
Automatic Wireless Protocol Reverse Engineering

Johannes Pohl and Andreas Noack

University of Applied Sciences Stralsund

August 13, 2019

Introduction AWRE Experiments Conclusion

Internet of Things

Proprietary wireless protocols everywhere

Example: Smart Home
Increase comfort of users through wireless
sockets, door locks, valve sensors . . .
Devices are designed under size and energy
constraints
Limited resources for cryptography

Risks of Smart Home
Manufactures design custom proprietary wireless protocols
Hackers may take over households and, e.g., break in without physical traces

How can we speed up the security investigation of proprietary wireless protocols?

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 2

Introduction AWRE Experiments Conclusion

Software Defined Radios

Software Defined Radio

Why Software Defined Radios?
Send and receive on nearly arbitrary frequenciesa

Flexibility and extendability with custom software
ae.g. HackRF: 1 MHz - 6 GHz

(a) USRP N210 (b) HackRF

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 3

Introduction AWRE Experiments Conclusion

Wireless Protocols

Universal Radio Hacker

Interpretation

Analysis

101010

Generation

Stateless

Format

Simulation

Stateful

Format

Automate
August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 4

Introduction AWRE Experiments Conclusion

Wireless Protocols

Structure of a Wireless Protocol

Preamble Synchronization Length SRC DST Sequence Number . . . Checksum

Purpose of Fields
Preamble: Synchronize clocks with fixed preamble pattern, e.g., 101010. . .
Synchronization: Indicate start of transmission with sync sequence, e.g., 0x9a7d

Length: Contains the size of following data, usually in bytes
SRC/DST: Source / Destination addresses of communicating devices
Sequence Number: Increasing counters used for flow control and freshness
Checksum: Verify integrity of received data (recognize transmission errors)

The message format determines the order and type of fields for a message. The
message type describes which message format to use. A protocol can contain various
message types such as DATA and ACK (acknowledgement).

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 5

Introduction AWRE Experiments Conclusion

Example

Example Protocol: Communication between two Smart Home Devices

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 6

Introduction AWRE Experiments Conclusion

Example

Example Protocol after hitting the Analyze Protocol Button

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 7

Introduction AWRE Experiments Conclusion

Overview

Overview of Proposed Algorithm
Raw data with messages and RSSI Preprocessor

Length EngineAddress EngineSEQ Nr EngineChecksum Engine

0.31 dBm
0.75 dBm
0.80 dBm
0.27 dBm
0.34 dBm
0.79 dBm

AA D9 04 13 37 01 28
AA D9 02 13 EB
AA D9 04 37 13 02 7B
AA AA D9 02 37 DD
AA D9 04 13 37 03 26
AA D9 02 13 EB

AA D9 04 13 37 01 28
AA D9 02 13 EB
AA D9 04 37 13 02 7B
AA AA D9 02 37 DD
AA D9 04 13 37 03 26
AA D9 02 13 EB

04 13 37 01 28
02 13 EB
04 37 13 02 7B
02 37 DD
04 13 37 03 26
02 13 EB

04 13 37 01 28
02 13 EB
04 37 13 02 7B
02 37 DD
04 13 37 03 26
02 13 EB

04 13 37 01 28
02 13 EB
04 37 13 02 7B
02 37 DD
04 13 37 03 26
02 13 EB

04 13 37 01 28
02 13 EB
04 37 13 02 7B
02 37 DD
04 13 37 03 26
02 13 EB

Result: Aggregated protocol fields

Message Type 1 (DATA)

Preamble SYNC LEN DST SRC SEQ CRC

Message Type 2 (ACK)

Preamble SYNC LEN DST CRC

Design Goals
Work on limited number of messages
Tolerant against transmission errors
Bootstrap unknown protocols but also
consider prior knowledge
Work solely on captured messages,
i.e., program binary is not accessible

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 8

Introduction AWRE Experiments Conclusion

Preprocessor

Preprocessing: Align messages on (unknown) sync words

Preprocessor

AA D9 04 13 37 01 28
AA D9 02 13 EB
AA D9 04 37 13 02 7B
AA AA D9 02 37 DD
AA D9 04 13 37 03 26
AA D9 02 13 EB

Purpose of Preprocessing
Identify preamble: (anbm)k with a, b ∈ {0, 1},
a 6= b and n, m, k ∈ N+, e.g., 10101010 with
n = m = 1 and k = 4.
Identify sync word(s)
Align messages on sync word(s): Pass only
data behind sync to subsequent engines

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 9

Introduction AWRE Experiments Conclusion

Engines

Overview Field Type Inference

1 Assign messages to engine-specific clusters. For example, the length engine
clusters messages based on their physical length in bytes.

2 Find common ranges inside and/or between clusters.
AB CD EF 11m1 :

12 34 EF 22m2 :

56 78 EF 37m3 :

Start: 5
Length: 2
Value: EF
Messages: 1,2,3

Common
Range

1 Score common ranges with an engine-specific scoring function.
2 Return common ranges with highest score if they surpass a minimum score smin.
3 If possible, merge the resulting ranges.

3 Add found labels to the current message type or create a new one, if necessary.

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 10

Introduction AWRE Experiments Conclusion

Engines

Included Engines

Length Engine
Cluster messages by physical length
Give higher score to ranges those
decimal value matches physical length

Address Engine
Assign a participant to every message
Infer participant address candidates
Find fields with address candidates

Sequence Number Engine
Calculate a matrix E of decimal
differences between adjacent messages
Evaluate columns of E with only
constants or zeros (when SeqNr is
constant between some messages)

Checksum Engine
Find checksums such as
CRC16-CCITT by testing common
CRC parameters and other checksums
CRC testing algorithm uses a CRC
cache for increased performance

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 11

Introduction AWRE Experiments Conclusion

Engines

Message Type Creation and Assignment

Assignment of Message Types
Engines return a set of labels
Group these labels into
message types based on their
message indices
Create message type for
non-overlapping fields with
matching message indices
In conflict case: Choose
range(s) that maximize the
total score of message type

Example for three found fields

Range: 0–42
Type: Length
Messages: 1,2,3

Found Field 1
Range: 12–42
Type: Checksum
Messages: 4,5,6

Found Field 2
Range: 42–60
Type: Address
Messages: 1,2,3,4

Found Field 3

Fields:
Checksum
Messages: 5,6
Message type 1

Fields:
Length, Address
Messages: 1,2,3
Message type 2

Fields:
Checksum, Address
Messages: 4
Message type 3

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 12

Introduction AWRE Experiments Conclusion

Prior Knowledge

Considering Prior Knowledge

Rules for prior knowledge
1 Labels must not be changed.
2 Labels must not be removed

from a message type.
3 Messages must keep their

assigned message type.

Dealing with prior knowledge
Skip engines of already present fields
Engines ignore all ranges of a message
that are already labeled
If new message type needs to be created:
split original one (=copy over all labels)

Run this for each message type to consider prior knowledge
1 while new_fields_found and max_iteration_not_exceeded :
2 for mt in existing_message_types :
3 new_fields = []
4 for engine in engines :
5 if field_of_engine not in mt:
6 new_fields . extend (engine .run(mt))
7 add_to_message_type (mt , new_fields) # Split message type if necessary

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 13

Introduction AWRE Experiments Conclusion

Generated Protocols

Overview of Generated Protocols

Table: Properties of tested protocols whereby × means field is not present and NP is the
number of participants.
Comment NP Message Even/odd Size of field in bit (BE=Big Endian, LE=Little Endian)

Type message data Preamble Sync Length SRC DST SEQ Nr CRC
1 common protocol 2 data 8/64 byte 8 16 8 16 16 8 ×
2 unusual field sizes 2 data 8/64 byte 72 16 8 24 24 16 (BE) ×
3 2 data 10/10 byte 16 16 8 16 16 8 8contains ack and CRC8

CCITT ack × 16 16 8 × 16 × 8
4 2 data 8/64 byte 16 16 8 16 16 × 16contains ack and CRC16

CCITT ack × 16 16 8 × 16 × 16
5 3 data 8/64 byte 16 16 8 16 16 8 ×three participants with ack

frame ack × 16 16 8 × 16 × ×
6 short address 2 data 8/64 byte × 16 8 8 × 8 ×
7 4 data 8/8 byte 16 16 8 24 24 × 16

ack × 8 16 × × 24 × 16
four participants, varying
preamble size, varying
sync words kex 64/64 byte 24 16 × 24 24 × 16

8 nibble fields + LE 1 data 542/260 byte 4 4 16 (LE) × × 16 (LE) ×

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 14

Introduction AWRE Experiments Conclusion

Generated Protocols

Test against number of messages

0 5 10 15 20 25

0

20

40

60

80

100

Number of messages

Ac
cu
ra
cy

in
%

Protocol 1 Protocol 2
Protocol 3 Protocol 4
Protocol 5 Protocol 6
Protocol 7 Protocol 8

Results
100% accuracy for all
protocols when more than 17
messages are available
100% accuracy for five out of
eighth protocols when at least
7 messages are available
Protocol 5 and 7 have more
participants involved so
algorithm needs more
messages to infer address
fields correctly

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 15

Introduction AWRE Experiments Conclusion

Generated Protocols

Test against errors

0 20 40 60 80 100

0

20

40

60

80

100

Percentage of broken messages

Ac
cu
ra
cy

in
%

Protocol 1 Protocol 2
Protocol 3 Protocol 4
Protocol 5 Protocol 6
Protocol 7 Protocol 8

Setup and Results
Break messages by setting
bits to random values
beginning at a random
position (30 messages total)
Worst case for the algorithm
because some data remains
valid in broken messages
Majority of protocols are
labeled with more than 80%
accuracy when 20% of
messages are broken

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 16

Introduction AWRE Experiments Conclusion

Real-world protocols

Performance measurement with real-world smart home protocols

0 100 200 300 400 500

0

0.2

0.4

0.6

Number of messages

Ti
m
e
in

se
co
nd

s

EnOcean
Homematic
RWE

Measurement Setup
Intel(R) Core(TM) i7-6700K
CPU @ 4.00GHz
16 GB RAM
Message length between 8
and 61 bytes
For every number of messages
perform 100 performance
measurements and take the
mean performance

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 17

Introduction AWRE Experiments Conclusion

Conclusion and Future Work

Conclusion
Framework for automatic reverse engineering of proprietary wireless protocols
Dedicated engines to find Preamble, Synchronization, Length, Sequence
Number, Address and Checksum fields
Bootstrap unknown protocols but also able to consider prior knowledge
Verified with simulated and real-world protocols

Future Work
Suggestion of attacks based on the found fields
Detection of cryptography in message payload
Ultimate goal: automated security score based on found cryptography and
protocol complexity for initial security assessment right from captured messages

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 18

Introduction AWRE Experiments Conclusion

� https://github.com/jopohl/urh ± q

Contact
E-Mail: Johannes.Pohl90@gmail.com
E-Mail: Andreas.Noack@hochschule-stralsund.de

Slack: https://bit.ly/2LGpsra

GitHub: https://github.com/jopohl

August 13, 2019 Johannes Pohl and Andreas Noack Automatic Wireless Protocol Reverse Engineering Slide 19

https://github.com/jopohl/urh
Johannes.Pohl90@gmail.com
Andreas.Noack@hochschule-stralsund.de
https://bit.ly/2LGpsra
https://github.com/jopohl

	Introduction
	Internet of Things
	Software Defined Radios
	Wireless Protocols

	AWRE
	Example
	Overview
	Preprocessor
	Engines
	Prior Knowledge

	Experiments
	Generated Protocols
	Real-world protocols

	Conclusion

