Fishy Faces: Crafting Adversarial Images to Poison Face Authentication

Giuseppe Garofalo, Vera Rimmer, Tim Van hamme,

Davy Preuveneers and Wouter Joosen

WOOT 2018, August 13-14 (Baltimore, MD, USA)

Face authentication

Face authentication

- > Wide adoption of face recognition in mobile devices
- > Face authentication is a highly security-sensitive application
- > Several attacks have been proposed (e.g replay attacks¹, Bkav's mask² etc.)

Face Anti-spoofing, Face Presentation Attack Detection
 Bkav's new mask beats Face ID in "twin way": Severity level raised, do not use Face ID in business transactions.

Face authentication - Machine Learning

- > Authentication relies on Machine Learning (ML) algorithms
 - >> they learn how to recognise the user through time and changes
- > ML algorithms are not security-oriented per se
 - >> Adversarial ML arms-race investigates the **existing vulnerabilities**, models **active attacks** and seeks for **proactive countermeasures**

Why poison face authentication?

- Adversarial ML has been applied to face recognition¹,
 but not face authentication
- > Face authentication systems are **adaptive**
 - >> ML model is periodically re-trained
 - >> Gives an attacker access prior to training
- Feasibility and efficacy of poisoning attacks against face authentication is yet unknown

[1] Biggio, B., Didaci, L., Fumera, G., and Roli, F. Poisoning attacks to compromise face templates. In 2013 International Conference on Biometrics (ICB) (June 2013), pp. 1–7.

Background

Background - Machine learning

- > Machine learning algorithms as a tool for learning patterns
 - >> Patterns comprise *biometric traits* used for authenticating a person
- > The classification task is divided into two phases:
 - >> Training on a set of labelled points, i.e. the training set
 - >> Testing the model by predicting the label of new points, i.e. the test set
- > Each point is a feature vector
- > Training minimizes a loss function

Background - Adversarial Machine Learning

- Adversarial ML investigates the ML algorithms in the adversarial environment
- > The two main scenarios are:
 - >> the evasion of the classification rule (post-training)
 - >> the **poisoning** of the training set

 Poisoning requires the attackers to inject / control a malicious sample into the training set

 Poisoning requires the attackers to inject / control a malicious sample into the training set

> The attack point is moved towards a desired direction to *maximize* a loss function (instead of minimizing it)

> The re-training phase triggers the poisoning effects

1 misclassification

Background - Attack point search

- The best attack point is the one that maximizes the loss function the most
- > In this work, we apply an existing theoretical algorithm¹
 - >> Poisoning attack against SVM
 - >> Focus on the hinge loss as a classification error estimate
 - >> Gradient Ascent strategy to search the attack point

[1] Biggio, B., Nelson, B., and Laskov, P., Poisoning attacks against SVM. (2012).

System under attack

System design

> Our target authenticator is composed of two parts:

- >> Feature extractor
- >> Classification model

Input image

System design

- > Feature Extractor
 - >> OpenFace Library

>> Based on Google's FaceNet¹ (Convolutional Neural Network)

[1] Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (2015), pp. 815–823.

System design

One-Class SVM for classification¹

>> Trained only on images of the user

>> Takes a hyper-parameter which defines the upper-

bound to the percentage of training errors

Input image

[1] Inspired by: Gadaleta, M., and Rossi, M. Idnet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recognition 74 (2018), 25 – 37.

> Once trained, the model is used to authenticate the user

Attack methodology

- > Attacker's goals:
 - >> Denial-of-Service: to increase the false negative rate of the target authenticator
 - >> Impersonation: to allow other identities to be authenticated as the rightful user

- > Attacker's goals:
 - >> Denial-of-Service: to increase the false negative rate of the target authenticator
 - >> Impersonation: to allow other identities to be authenticated as the rightful user
- > Attacker's resources:
 - >> Able to poison the training set by injecting malicious images
 - >> Has the knowledge of the model's detail (including training images and model parameters)

Methodology

- > The attack methodology is divided into two parts:
 - >> Obtain the attack point by using the gradient ascent strategy
 - >> Reverse the feature extraction process to inject a real-world image

 Obtain the images used for training the model to train an exact copy of our target

- > Find the best attack point using the gradient ascent strategy
 - >> the "best" attack point is the one which maximizes the classification error>> It is found by modifying the feature vector of a validation set image

- > Find a face image corresponding to the best attack point
 - >> A best-first search strategy to reverse the CNN function is exploited

 Present the image to the system which will be re-trained over the new sample, affecting the authentication procedure

- > The target One-Class SVM is trained to recognize one identity
 - >> Data is collected from the FaceScrub celebrity dataset
 - >> Training set is composed by 30 images

Authenticated user

The attack point is computed by using the gradient ascent technique, starting from the feature vector of a randomlychosen validation image

Raw attack point

Raw attack point

A **sliding window** is used to apply modifications to the image so that its feature vector becomes **very similar** to the attack point

15

Pre-processing

15

> After the injection, the classification accuracy drops from 4% to 44% (by 40%!)

False positive Unauthorised User

False negative Authorised User

Injected image

> Using just a **random image**, the classification accuracy drops by 2%

True negative Unauthorised User

True positive Authorised User

Injected image

Percentage of training errors

Percentage of training errors

Limitations

- The poisoning attack relies on two assumptions on the attacker's capabilities
 - >> Knowledge of the training images of the target user

- The poisoning attack relies on two assumptions on the attacker's capabilities
 - >> Knowledge of the training images of the target user

• Transferability property can be exploited to train a model without knowing training images

Limitations

- The poisoning attack relies on two assumptions on the attacker's capabilities
 - >> Knowledge of the training images of the target user
 - >> Ability to inject an image into the training set

- The poisoning attack relies on two assumptions on the attacker's capabilities
 - >> Knowledge of the training images of the target user
 - >> Ability to inject an image into the training set
 - Continuously-adapted injection strategies may be useful to break the authentication step

Conclusion

Conclusion

- > In this work we:
 - >> Apply a poisoning attack against a state-of-the-art face authentication model obtain classification error of over 50% with one injected image
 - >> Demonstrate how to defend against such attacks through careful design choices
 - >> Show the feasibility to attack a multi-stage authentication process involving face recognition with a reverse-mapping strategy

Conclusion

- > In this work we:
 - >> Apply a poisoning attack against a state-of-the-art face authentication model obtain classification error of over 50% with one injected image
 - >> Demonstrate how to defend against such attacks through careful design choices
 - >> Show the feasibility to attack a multi-stage authentication process involving face recognition with a reverse-mapping strategy
- This work urges to integrate awareness of adversarial ML attacks into all stages of the authentication system design

Distrinet Thank you!

https://distrinet.cs.kuleuven.be/