Satohiro Wakabayashi, Seita Maruyama, Tatsuya Mori, Shigeki Goto, Masahiro Kinugawa, Yu-ichi Hayashi

Waseda University, National Institute of Technology Sendai College, Nara Institute of Science and Technology

Background: (passive) EM side-channel attack

Typing "Hello"

Radio-Frequency Retroreflector Attack (RFRA)

- is an **active** electromagnetic side-channel attack
- aims to steal **the target's signals** by actively irradiating the targeted device with a radio wave
- A malicious circuit (retroreflector) is embedded in the target device in advance

Background of RFRA

- "The Thing": a predecessor of RFID and RFRA (mid 20th century)
- Possible use of RFRA in the intelligence community (R. J. Anderson 2008)
- NSA ANT catalog: ANGRYNEIGHBOR (2014)
- RFRA demo/talk: DEF CON 22, USENIX WOOT2015 (M. Ossmann)

ff:"		
one/wosswann - GNU Ra	110 Lompanion	
	Scope Plot	Chi Trig Persistence
		Analog Alpha: 0.099
		Axes Options
		Secs/Div: Counts/Div:
		Y Offset:
		T Offset:

<u>5</u> 27

Retroreflector

<u>6</u> 27

Retroreflector

- Retroreflector consists of
 - field-effect transistor (FET) chip
 - wire that can work as a dipole antenna
- FET is very small

27

- It is easy to implement anywhere
- antenna

An attacker needs to transmit radio waves that is resonant frequency of dipole

Research Questions

- It is known that the RFRA works in practice
- Our research question is: Is the RFRA a feasible attack?
 - The attackable distance between target and attacker
 - The limit of the speed of the target signal
 - Real-world applications

<u>8</u> 27

I. Evaluation of RFRA

<u>9</u> 27

27

Instruments used in the experiments

Antenna

SDR

Attacker PC

FET

List of software and PC used for SDR

OS

SDR software toolkit

CPU

RAM

Equipment

Model	
Ettus Research LP0410	
USRP N210(Up to 50 MS/s)	
ASUS ROG G752VS	
ATF-54143	

Windows 10	
GNU Radio 3.7.11	
Core i7 7700HQ 2.8 GHz/4 Core	
32 GB	

12

27

Results on distance Target signal 2 Mbps Amplitude m 10m Amplitude 10 m 0/1 1 0/1 0/1 0 0 1 0 // 1 0 1 0/1 0 0/1 0 11m Amplitude m 120 140 160 20 40 60 80 100 140 160 time

SDR sampling rate is 10 MS/s

<u>13</u> 27

I Mbps Attacked from 1 m, SDR sampling rate is 25 MS/s

<u>14</u> 27

Attacked from 1 m, SDR sampling rate is 25 MS/s

Summary of the experiment

- The total cost of setup is approximately 5000 US dollars.
- The attack succeeded from 10m distance
 - I0 m is enough flexibility in setting up the attack equipment
- The attack succeeded to the target signal of 10 Mbps
 - USB keyboard may be attackable

<u>16</u> 27

2. Application

Application

- 10 Mbps communication is attackable (previous experiment)
- ► USB transfer rates are ...
 - USB low-speed mode: 1.5 Mbps
 - USB full-speed mode: 12 Mbps
 - USB high-speed mode: 480 Mbps
- USB low-speed mode is attackable!

<u>17</u> 27

Application

- Most of USB keyboards use USB low-speed mode
- Is RFRA effective for real-world applications?

- Eavesdrop typing of USB keyboard and evaluate the accuracy
 - We typed pangram
 ex) "My faxed joke won a pager in the cable TV quiz show."
- We developed program to detect typed keys from an eavesdropped waveform

<u>19</u> 27

Experiment

Implementation

It works as folded dipole antenna

<u>21</u> 27

Distance [m]	Error rate [%]
0.5	0.0
I.0	0.0
I.5	I.0
2.0	100.0

	Erro
•••	paper
•••	paper

Result

Error rate

- or point (I.5 m)
 in the cable tv ...
- in th cable tv ...

<u>22</u> 27

Result

Limitation

- Attackable target communication speed depends on the sampling rate of SDR
- high-performance hardware can extend the limitation
- The resonant frequency is changed by the shape of target cable.
 - Attack becomes difficult if victim wears a cable because the shape of cable changes frequently

<u>23</u> 27

Countermeasures

- The best solution is "encryption."
- Detecting malicious circuit in the physical layer
 - There was a previous study on detecting hardware key loggers
 - If a FET is embedded at the time of manufacturing, this approach may not be directly applicable
- Monitoring malicious/reflected radio waves
 - Quite difficult...
- Further research is needed

Future work

- Some conditions are not clear
 - Frequency of irradiation radio waves
 - Antenna position
- Attacking analog signals
 - Audio cable (less than 20 kHz)
 - VGA cable (25 MHz)

<u>25</u> 27

- Using 5000 dollars setup
 - Attackable from 10 m
 - Attackable 10 Mbps signal
- We showed that RFRA is applicable for USB devices

<u>26</u> 27

Conclusion