
Rode0day: Searching for Truth with a

Bug-Finding Competition

Andrew Fasano, Tim Leek (MIT/LL);

Brendan Dolan-Gavitt (NYU Tandon);

Rahul Sridhar (MIT)

Workshop on Offensive Technology 2018
August 13, 2018

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or

FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views

of the Assistant Secretary of Defense for Research and Engineering.

Rode0day - 2

AF 8/13/18

whoami

• Andrew Fasano

• Security researcher at MIT Lincoln Laboratory

• Capture the Flag with Lab RATs and RPISEC

• Starting a PhD at Northeastern University next month

Rode0day - 3

AF 8/13/18

Vulnerability Discovery

• Finding vulnerabilities in software automatically has been a major
research and industry goal for the last 25 years

Academic Commercial

Fuzzing (1989)

Cyber Grand Challenge (2016)

Symbolic Execution (2000)

Rode0day - 4

AF 8/13/18

Vulnerability Discovery

• Finding vulnerabilities in software automatically has been a major
research and industry goal for the last 25 years

Academic Commercial

Does this

actually work?

Rode0day - 5

AF 8/13/18

Bug-Finding Evaluation

• Discover 0-days

– High impact

– Existential quantification

See also Michael Hicks’ analysis assessing fuzz testing experimental evaluations (CCS ‘18, to appear)

0-days found by AFL

• Find known bugs

– No impact

– Universal quantification

Google’s Fuzzer Test Suite’s fuzz_me.cc unit test

Rode0day - 6

AF 8/13/18

Ground Truth

• Known bugs are ground truth that enable measurement of bug-finding systems

• Google’s Fuzzer Test Suite: Real bugs

– 25 programs, ~1 bug per program

• LAVA-M: Injected bugs

– 8 programs, 2,265 total bugs

• Limited quantity of known-bug corpora

– May inadvertently be used for both training and evaluation

• Need more ground truth to better evaluate bug-finding systems

Known-bugs found in LAVA corpus in 2016

Rode0day - 7

AF 8/13/18

LAVA: Large-scale Automated Vulnerability Addition

• Automatically add new memory safety bugs to program source code

• Generate crashing inputs to trigger each bug

• Paper published at Oakland in 2016. Code released on GitHub in 2018

• Collaboration between MIT/LL, NYU and Northeastern University

How LAVA works:

1. Identify how attacker controlled data flows through program

2. Locate potential attack points

3. Inject potential bugs and test

4. Inject validated bugs and generate corpus

github.com/panda-re/lava

Rode0day - 8

AF 8/13/18

1. Identify how attacker-controlled data flow through program

– Looking for dead, uncomplicated and available data: DUAs

– Insert code to capture DUA values for later use

– DUAs later used as triggers for LAVA bugs

– Taint analysis with PANDA

• Whole system dynamic analysis platform

• Open source

LAVA Overview

A helper function captures the DUA contained in v into a global array at index 1

github.com/panda-re/panda

Rode0day - 9

AF 8/13/18

2. Locate potential attack points: ATPs

– Operations where LAVA could inject a bug

– Pointer dereferences, memory allocation, function arguments, etc.

3. Inject potential bugs and test

– Potential bug = DUA(s) + ATP

– Test if generated inputs cause crashes at expected locations, mark as validated bugs

4. Reinject validated bugs and generate corpus

LAVA Overview

ATP with an injected bug depending on DUA stored in index 1

ATP in funcs.c from file

Rode0day - 10

AF 8/13/18

Towards Realistic Bugs

• Alternative implementation of save_dua()

– Array data_flow added to function types and passed across functions

– DUAs can be saved into this local array directly

• Alternative to load_dua(): access elements in local array data_flow

• Bugs can be triggered by single or multiple DUAs

Rode0day - 11

AF 8/13/18

Automated Vulnerability Addition

• New ground truth can be created on demand and in quantity

• LAVA makes known bugs cheap and plentiful

• LAVA corpora enable evaluations using fresh testing data

time

B
u
g
s
 f
o
u
n
d

10 new corpora released

so far this summer

Rode0day - 12

AF 8/13/18

Rode0day - 13

AF 8/13/18

BUG FINDING

Rode0day - 14

AF 8/13/18

Competition Goals

Learn about what makes a bug easy or hard to find

Generate data to share with the community about bugs and bug-finding

Perform a continuous, unbiased evaluation of how well bug-finding systems work against realistic targets

Adapt and improve competition in response to feedback and competitor experience

Rode0day - 15

AF 8/13/18

Competition Goal 1

i. Run frequent competitions with new challenges every time

ii. Do not exploit flaws in specific bug-finding approaches

iii. Measure which bugs are found and time to discover each

iv. Any system competitors have access to, open or closed source

v. Challenges should be as realistic as possible

Perform a continuous, unbiased evaluation of how well bug-finding systems work against realistic targets
i ii iii iv v

Rode0day - 16

AF 8/13/18

Competition Goal 2

• Do different bug-finding techniques discover bugs in a similar order?

• How do multiple runs of the same bug-finding tool compare?

• What features correlate with the amount of time required to discover a bug?

• Requirements:

– Challenges should contain a diverse set of bugs

– Challenges should contain numerous bugs

– Bugs should be in many locations

Perform a continuous, unbiased evaluation of how well bug-finding systems work against realistic targetsLearn about what makes a bug easy or hard to find

Rode0day - 17

AF 8/13/18

Competition Goals

• After each competition ends, data should be released publicly

– Answer key

– Competitor submissions

• We hope more data will help bug finders to get better

• We want to build something beneficial to the community

• Open to feedback and pull requests

Perform a continuous, unbiased evaluation of how well bug-finding systems work against realistic targetsLearn about what makes a bug easy or hard to findGenerate data to share with the community about bugs and bug-finding

Adapt and improve competition in response to feedback and competitor experience

Rode0day - 18

AF 8/13/18

Introducing Rode0day

• New corpus of buggy programs released
monthly

– Modified versions of open source software

– 32 and 64-bit x86 challenges

– Buggy source code available for some
challenges

• Teams (anonymous or named) submit
crashing inputs

• Points awarded for inputs that cause
challenges to crash at unique bugs

• Detailed dataset released after each
competition

• First competition ran in May

https://rode0day.mit.edu

Rode0day - 19

AF 8/13/18

Rode0day Website

• Realtime results showing competitor performance

– Filter by source code availability

• Archives to download datasets

• Team profiles

– Encouraging teams to share their strategies

• Documentation

Rode0day - 20

AF 8/13/18

Rode0day API

• Designed to be played by fully-automated systems

• Example API consumer using AFL at github.com/AndrewFasano/Simple-CRS

Rode0day - 21

AF 8/13/18

Rode0day Corpora

• Provided info.yaml describes each challenge

Head of info.yaml
Contents of a challenge directory

Descriptions can easily be used to run a challenge binary on a sample input

Rode0day - 22

AF 8/13/18

Rode0day API Solution Submission

• POST inputs to the API with your authorization token

• If your input causes the program to crash, you will be given a list of bug ID’s you triggered

Submitting crashing inputs to the API returns a list of bugs discovered

curl -F "challenge_id=1" -F "auth_token=YOURTOKEN" -F "input=@your_input"
https://rode0day.mit.edu/api/1.0/submit

Rode0day - 23

AF 8/13/18

Rode0day Grading Infrastructure

• Root cause analysis is easy for injected bugs

• Injected bugs print warnings when triggered, if compiled with logging flags

• Points awarded if logging is triggered followed by a crash

– If input causes a crash without triggering logging, team is awarded a special “0-day point”

Configurable LAVALOG macro alerts when a bug is found

An injected bug using LAVALOG

Rode0day - 24

AF 8/13/18

Rode0day Datasets

• Datasets now available for two competitions!

• Archives include:

– Source code for all challenges

– LAVA-generated crashing inputs

– Crashing inputs submitted by competitors

– Original competition corpus

– Description of each scoring submission

Rode0day - 25

AF 8/13/18

Preliminary Data Analysis

• Are bugs found in the same order?

• What affects bug difficulty?

• Comparing discovery indexes
between teams

– Where is bug X in the ordered list
of bugs found by a team for a
given challenge?

D
is

c
o

v
e

ry
 I

n
d

e
x

Bug ID

Binary 2 (Bill)

Bug ID

Rode0day - 26

AF 8/13/18

Bill: Preliminary Analysis

• Bill

– Simple key-value store

– Source code unavailable

– x86_64

• Discovery index negatively correlated
with number of solves

• Bug 262 found most often
and with low discovery
indexes

D
is

c
o

v
e

ry
 I

n
d

e
x

Bug IDEnlarged legend Bug ID

Binary 2 (Bill) Box Plot

Rode0day - 27

AF 8/13/18

Bill: Bug 262

• Is this an easy bug to find?

Bill source code showing a simplified LAVA bug

Rode0day - 28

AF 8/13/18

Bill: Bug 262

• Is this an easy bug to find?

Bill source code showing a simplified LAVA bug

Simple input file triggers bug

Rode0day - 29

AF 8/13/18

Bill: DUA Instructions

• LAVA captures the number of
instructions executed before a
DUA is set

• Lower instruction count → earlier
in our analyzed execution

– Other inputs may trigger different
control flow to reach DUAs in
another order

• Harder to discover bugs injected
farther into program’s execution*

* Preliminary result from limited analysis

D
is

c
o

v
e

ry
 I

n
d

e
x

Relative DUA Instruction Count / 1000

Binary 2 (Bill) DUA Instruction Counts

Rode0day - 30

AF 8/13/18

YamlS1: Preliminary Analysis

• YamlS1

– YAML parser

– Source code available

– x86

• Multiple teams found bugs in
similar order*

– Only two scoring teams

* Preliminary result from limited analysis

D
is

c
o

v
e
ry

 I
n

d
e
x

Bug ID

D
is

c
o

v
e

ry
 I

n
d

e
x

Binary 9 (YamlS1) Box Plot

Bug ID

Rode0day - 31

AF 8/13/18

Future Work

• Detailed data analysis

• More LAVA bug types

• More open-source, reference, bug-finding systems

• More teams competing

Want to get involved?

Rode0day - 32

AF 8/13/18

Rode0day@WOOT

• Rode0day will be at WOOT 2019+

• High-performing and interesting competitors
will be invited to give short presentations

• Opportunity to share details about their bug-
finding systems

• Different approaches can be compared in
light of competition results

Approximate view from the stage

Rode0day - 33

AF 8/13/18

Questions?

@Rode0day @AndrewFasano

Rode0day.mit.edu
Get started at

r/Rode0day

Thanks to LAVA contributors who

helped make Rode0day possible:

github.com/panda-re/lava

Get involved with LAVA at

Andy Davis

Brendan Dolan-Gavitt

Zhenghao Hu

Patrick Hulin

Amy Jiang

Engin Kirda

Tim Leek

Andrea Mambretti

Wil Robertson

Aaron Sedlacek

Rahul Sridhar

Frederick Ulrich

Ryan Whelan

