RodeOday: Searching for Truth with a
Bug-Finding Competition

Andrew Fasano, Tim Leek (MIT/LL);
Brendan Dolan-Gavitt (NYU Tandon);
Rahul Sridhar (MIT)

Workshop on Offensive Technology 2018
August 13, 2018

]@ LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or
FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the Assistant Secretary of Defense for Research and Engineering.

@ whoami

Andrew Fasano

Security researcher at MIT Lincoln Laboratory
Capture the Flag with Lab RATs and RPISEC
Starting a PhD at Northeastern University next month

Northeastern University

RodeOday - 2 LINCOLN LABORATORY

AF 8/13/18
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] Vulnerability Discovery

* Finding vulnerabilities in software automatically has been a major
research and industry goal for the last 25 years

Academic Commercial

Finding Bugs with a Constraint Solver
An Empirical Study of the Reliability

Daniel Jackson ¢ Mandana Vaziri /‘ k I o‘ Wo r k
aof MIT Laboratory for Computer Science u I
545 Technology Square a Rogue Wave Company -
Cambridge, Massachusetts 02139

{dnj, vaziri}@lcs.mit.edu

UNIX Utilities

Symbolic Execution (2000)

=ORTIFY VERACODE

) coverity’
Cyber Grand Challenge (2016)

Driller: Augmenting

FU ZZl ng (1989) Fuzzing Through Selective Symbolic Execution

RodeOday - 3 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

53 Vulnerability Discovery

* Finding vulnerabilities in software automatically has been a major
research and industry goal for the last 25 years

Academic Commercial

Does this
actually work?

RodeOday - 4 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Bug-Finding Evaluation

 Discover O-days
— High impact
— Existential quantification

The bug-o-rama trophy case

Yeah, it finds bugs. I am focusing chiefly on development and have not been running the fuzzer
at a scale, but here are some of the notable vulnerabilities and other uniquely interesting bugs
that are attributable to AFL (in large part thanks to the work done by other users):

IJG jpeg t libjpeg-turbo 2 libpng !
libtiff 12345 mozjpeg ! PHP12345678
Mozilla Firefox 1234 Internet Explorer 1234 Apple Safaril

0-days found by AFL

* Find known bugs
— No impact
— Universal quantification

Branch: master~ fuzzer-test-suite [tutorial / fuzz_me.cc

16 lines (13 sloc) 336 Bytes

#include =stdint.h=
#include =stddef.h=

bool FuzzMel(const uint8 t «+Data, size t DataSize) {
return DataSize == 3 &&

Datal@] == 'F" &&
Data[l] == 'U" &&
Data[2] == 'Z" &&
Datal3] == '2°; // 1-=

}

Google’s Fuzzer Test Suite’s fuzz_me.cc unit test

See also Michael Hicks’ analysis assessing fuzz testing experimental evaluations (CCS ‘18, to appear)

RodeOday - 5
AF 8/13/18

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Ground Truth

Known bugs are ground truth that enable measurement of bug-finding systems

Google’s Fuzzer Test Suite: Real bugs

TABLE IV: Bugs found in LAVA-M corpus
— 25 programs, ~1 bug per program 5 L COP

Proeram | Total Bugs Unique Bugs Found
= 7T | FUZZER | SES | Combined
_ unig 28 7 0 7
 LAVA-M: |nJeCted bUgS base64 44 7 9 14
md5sum 57 2 0 2
— 8 programs, 2,265 total bugs who 5136 0 18 18
Total 2265 16 27 41

Known-bugs found in LAVA corpus in 2016

Limited quantity of known-bug corpora
— May inadvertently be used for both training and evaluation

Need more ground truth to better evaluate bug-finding systems

RodeOday - 6 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[

LAVA: Large-scale Automated Vulnerability Addition

Generate crashing inputs to trigger each bug
Paper published at Oakland in 2016. Code released on GitHub in 2018

Collaboration between MIT/LL, NYU and Northeastern University

How LAVA works:

> W N

ldentify how attacker controlled data flows through program
Locate potential attack points

Inject potential bugs and test

Inject validated bugs and generate corpus

Automatically add new memory safety bugs to program source code

9

ooLoLOgLL ll.OOI.OOlOlOOLLLOLg“
)

github.com/panda-re/lava

RodeOday - 7
AF 8/13/18

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@ LAVA Overview

1. Identify how attacker-controlled data flow through program
— Looking for dead, uncomplicated and available data: DUAs

— Insert code to capture DUA values for later use

— DUAs later used as triggers for LAVA bugs g

— Taint analysis with PANDA g Y e—\
« Whole system dynamic analysis platform
« Open source

github.com/panda-re/panda

2370 save dua(l, *(int*)&v);

A helper function captures the DUA contained in v into a global array at index 1

RodeOday - 8 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@ LAVA Overview

2. Locate potential attack points: ATPs
— Operations where LAVA could inject a bug
— Pointer dereferences, memory allocation, function arguments, etc.

35 *{ptr++) = "\\';

ATP in funcs.c from file

3. Inject potential bugs and test

— Potential bug = DUA(s) + ATP
— Test if generated inputs cause crashes at expected locations, mark as validated bugs

556 *(ptr++ + load dua(l) * (0x47666858 == load dua(l))) = "\\"';

ATP with an injected bug depending on DUA stored in index 1

4. Reinject validated bugs and generate corpus

RodeOday - 9 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Towards Realistic Bugs

 Alternative implementation of save dua()
— Array data_flow added to function types and passed across functions
— DUAs can be saved into this local array directly

82 protected int
83 file encoding (MeEICIRET]T ., struct magic set *ms, const

 Alternative to load_dua(): access elements in local array data_flow

|%T *((type + {data_flﬂw[z]} == Px292a87/f3) * data_flﬂw[é]} = 'tgx:';l

* Bugs can be triggered by single or multiple DUAS

*{end + ((data flow[34] * data fTlow[35]
- data flow[1l8] == Ox9985bbB) * data flow[35])) = new start;

Rode0day - 10 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Automated Vulnerability Addition

* New ground truth can be created on demand and in quantity
 LAVA makes known bugs cheap and plentiful

« LAVA corpora enable evaluations using fresh testing data

Bugs found

/ 10 new corpora released
so far this summer
time

RodeOday - 11
AF 8/13/18

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SHALL HWE PLAY A GAME?

BRIDGE
CHECKERS

CHESS

POKER

FIGHTER COMBAT
GUERRILLA ENGAGEMENT
DESERT WARFARE
AIR-TO-GROUND ACTIONS

THEATERWIDE TACTICAL WARFARE
THEATERWIDE BIOTOXIC AND CHEMICAL WARFARE

GLOBAL THERMONUCLEAR BUG FINDING

@ Competition Goals

Perform a continuous, unbiased evaluation of how well bug-finding systems work against realistic targets

Learn about what makes a bug easy or hard to find

Generate data to share with the community about bugs and bug-finding

Adapt and improve competition in response to feedback and competitor experience

RodeOday - 14 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Competition Goal 1

Perform a continuous, unbiased evaluation of how well bug-finding systems work against realistic targets

. Run frequent competitions with new challenges every time

Ii. Do not exploit flaws in specific bug-finding approaches

lil. Measure which bugs are found and time to discover each

Iv. Any system competitors have access to, open or closed source

v. Challenges should be as realistic as possible

RodeOday - 15 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Competition Goal 2

Learn about what makes a bug easy or hard to find

» Do different bug-finding techniques discover bugs in a similar order?
* How do multiple runs of the same bug-finding tool compare?

« What features correlate with the amount of time required to discover a bug?

* Requirements:
— Challenges should contain a diverse set of bugs
— Challenges should contain numerous bugs
— Bugs should be in many locations

RodeOday - 16

LINCOLN LABORATORY
AF 8/13/18

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Competition Goals

Generate data to share with the community about bugs and bug-finding

After each competition ends, data should be released publicly
— Answer key
— Competitor submissions

We hope more data will help bug finders to get better

Adapt and improve competition in response to feedback and competitor experience

We want to build something beneficial to the community

Open to feedback and pull requests

RodeOday - 17 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Introducing RodeOday

0 e

. New corpus of buggy programs released | ¢] e oo -
monthly Rode@day Home Results Get Started APl Archive Teams About Register Login

— Modified versions of open source software

— 32 and 64-bit x86 challenges Rode0Od ay

— Buggy source code available for some
challenges

A continuous bug finding competition

We release a corpus of buggy binaries every month. You earn points by
making them crash. At the end of each month, we declare a winner and

° Teams (anonymous or named) SmeIt release an answer key.
crashing inputs

» Points awarded for inputs that cause
challenges to crash at unique bugs What's this?

Who's winning? How do | play?
. By running monthly bug finding Currently Itszn is in the lead after Your first rode@day is as simple as:
° Detal Ied d at aS et rel eaS ed aft er eaC h competitions, we hope to provide an finding 357 bugs. In total, 389 unique 1. Create an account

- unbiased evaluation of vulnerability bugs have been found. 2. Download the challenges using
CO m petltl O n discovery techniques. We use the API

automated bug insertion to generate Rode@day-18.07 began 25 days ago 3. Find an input to trigger a bug

a new corpus of buggy programs for and will end in 4 days. 4. Submit your input to our API

* First competition ran in May each competton. After 62ch, e \io\, e <coreboard for detaed

release our data so everyone can
learn from the results.

results.

https://rodeOday.mit.edu

Rode0day - 18 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

& RodeOday Website

* Realtime results showing competitor performance

— Filter by source code availability

Rode@day Home Results GetStarted APl Archive Teams About Register Login
* Archives to download datasets o
Current Results Filter: pinaryonly sourceonly | all

* Team prOfIIeS Score Graph - All challenges Overview

— Encouraging teams to share their strategies o »
° DO C u m en tat I O n 2500 Unique Bugs Found 389

PR Start Date 25 days ago
1500

End Date 4 days from now
1000

Download Challenges

.
Archlve Jul B8 Jul 10 Jul 12 Jul 14 Jul16 Jul 18
Time

ltszn 4p Inventive Mayfly 4p Gregarious Wasp

More information will be available at the
This page is an archive of information from previous Rode@day competitions. For each competition, we provide: end of the competition. For details, see

¢ An answer key for each binary, describing the root cause of each bug and a triggering input the archive page.
e The archived scoreboard and graph for the competition. Current pseudonym preferences are used when displaying team names.

Competition Archived Results Full Dataset Competitors Bugs Found Bugs Injected Discovery rate
Rode@day-Beta Results Beta.tar.gz 9 52 52 100%
Egdg?fﬁé 19 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ RodeOday API

» Designed to be played by fully-automated systems

APl Documentation

Rode@day provides an APl where users can view the current competition, download challenge corpora and submit inputs. The latest corpus can
be downloaded without an account, but only authenticated users can submit inputs for scoring.

An example consumer of this APl is available on GitHub.

Quick Start:

1) Get Status & 2) Get Corpus # 3) Find Bugs 4) Submit Inputs

Get the YAML file describing: Get the archive containing: Use your bug-finding skills to Submit inputs with your API
« Competition duration s Challenge programs generate inputs that trigger bugs token. Get points for each
e Corpus download link + Metadata to run challenges unigue bug you trigger

« Example API consumer using AFL at github.com/AndrewFasano/Simple-CRS

Rode0day - 20 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

% RodeOday Corpora

* Provided info.yaml describes each challenge

- I_ .
rode@day_id: file
L— magic.h
challenges: i
fileB1: S
3 a ibmagic.la
challenge_id: libmagic.so -> libmagic.s0.1.0.0
architecture: libmagic.so.1 -> libmagic.s0.1.0.0

. : libmagic.so0.1.0.0
install_dir:

binary_path:
binary_arguments: L file.1
sample_inputs: []
library_dir:
libraries_modified: [
source_provided:

L— Tlibmagic.3

] L— magic.4

" L— magic.mgc
Head of info.yaml :
Contents of a challenge directory

andrew: $ LD_LIBRARY_PATH=fileB1/1ib fileB1l/bin/file -m fileB1l/share/misc/magic.mgc fileB1l/inputs/hi

fileB1l/inputs/hi: ASCII text

Descriptions can easily be used to run a challenge binary on a sample input

RodeOday - 21 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ RodeOday API Solution Submission

 POST Iinputs to the API with your authorization token

curl -F "challenge id=1" -F "auth_token=YOURTOKEN" -F "input=@your_ input"
https://rode@day.mit.edu/api/1.0/submit

* If your input causes the program to crash, you will be given a list of bug ID’s you triggered

bug_ids: [1234]

first ids: [1234]

requests_remaining: 9941

score: 32

status: @

status_s: Your input successfully caused the program to a crash

Submitting crashing inputs to the API returns a list of bugs discovered

RodeOday - 22 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ RodeOday Grading Infrastructure

 Root cause analysis is easy for injected bugs
* Injected bugs print warnings when triggered, if compiled with logging flags

« Points awarded if logging is triggered followed by a crash
— If input causes a crash without triggering logging, team is awarded a special “0-day point”

1 #1fdef LAVA_LOGGING
2 #include <stdio.h>
3 #define LAVALOG(bugid, x, trigger) ({(trigger && printf("\nBUGFOUND: " \
4 "%s ¥d: %s:%d\n", SECRET, bugid, __FILE__, __LINE__)), (x);})
5 #else
6 #define LAVALOG(bugid, x, trigger) (x)
7 #endif
Configurable LAVALOG macro alerts when a bug is found
963 p->s[LAVALOG(49401, sizeof(p->s) - 1 +
964 (data_flow[50] * (Ox79757648 == data_flow[50])),
965 (0x79757648 == data_flow[50]))] = "\@';

An injected bug using LAVALOG

Rode0day - 23 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Rode(Oday Datasets

« Datasets now available for two competitions!

« Archives include: Archive
— Source code for all challenges This page is an archive of information from previous Rode@day comp
— LAVA-generated crashing inputs An answer key for each binary, describing the root cause of eac
— Crashing inputs submitted by competitors « The archived scoreboard and graph for the competition. Current
— Original competition corpus
— Description of each scoring submission Competition Archived Results Full Dataset
userid challenge_id bug_id time Rode@day-Beta Results Beta.tar.gz

14 1 1480 2018-05-01 22:49:55

|1 95 [20150501 224957 Rode@day-18.07 Results 18_07.tar.gz

14 1 226 2018-05-01 22:49:57

Rode0day - 24 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Preliminary Data Analysis

[E]

Binary 2 (Bill)

- Are bugs found in the same order? Sk - o -
 What affects bug difficulty? . . , ,
« Comparing discovery indexes x o] : .
between teams 2 '
— Where is bug X in the ordered list >] .
of bugs found by a team for a > _ _ coe _ :
given challenge? @ . : :
(@)

— 77T

T R R R LT T T T T T T T T O - T VR -G -
GO A . SR R N U O A e, L N LI LI U Lo U™ i A AN = U S
R P T - A - I - A A U -
G S g B o ¥ S ¥ o 2 3 O O I - T ¥ S & S =) =] =] S = S S] S
TG G T Y QG ¥ T G g @ g TV g7 @ @Y Y @ b @Y @ ¢F Y ¢ oF &

Bug ID

RodeOday - 25
AF 8/13/18

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

&3 Bill: Preliminary Analysis

Binary 2 (Bill) Box Plot

* BiIll
— Simple key-value store
— Source code unavailable

— X86_64
3
2
» Discovery index negatively correlated >
with number of solves >
(&
Num Solves a
« Bug 262 found most often e 3
and with low discovery 4
indexes = 5 m=
Bl 6 —
7 —
Ml 8 | SSOSSSSSSES SIS EISS S P LS ST LS

Enlarged legend

RodeOday - 26 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] Bill: Bug 262

* |s this an easy bug to find?

388 int main{int argc, char **argv) {

389 // 36 lines of initialization logic hidden

390 while (!feof(stdin)) {

391 // 13 lines of input parsing hidden- DUAs © and 14 saved

392 it (line-=1len = 0)

393 prmceaa_line{line - {lmad_dua{l} ¥ (Ox4858704c == lﬂad_dua{l}}
313 void process _line(String *line)

314 // 4 lines hidden- Bugs triggered by DUAs 6 and 26

315 save dua(l, *{const unsigned int *){(*Lline).str});

Bill source code showing a simplified LAVA bug

RodeOday - 27

LINCOLN LABORATORY
AF 8/13/18

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

Bill: Bug 262

* |s this an easy bug to find?

main (**argv) {

argc,
while (!feof{stdin)) {

if (line-=1len = 0)

process line(line + (load dua(l) *

{Ox4858704c == load dua(l))

process line(5String *line) {

Line).

Bill source code showing a simplified LAVA bug

$ cat input-262
LpXH
AAAA

$./bill 2 2 2 /tmp < input-262
LpXH
Segmentation fault

Simple input file triggers bug

RodeOday - 28
AF 8/13/18

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

I&] Bill: DUA Instructions

e« LAVA captures the number of Binary 2 (Bill) DUA Instruction Counts

instructions executed before a

DUA is set e e

25 : 8 o
« Lower instruction count - earlier s 20
. . 8]
In our analyzed execution = o
— []

— Other inputs may trigger different >] y .
control flow to reach DUAs in 2 . .
another order 3 e o e

a 0]) ®
o [] [
o ®
. . . : ¢ s} y []
« Harder to discover bugs injected e . e o e
farther into program’s execution’ . .’ .
0 [

0 413 1671 1871 2052 2264 2314 2488 2666 3774 3787 3788 3789 3794 3797 3798 4439 4443 4444 6330 6332 6335 6336 6339 6340

Relative DUA Instruction Count / 1000
* Preliminary result from limited analysis

Rode0day - 29 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

L) [256490 Ong

)

Analys

Preliminary

YamlS1

Binary 9 (YamIS1) Box Plot

25

Team

[TET9E

[Z560L
[E6I6LE
[LOZB1
[TLZER
[SLSOL
[L000E
[T188E

[ELPLE

[€891
[€5691
[I859E
[5650
[€E0FSEZ
[£ESP0C

[£S6FE
[T86ZE

[S¥SIL
[96BET
[9651
[86T0L
[SE86Z
[EL9T19

[LZOLE
[IBITIE
[€947
[94291

[96879
[ESTEE

[ZZ1LT
[990%1
[S6EQL
[60965
[E0LZT

[Z6Z.L1
[ESO¥E

[9ZLE
[L19T

[85981
[PEBTIZ
[E9EZI
[90bb1
[€8S6T
[60vE1
[0£881
[ISETI

[TL16
[L0501
[SL90T

[6E€0Q
[€€5L
F ¢ Bng

120 4

e YamIS1

— YAML parser

100 A

— Source code available

— X86

80

60 1
40 4

xapu| AlanoasiIg

lar order”
— Only two scoring teams

Simi

* Multiple teams found bugs in

20 A

I

1 Bng

[S8¢ivi bng

Wu:u
ng
1 6ng
1 6ng
—un:n

ng
16ng
16ng

1 6ng

[6LEZ¥ 1 Ong

Bng
Bng
16ng
1 ong
16ng
16ng

I 6ng
1 6ng

[szszy1 Bng
[T+0THL 6ng

Bng
Bng
Bng
Bng
I ong
1 0ng

1 Gng
1 6ng
L bng
Bng

[¥9 bng

1 6ng
1.6ng

Bng
Bng
Bng
1 0ng
1 0ng

Bng
16ng

r wanwmzu

ng

ng
Bng
Bng
Bng
6ng
Bng
Bng
Bng
Bng

Bng
n

umn
Bng

[L9 bng
[5006 bng

Bng
ng

Bug ID

IS

ted analysi

mi

It from |

iminary resu

* Prel

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RodeOday - 30
AF 8/13/18

@ Future Work

Detailed data analysis

More LAVA bug types

More open-source, reference, bug-finding systems

More teams competing

Want to get involved?

dddddddd 31 LINCOLN LABORATORY
TS 1IN

888888888 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ RodeOday @WOOT

RodeOday will be at WOOT 2019+

* High-performing and interesting competitors
will be invited to give short presentations

« Opportunity to share details about their bug-
finding systems

 Different approaches can be compared In
light of competition results

Approximate view from the stage

Rode0day - 32 LINCOLN LABORATORY

AF 8/13/18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

[E]

Questions?

Get started at

RodeOday.mit.edu

Thanks to LAVA contributors who
helped make RodeOday possible:

Andy Davis Andrea Mambretti
Brendan Dolan-Gauvitt Wil Robertson
Zhenghao Hu Aaron Sedlacek
Patrick Hulin Rahul Sridhar
Amy Jiang Frederick Ulrich
Engin Kirda Ryan Whelan
Tim Leek

Get involved with LAVA at
github.com/panda-re/lava

a @RodeOday a @AndrewFasano @ r/RodeOday

RodeOday - 33
AF 8/13/18

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

