
Unicorefuzz:
On the Viability of Emulation
for Kernelspace Fuzzing

Dominik Maier
Benedikt Radtke
Bastian Harren

2019-08-12

Security in Telecommunications
Technische Universität Berlin

○ Simplifies emulation-based fuzzing of kernel parsers
○ Coverage guided, blackbox
○ Based on

• AFL-Unicorn
• avatar²

○ Finds bugs
○ On any GDB target
○ Open sourced

Unicorefuzz

Page 2

avatar²
afl++

afl-unicorn

uDdbg

AFL has been around for quite some time

*Aleph One. Smashing the Stack for Fun and Profit. Phrack 7, 1996

We still find buffer overflows like it’s 1996*

Fuzzing is Hard

○ Legacy code is not written to be tested

○ Depending on globals, proper initializations, state, ...

○ How do we get input to the right place?

 ⇒ Setting up a fuzz harness is challenging

Page 4

○ Hardware interactions

○ Restarting Kernels for each test case needs more effort

○ “Did it just crash?”

○ How do we get input in that thing?

 ⇒ Setting up a kernel fuzz harness is even worse

Fuzzing Kernels is Hard

Page 5

○ Trinity

○ DIFUZE

○ TriforceAFL

○ Syzkaller

○ kAFL

○ ...

People Are Fuzzing Kernels

Page 6

Example: Triforce AFL

Page 7

○ AFL’s QEMU Mode
○ Ported for Kernel Emulation
○ Runs until special hypercall
○ Starts Forkserver at that point
But:
- QEMU forks before the forkserver starts may be “strange”
- VM is heavy, has interrupts, non-deterministic
- Has to be a VM...

○ Trinity -> No Coverage

○ DIFUZE -> No Coverage

○ TriforceAFL -> Shaky with forks in QEMU, etc.

○ Syzkaller -> No* coverage for blackbox OS fuzzing

○ kAFL -> Awesome but x86(_64) only

○ Whatever Brandon Falk is doing -> Crazy ;)

People are not Fuzzing Our Way

Page 8 * Apart from Windows fuzzing with kAFL’s instrumentation

Idea: Rip out Parsers
Fuzz them somewhere else

Why Parsers

Page 10

○ They tend to break
○ Often read from

well-defined buffers
○ little to no additional

hardware interaction
○ Have you seen bug-free

ASN1 parsers?
○ They tend to break

Copy&Paste Parsers to Userland?

Page 11

Ideal solution!
Problem: Code depends heavily on

○ State and proper initializations
○ All those kernel functions
○ Source Code availability

⇒ Lots of work even with source

Idea: Rip out Parsers
Fuzz them in an Emulator

AFL-Unicorn

Page 13

Unicorn:
CPU Emulator, Fork of QEMU
Multi-architectures: Arm, Arm64 (Armv8),
M68K, Mips, Sparc, & X86 (include X86_64).

AFL-Unicorn:
Adds Instrumentation to Basic Blocks
Much like AFL QEMU

Unicorefuzz Architecture

Page 14

Probe Wrapper

Page 15

○ Sets breakpoint on target
○ Dumps all registers once bp triggers
○ Waits for memory requests from harness
○ Fetches memory via Avatar2/GDB on demand
○ Memory exchange via file system

-> Can eventually be turned off

Unicorefuzz Harness

Page 16

○ Fork on first insn
○ Child: between each code block

• Request memory from Probe Wrapper if not mapped
• Set bit for hash(from->to) in shared map
• Cache the translated block in parent
• Execute the translated block

○ Fork again, with hot caches

AFL/Unicorefuzz Interactions

Page 17

Unicorefuzz:
Workflow

Workflow

Page 19

Step 0: Download & make
Step 1: Find a parser (ghidra/ida/r2/…)
Step 2: Edit config.py
Step 3: Trigger parser
Step 4: Fuzz
Step 5: Triage

 +Profit?

Step 0: Download & Install

Page 20

git clone https://github.com/fgsect/unicorefuzz.git

cd unicorefuzz

./setupaflpp.sh

./setupdebug.sh #optional if you want to use uDdbg

./setaflops.sh # optional

[Get some target. To fuzz a QEMU VM, have a look at./startvm.sh]

https://github.com/fgsect/unicorefuzz.git

Step 1: Find a Parser

Page 21

Analyze the target
... /ghidra/ida/r2/…
Find a function that:
- takes input
- returns something
- actually gets called

+ find calling convention

Step 2: Edit config.py

Page 22

For each target, the config.py needs to be altered.
Settings include:
- MODULE + BREAKOFFSET -> if fuzzing Linux .ko object
- BREAKADDR -> Breakpoint for anything else
- LENGTH & EXITS -> Where to exit
- implement init_func(uc, rip) -> if you need uc hooks
- Implement place_input(uc, input)

⇒ Function that drops AFL input at memory location

place_input() for Open vSwitch

Page 23

def place_input(uc, input):
 """
 Places the input in memory and alters the input.
 Example for sk_buff in openvswitch
 """
 ...
 if len(input) > 1500:
 import os
 os._exit(0) # too big!
 # read input to the correct position at param rdx here:
 rdx = uc.reg_read(UC_X86_REG_RDX)
 util.map_page_blocking(uc, rdx) # ensure sk_buf is mapped
 bufferPtr = struct.unpack("<Q",uc.mem_read(rdx + 0xd8, 8))[0]
 util.map_page_blocking(uc, bufferPtr) # ensure the buffer is mapped
 uc.mem_write(bufferPtr, input) # insert afl input
 uc.mem_write(rdx + 0xc4, b"\xdc\x05") # fix tail

Fuzzing OpenVSwitch
int ovs_flow_key_extract(struct sk_buff *skb, struct sw_flow_key *key)

Drop input at
Packet Data

Fuzzing the whole
skb would break
all pointers
→ false positives...

Page 24

Step 3: Trigger Parser

Page 25

○ . /probe_wrapper.py

○ Make target exec
to break point

○ All right, let’s fuzz!

Step 4: Fuzz

Page 26

○ Add seeds to . /afl_inputs

○ Run . /startafl.sh [workerid]

○ Enjoy AFL

Step 5: Triage

Page 27

Got a bug? Nice. Rerun the bug:
○ On the target (hopefully)
○ Using . /harness.py -t <input> for tracing
○ Using . /harness.py -d <input> for some uDdb debugging

Trace Debug

DEMO

Page 30

○ There is a ASN1 parser in the CIFS Filesystem driver
○ So we start fuzzing at entrypoint
○ ASN1 parser broken, as is tradition
○ Input from remote, but needs local interaction
○ In CIFS debug mode only (needs root to enable)
⇒ Not severe, but proves viability of Unicorefuzz

Speed

Speed

Single Core Speed Comparison for example.ko on a Laptop:

TL;DR Not that great (yet).
But… simply throw more hardware at the problem.

Page 31

Comparison Chart

Page 32

○ State-dependent bugs won’t be found
○ Code paths need to be triggered, first
○ No interrupts/timers, no race conditions, ...
○ Speed could be better
○ Unicorn...
○ Lots of manual analysis

Caveats

Page 33

Unicorn...

POP QUIZ: Where is gs_base stored in memory?

Page 34

On x86_64 gs_base an actual register. Same for fs_base.
- Unicorn cannot write base registers (gs, fs) directly!

Workaround: map scratch address, emulate wrmsr
- cmpxchg16b instruction on Unicorn somewhat broken
- Probably more.

ARM insns have issues, too…
Hence no Unicorefuzz for ARM yet. :(

Unicorn...

Page 35

○ Fuzz allthethings
→ All GDB/Avatar2 targets should™ work

○ Support for loadable kernel objects
○ Debugger for test cases
○ No ugly interrupts - Unicorn doesn’t have any
○ Hooks can be set if fuzzer gets stuck
○ Can fuzz deeply hidden functions

Nice things

Page 36

Future Work

○ Embedded fuzzing
• Fix ARM target
• Add MIPS target

○ Emulation performance: block chaining(?)
○ Automate seed collection on BP hits
○ Automate Triaging
○ Unified (Proper) Evaluation Criteria for Kernel Fuzzers

Page 37

○ Coverage guided fuzzing is all the rage
○ Fuzz anything you can attach GDB at
○ No bug in Open vSwitch (yet)
○ DoS in CIFS ASN1 parser
○ Speed could be better or worse
○ Finds bugs
○ Open-sourced Unicorefuzz

https://github.com/fgsect/unicorefuzz

Conclusion

Page 38

https://github.com/fgsect/unicorefuzz

Coverage guided fuzzing finds bugs early

Let’s find some kernel space overflows

while (questions());

char buf[16];
strncpy(buf, ""
 "Thank you for your attention."
 "\n", sizeof(buf));
printf("%s", buf);

