge

```
while new_fields_found and max_iteration_not_exceeded:
for mt in existing_message_types:
  new_fields = []
 for engine in engines:
      if field_of_engine not in mt:
          new_fields.extend(engine.rwn(mt))
      add_to_message_type(mt, new_fields) # Split message type if necessary
```

3

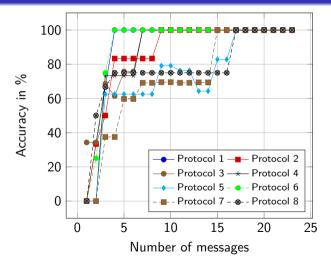
5

6

7

Introduction	AWRE	Experiments	Conclusion
0000	00000000	•000	
Generated Protocols			

Overview of Generated Protocols

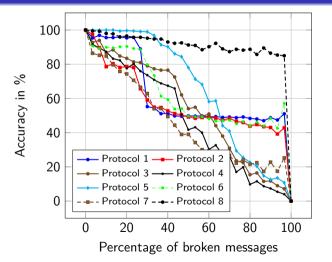

Table: Properties of tested protocols whereby \times means field is not present and N_P is the number of participants.

#	Comment	NP	Message	Even/odd	Size	of field i	n bit (BE=E	Big Endia	n, LE=L	ittle Endian)	
			Туре	message data	Preamble	Sync	Length	SRC	DST	SEQ Nr	CRC
1	common protocol	2	data	8/64 byte	8	16	8	16	16	8	×
2	unusual field sizes	2	data	8/64 byte	72	16	8	24	24	16 (BE)	×
3	contains ack and CRC8	2	data	10/10 byte	16	16	8	16	16	8	8
	CCITT		ack	×	16	16	8	×	16	×	8
4	contains ack and CRC16	2	data	8/64 byte	16	16	8	16	16	×	16
	CCITT		ack	×	16	16	8	×	16	×	16
5	three participants with ack	3	data	8/64 byte	16	16	8	16	16	8	×
	frame		ack	×	16	16	8	×	16	×	\times
6	short address	2	data	8/64 byte	×	16	8	8	×	8	×
7	four participants, varying	4	data	8/8 byte	16	16	8	24	24	×	16
	preamble size, varying		ack	×	8	16	×	×	24	×	16
	sync words		kex	64/64 byte	24	16	×	24	24	×	16
8	nibble fields + LE	1	data	542/260 byte	4	4	16 (LE)	×	×	16 (LE)	×

Introduction	AWRE	Experiments	Conclusion
		0000	

Generated Protocols

Test against number of messages

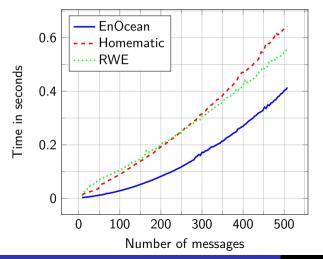


Results

- 100% accuracy for all protocols when more than 17 messages are available
- 100% accuracy for five out of eighth protocols when at least 7 messages are available
- Protocol 5 and 7 have more participants involved so algorithm needs more messages to infer address fields correctly

Introduction	AWRE	Experiments	Conclusion
0000	00000000	00●0	
Generated Protocols			

Test against errors



Setup and Results

- Break messages by setting bits to random values beginning at a random position (30 messages total)
- Worst case for the algorithm because some data remains valid in broken messages
- Majority of protocols are labeled with more than 80% accuracy when 20% of messages are broken

Introduction	AWRE	Experiments	Conclusion
		0000	
Real world weeks cale			

Performance measurement with real-world smart home protocols

Measurement Setup

- Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
- 16 GB RAM
- Message length between 8 and 61 bytes
- For every number of messages perform 100 performance measurements and take the mean performance

Introduction	AWRE	Experiments	Conclusion
			•0

Conclusion and Future Work

Conclusion

- Framework for automatic reverse engineering of proprietary wireless protocols
- Dedicated engines to find Preamble, Synchronization, Length, Sequence Number, Address and Checksum fields
- Bootstrap unknown protocols but also able to consider prior knowledge
- Verified with simulated and real-world protocols

Future Work

- Suggestion of attacks based on the found fields
- Detection of cryptography in message payload
- Ultimate goal: automated security score based on found cryptography and protocol complexity for initial security assessment right from captured messages

E-Mail: Andreas.Noack@hochschule-stralsund.de

- Slack: https://bit.ly/2LGpsra
- GitHub: https://github.com/jopohl