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Eviction based Cache Attacks: (Prime+Probe)

[Step 0: Attacker fills the entire
_ shared cache (set)

NG

[Step 1: Victim evicts cache
| blocks while running

[Step 2: Attacker probes the
\cache set

-

If misses then victim has
accessed the set
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Cache replacement policy
[ISCA “17]
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[Secure hierarchy-aware cache replacement policy }

[Mitigation for side-channel attacks }

[Prevents cross-core back invalidation }
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SHARP Alarm Counter

Counter per core }

Increments on inter-core eviction }

For 1 billion cycles, the threshold value is 2000 }

|
|
|
|

On exceeding threshold, SHARP triggers OS interrupt }
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[Does SHARP mitigate all attacks? }
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Simulation

[ChampSim, a trace driven simulator }

Simulated SHARP on a 16-core system with three levels of caches
and huge pages

Used different combinations of LLC thrashing and LLC fitting
applications
Example, 16:0 denotes 16 thrashing and zero fitting

100



LLC Thrashing Benchmarks [SPEC CPU 2017]
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'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |
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Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

:Does threshold affect benign applications? }

iWhat does OS do when it receives an interrupt? }

No (=)

Yes @

Yes @
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Speculating Possible OS Mitigations
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Speculating Possible OS Mitigations
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Speculating Possible OS Mitigations

[To deschedule } causes slowdown (=)
[To migrate to another socket } causes significant slowdown ()
Tokil | 16-0 Mix, 100% apps got killed (2
{Does mitigation strategy facilitates any new attack? } Yes (=)
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Questions That We Ask?

'Does SHARP mitigate all attacks? |

'Does SHARP facilitate few more attacks? |

:Does threshold affect benign applications? }

iWhat does OS do when it receives an interrupt? }

No (=)

Yes @

Yes @
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Questions That We Ask?

'Does SHARP mitigate all attacks? e
'Does SHARP facilitate few more attacks? | Yes @
:Does threshold affect benign applications? } Yes &

iWhat does OS do when it receives an interrupt? }

ils SHARP secure in terms of information Ieakage?]
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Questions That We Ask?

'Does SHARP mitigate all attacks? e
'Does SHARP facilitate few more attacks? | Yes @
:Does threshold affect benign applications? } Yes &

iWhat does OS do when it receives an interrupt? }

\ Is SHARP secure in terms of information Ieakage?] Not really :;‘;:,!
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Conclusion

:SHARP IS not that sharp }

iFaciIitates new attacks }

:Don’t mitigates all attacks:

iRoIe of OS is not defined

[Performance overhead to benign applications}
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