How Sharp is SHARP?

WOOT 19@USENIX-SECURITY € it

Computer Architecture Research
for

Dixit Kumar (Indian Institute of Technology Kanpur),

Chavhan Sujeet Yashavant (Indian Institute of Technology Kanpur),

Biswabandan Panda (Indian Institute of Technology Kanpur), and

Vishal Gupta (Manipal University Jaipur and Indian Institute of Technology Kanpur)

Resilient Secure Scalable

Systems

CARS@CSE-IITK
1

SHARP [Yan et al., ISCA 17]

SHARP [Yan et al., ISCA ‘17]

[Secure hierarchy-aware cache replacement policy }

SHARP [Yan et al., ISCA ‘17]

[Secure hierarchy-aware cache replacement policy }

[Mitigation for side-channel attacks}

Side Channel Attacks

[Attacker } [Victim }

Eviction based Cache Attacks: (Prime+Probe)

Eviction based Cache Attacks: (Prime+Probe)

Step 0: Attacker fills the entire
shared cache (set)

Eviction based Cache Attacks: (Prime+Probe)

[Step 0: Attacker fills the entire
_ shared cache (set)

[Step 1: Victim evicts cache
| blocks while running

NG

Eviction based Cache Attacks: (Prime+Probe)

[Step 0: Attacker fills the entire
_ shared cache (set)

[Step 1: Victim evicts cache
| blocks while running

NG

[Step 2: Attacker probes the
\cache set

Eviction based Cache Attacks: (Prime+Probe)

[Step 0: Attacker fills the entire
_ shared cache (set)

NG

[Step 1: Victim evicts cache
| blocks while running

[Step 2: Attacker probes the
\cache set

-

If misses then victim has
accessed the set

10

Various Mitigations

1

Various Mitigations

w Cache Layout [HPCA “16] }

12

Various Mitigations

iCache Layout [HPCA “16] }

\| | Fuzzing the timer [ISCA “12] |

13

Various Mitigations

iCache Layout [HPCA “16] }

'Fuzzing the timer [ISCA “12] |

[Cache Addressing [MICRO ‘18] }

14

Various Mitigations

iCache Layout [HPCA “16]]

'Fuzzing the timer [ISCA “12] |

[Cache Addressing [MICRO ‘18] }

Cache replacement policy
[ISCA “17]

15

SHARP [Yan et al., ISCA ‘17]

[Secure hierarchy-aware cache replacement policy }

[Mitigation for side-channel attacks }

16

SHARP [Yan et al., ISCA ‘17]

[Secure hierarchy-aware cache replacement policy }

[Mitigation for side-channel attacks }

[Prevents cross-core back invalidation }

17

Cross-core Back-Invalidation - |

I -

18

Cross-core Back-Invalidation - |l

L1/L2

Cross-core back-invalidation

Miss

LLC

19

Cross-core Back-Invalidation - |l

[Attacker knows whether victim}

has accessed it or not
%/Iiss

Miss

20

How SHARP Works?

21

How SHARP Works?

LLC Miss

22

How SHARP Works?

LLC Miss

U

'STAGE - 1, LLC only block |

How SHARP Works?

c ¢t c2 o c3
Private |
carves LA L8 LT AL
Shared T
Cache A B Y N

Stage-1

Core-2
How SHARP Works? demands
block X
_co ¢ ez Cs
Private |
caches | A1 P L 1 JL 1YIL 1 |
Shared T
Cache |7 5 " N
Stage-1

25

Core-2
How SHARP Works? demands
block X
_co ¢ ez Cs
Private |
caches | A1 P L 1 JL 1YIL 1 |
Shared T
Cache |7 5 " N
X
Stage-1

26

Core-2
How SHARP Works? demands
block X
_co ¢ ez Cs
Private |
caches | A1 P 1 JL 1YIL 1 |
Shared T
Cache 215 " N
X
Stage-1

27

Core-2
How SHARP Works? demands
block X
_C0 ¢ e Cs
Private |
caches | AL ° 1L 1 L 1YL 1]
Shared __
Cache |25 " N
T X
Stage-1 Not LLC Only

28

Core-2
How SHARP Works? demands
block X
_co ¢ ez Cs
Private |
caches | A1 P 1 JL 1YIL 1 |
Shared 7=
Cache | 7 5 TN
X
Stage-1

29

Core-2
How SHARP Works? demands
block X
_co ¢ ez Cs
Private |
caches | A1 B 1L 1 L _1YJL | |
Shared 7=
Cache |75 | V[N
T X
Stage-1 LLC Only
block found

30

Core-2
How SHARP Works? PN
block X
e & c2 . cs
Private |
cacnes |21 2 1L L T AL L
Shared 7=
Cache A B Y N

Slage Evicts it

31

How SHARP Works?

e o e a3
Private 5
Caches |~ P 11 1 | LY I]
Shareq [Fpesp—
Cache A B Y X

Stage-1

Core-2
How SHARP Works? demands
block Z
_co ¢ ez Cs
Private |
Caches |~ 1511 | | Kol S | I
Shared T
Cache | 75 " %]
Stage-1

33

Core-2
How SHARP Works? demands
block Z
_co ¢ ez Cs
Private |
Caches |~ 1511 | | Kol S | I
Shared T
Cache | 75 " %]
Z
Stage-1

34

Core-2
How SHARP Works? demands
block Z
0 ¢t ez 3
Private |
Caches |~ 1511 1 ol A |
Shareq Fpm——
Cache |25 T 7]
No LLC only block found ZA
Stage-1 (Stage-1 failed)

35

How SHARP Works?

LLC Miss

i

'STAGE - 1, LLC only block -

How SHARP Works?

LLC Miss

U

'STAGE - 1, LLC only block

U

[STAGE - 2, Same core block (intra-core eviction) }

37

Core-2
How SHARP Works? demands
block Z
_co ¢ ez Cs
Private |
Caches |~ 1511 | | Kol S | I
Shared T
Cache | 75 " %]
Z
Stage-2

38

Core-2
How SHARP Works? PN
block Z
co et e cs
Private 5
Caches | 2| 211 1 | i S | .
Sharad [p——

Cache

Stage-2

Not Intra core block

39

Core-2
How SHARP Works? demands
block Z
e ¢ e Cs
Private |
Caches | A1 ° 11 | | a0 I
Sharad [rp——
Cache |~ |5 | V1A
_ Z
Stage-2 Intra core block found

40

Core-2
How SHARP Works? demands
block Z
e & c2 . cs
Private 5
Caches | =1 2 1L L]) .-
Shared 7=
Cache A B Y X

Z
—age Evicts it

41

How SHARP Works?

e o e a3
Private 5
Caches |~ P 11 1 | L2 gL]
Shareq [P —
Cache A B Y 7

Stage-2

Core-3
How SHARP Works? demands
block P
co ci ¢ c3__
Private 5
Caches | =1 2 1L L] Il I | . -
Shared T
Cache A B Y 7

Stage-2

Core-3
How SHARP Works? demands
block P
co ci ¢ c3__
Private 5
Caches | =1 2 1L L] Il I | . -
Shared T
Cache A B Y 7

Stage-2

Core-3
How SHARP Works? demands
block P
co ci ¢ c3__
Private 5
Caches | =1 2 1L L] Il I | . -
Shared T
Cache A B Y 7

Stage-2

Core-3
How SHARP Works? demands
block P
_co ¢ ez Cs
Private |
Caches |~ 1511 | | I A | -
Shareq Fpmm——
Cache |75 " 2]
No LLC only block found P

Stage-2 (Stage-1 failed)

Core-3
How SHARP Works? demands
block P
co ci ¢ c3__
Private 5
Caches | =1 2 1L L] Il I | . -
Shared T
Cache A B Y 7

No Intra core block found
Stage-2 (Stage-2 failed)

How SHARP Works?

LLC Miss

U

'STAGE - 1, LLC only block

i

{STAGE - 2, Same core block (intra-core eviction) }

48

How SHARP Works?

LLC Miss

U

'STAGE - 1, LLC only block

U

[STAGE - 2, Same core block (intra-core eviction) }

U

' STAGE - 3, Random block (inter-core eviction) |

49

Core-3
How SHARP Works? demands
block P
co et ez cs
Private 5
Caches | 2| 211 1 | LZd YL 4]
Sharad [pp——

Cache

Stage-3 Evicts random block

50

Core-3
How SHARP Works? demands
block P
co et ez cs
Private 5
Caches |~ [E11 1 | LZd YL 4]
Sharad [pp——

Cache

Causes cross-core
back invalidation

Stage-3

51

How SHARP Works?

e o e a3
Private 5
Caches |~ 11 1 | L2 2]
Shareq [P —
Cache A P Y 7

How SHARP Works?

LLC Miss |

U

'STAGE - 1, LLC only block

U

[STAGE - 2, Same core block (intra-core eviction)]

53

How SHARP Works?

LLC Miss |

U

'STAGE - 1, LLC only block

U

[STAGE - 2, Same core block (intra-core eviction)]

Increments
alarm-counteSQ

SHARP Alarm Counter

[Counter per core }

55

SHARP Alarm Counter

[Counter per core }

[Increments on inter-core eviction }

56

SHARP Alarm Counter

[Counter per core }

[Increments on inter-core eviction }

[For 1 billion cycles, the threshold value is 2000 }

57

SHARP Alarm Counter

Counter per core }

Increments on inter-core eviction }

For 1 billion cycles, the threshold value is 2000 }

|
|
|
|

On exceeding threshold, SHARP triggers OS interrupt }

58

Questions That We Ask?

59

Questions That We Ask?

[Does SHARP mitigate all attacks? }

60

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

Co C1 C2 C3

61

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

Co C1 C2 C3

[Critical Set }

62

Prime+Reprime+Probe

SIS
Co C1 C2 C3

Private {
Caches

Multi-threaded
Attacker

Critical Set |

Shared
Cache

63

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

@ DS
______ co €1 ©C2 3
A

_________ A

Attacker
Primes

Critical Set |

64

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

LSS
______ Co 1 c2 C3
A || B

_________ e

Attacker
Primes

[Critical Set }

65

Prime+Reprime+Probe
Attacker
DRRDD
CO C1 C2 (C3
e WEIE
Caches
Shared |

Prime+Reprime+Probe
Attacker
DD D e
CO C1 (C2 (3
e [al[ellel o]
Caches
Shared |

Prime+Reprime+Probe

cCo C1 C2 (C3
e a8 oo
Caches
Shared

Prime+Reprime+Probe

Attacker
DRRD P oo
CoO C1 C2 (C3
e e slcp]

Caches
Shared |
e

Cache

~——

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Reprimes

[Critical Set }

70

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Reprimes

[Critical Set }

71

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Reprimes

[Critical Set }

72

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

[Critical Set }

73

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

209 @

Victim
Comes

[Critical Set }

74

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

209 @

Victim
Accesses

[Critical Set }

75

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

DD
cCo C1 C2 (C3

Victim
Accesses

[Critical Set }

76

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Comes

[Critical Set }

77

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Probe

[Critical Set }

78

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Probes

[Critical Set }

79

Prime+Reprime+Probe

Private
Caches

Shared
Cache

1

AR

Attacker
Probes

[Critical Set }

80

Questions That We Ask?

[Does SHARP mitigate all attacks? }

No (X

81

Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

No (X

82

Denial of Service Attack

Private
Caches

Shared
Cache

—

[Critical Set }

83

Denial of Service Attack

Private
Caches

Shared
Cache

—

—

[Multi-threaded

Attacker }

DRDD R
CO C1 C2 C3

[Critical Set }

84

Denial of Service Attack

Private
Caches

Shared
Cache

P

—

DDD R
CO C1 C2 C3

[Critical Set }

[Attacker accesses block A }

85

Denial of Service Attack

Private
Caches

Shared
Cache

P

—

DDD R
CO C1 C2 C3

[Critical Set }

[Attacker accesses block B }

86

Denial of Service Attack

CO C1 C2 C3
Shared Critical Set |
Cache

[Attacker accesses block C } 87

Private
Caches

—

Denial of Service Attack

CO C1 C2 C3
Shared Critical Set |
Cache

[Attacker accesses block D } 8

Private
Caches

—

Denial of Service Attack

CO C1 C2 C3
Shared Critical Set |
Cache

[Attacker occupies entire set] 89

Private
Caches

—

Denial of Service Attack

CO C1 C2 C3
Shared Critical Set |
Cache

[Victim comes} %

Private
Caches

—

Denial of Service Attack

DD
CO C1 C2 C3

Private

e =

[Victim accesses block X} 91

Denial of Service Attack

DD
CO C1 C2 C3

Private

e =

[Victim accesses block Y} 92

Denial of Service Attack

DD
CO C1 C2 C3

Private v

Caches

o s

[Victim accesses block Z } 93

Denial of Service Attack

DBD D
CO C1 C2 C3

Private o

Caches '

Shared ” Critical Set |

Cache

[Victim strives for other ways} o4

Questions That We Ask?

'Does SHARP mitigate all attacks? e

'Does SHARP facilitate few more attacks? | Yos &

95

Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

[Does threshold affect benign applications? }

No (=)

Yes @

96

Simulation

97

Simulation

[ChampSim, a trace driven simulator }

98

Simulation

[ChampSim, a trace driven simulator }

Simulated SHARP on a 16-core system with three levels of caches
and huge pages

|

99

Simulation

[ChampSim, a trace driven simulator }

Simulated SHARP on a 16-core system with three levels of caches
and huge pages

Used different combinations of LLC thrashing and LLC fitting
applications
Example, 16:0 denotes 16 thrashing and zero fitting

100

LLC Thrashing Benchmarks [SPEC CPU 2017]

m Thrashing Benchmarks

605.mcf-484B
605.mcf-665B
605.mcf-994B
607.cactubssn-2421B
620.omnetpp-141B
620.omnetpp-874B
621.wrf-6673B
623.xalancbmk-10B
649.fotonik-10881B
654.roms-523B

© 0O N o o0 A WO DN -

—
o

101

Interbackhit Rate

Interbackhit rate (%)

30

25

20

15

10

Bl baseline Il sharp

ilallllllk

Mix Number

102

Interbackhit Rate

El sharp

Bl baseline

30

N o N o Tg)]
N N — —

(%) @1e4 3iydequalu|

Mix Number

103

Interbackhit Counter

B Avg Bl Max

o <

n O (@]

88 o 3 3

— m — 0
$ 100000 . a e 5 =
Y < m
> ©o ~ m
2 © N N ~N
C —
= e g
= 10000 Lo 0
3
o
| -
b 1000
(e
>
(@)
O
100
1 2 3 4 5 6 7 8 9 10

Mix Number

Interbackhit Counter

B Max

B Avg

€€

10

ot

(#drd

o9
o
o
—
“‘|
9

121!

GGT

5

o)) m
N~
~ 00 ©
N~
o

\
|
|
|
I
|
|
|
I
|
|
|
I
I
|
|
I
|
|
|
I
1
]

© S
n O
N N
AL

(
|
|
I
1
|
|
I
1
|
|
I
1
|
|
I
1
|
|
I
1
\

©
““
3

(o}
o~

o~
||||
2

Tg}
<

I
—

100000
10000
1000
100

$9|2AD uol||ig Jad Ja3uno)

Mix Number

Interbackhit Counter

B Avg Bl Max

% o~
@ 100000 &
S 7
= N
(] o 8
= 10000 B
\)
g
g 1000
3 132x times of SHARP threshold
H B EB
4 5 6 7 8 9 10

Mix Number

Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

[Does threshold affect benign applications? }

No (=)

Yes @

Yes (2

107

Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

:Does threshold affect benign applications? }

iWhat does OS do when it receives an interrupt? }

No (=)

Yes @

Yes @

108

Speculating Possible OS Mitigations

109

Speculating Possible OS Mitigations

[To deschedule }

110

Speculating Possible OS Mitigations

[To deschedule }

[To migrate to another socket }

111

Migration to Another Socket

4 -
’ ’
» ’
v v
i 7
i 1
f 1
1
I 1
1 1
I 1
1 1
1 1
1 1
1 1
1 1
1 1
1]

G|l

L1/L2

L1/12

LLC

L1/L2

\\ /,
4 ’
s /

I
\ J !
1
I |
1 1
I 1
e o ! !
| 1
1 1
| 1
] 1
| 1
1 1
] 1
1 1
| 1
| 1

L1712

L1/12

LLC

Socket 1

112

Speculating Possible OS Mitigations

[To deschedule }

[To migrate to another socket }

113

Speculating Possible OS Mitigations

[To deschedule }

[To migrate to another socket }

—_

Causes performance
overhead

—

114

Case ll Case |

Case |l

Delay Cost : IPC Slowdown

IPC Slowdown IPC Slowdown

IPC Slowdown

1.1x-

1.05x-

1.00x-

2.5x:
2.0x:
1.5xX1
1.0x-

30x-
20x-
10x-

5

6

7 8
Core-id

9

10 11 12 13 14 15

Mitigation Delay

1 Million cycle
16 Million cycle
256 Million cycle

115

Case ll Case |

Case |l

Delay Cost : IPC Slowdown

IPC Slowdown IPC Slowdown

IPC Slowdown

1.1x-

1.05x-

1.00x-

2.5x:
2.0x:
1.5x
1.0x-

30x-
20x-
10x-

[1.1x Slowdown

/}‘—_\/

/

5

6

7 8
Core-id

9

10 11 12 13 14 15

Mitigation Delay

1 Million cycle
16 Million cycle
256 Million cycle

116

Case |l Case |

Case |l

Delay Cost : IPC Slowdown

IPC Slowdown IPC Slowdown

IPC Slowdown

1.1x-

1.05x-

1.00x-

2.5x:
2.0x:
1.5x
1.0x-

30x-
20x-
10x-

[N

1.1x Slowdown |

/

[~

[2.5x Slowdown }

5

6

e

7 8
Core-id

9

10 11 12 13 14 15

Mitigation Delay

1 Million cycle
16 Million cycle
256 Million cycle

117

Case |l Case |

Case |l

Delay Cost : IPC Slowdown

IPC Slowdown IPC Slowdown

IPC Slowdown

1.1x-

1.05x-

1.00x-

2.5x:
2.0x:
1.5x
1.0x-

30x-
20x-
10x-

[N

1.1x Slowdown |

/

[~

[2.5x Slowdown }

e

[NS

[30x Slowdown }

5

6

. /

7 8
Core-id

9

10 11 12 13 14 15

Mitigation Delay

1 Million cycle
16 Million cycle
256 Million cycle

118

Speculating Possible OS Mitigations

[To deschedule }

[To migrate to an another socket }

119

Speculating Possible OS Mitigations

[To deschedule } causes slowdown (X

[To migrate to an another socket } causes significant slowdown (X

120

Speculating Possible OS Mitigations

[To deschedule } causes slowdown (X

[To migrate to an another socket } causes significant slowdown (X

Tokil |

121

Speculating Possible OS Mitigations

[To deschedule } causes slowdown (X

[To migrate to an another socket } causes significant slowdown (X

Tokil | 16-0 Mix, 100% apps got killed =

122

Speculating Possible OS Mitigations

[To deschedule } causes slowdown (=)
[To migrate to an another socket } causes significant slowdown (%
Tokil | 16-0 Mix, 100% apps got killed =
LDOGS mitigation strategy facilitates any new attack? }

123

Threshold Aware Attack - |

Attacker
runs

Attacker crosses
the threshold

— >

OS deschedules/
migrates/Kills
attacker

124

Threshold Aware Attack - |l

Attacker reaches
Attacker nearly the threshold Attacker

runs ers

Process X crosses
OS deschedules/ the threshold OS
migrates/kills <+ schedules

process X process X

125

Speculating Possible OS Mitigations

[To deschedule } causes slowdown (=)
[To migrate to another socket } causes significant slowdown ()
Tokil | 16-0 Mix, 100% apps got killed (2
{Does mitigation strategy facilitates any new attack? } Yes (=)

126

Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

:Does threshold affect benign applications? }

iWhat does OS do when it receives an interrupt? }

No (=)

Yes @

Yes @

127

Questions That We Ask?

'Does SHARP mitigate all attacks? e
'Does SHARP facilitate few more attacks? | Yes @
:Does threshold affect benign applications? } Yes &

iWhat does OS do when it receives an interrupt? }

ils SHARP secure in terms of information Ieakage?]

128

Questions That We Ask?

'Does SHARP mitigate all attacks? e
'Does SHARP facilitate few more attacks? | Yes @
:Does threshold affect benign applications? } Yes &

iWhat does OS do when it receives an interrupt? }

\ Is SHARP secure in terms of information Ieakage?] Not really :;‘;:,!

129

Conclusion

:SHARP IS not that sharp }

iFaciIitates new attacks }

:Don’t mitigates all attacks:

iRoIe of OS is not defined

[Performance overhead to benign applications}

130

Thank You!

®

Semiconductor
Research
Corporation

131

