SloMo: Downclocking WiFi Communication

Feng Lu, Geoff Voelker, and Alex Snoeren UC San Diego

WiFi Power Matters

Consumers complain about smartphone battery life

- Researchers report active WiFi radio can consume up to 70% of a smartphone's energy [Rozner et al. MobiSys 2010]
- But commercial WiFi chipsets have efficient sleep
 - 700mW (active) to 10mW (sleep) [Manweiler *et al.* MobiSys 2011]

Can't Sleep the Day Away

- Power saving based on duty cycling the radio
 - sleep when not used, wake up to send/receive data
- Many variants proposed by the research community for better sleep mechanisms and policies
- Still a challenge for WiFi energy savings on smartphones
 - real-time/chatty apps
 - developer may abuse WiFi sleep policy (constantly awake)

The WiFi Reality on Smartphones

- Frequent demand does NOT equal high demand
 - many smartphone apps are rather data rate conservative (10s kbps—100s kbps)

- Primarily connected on WiFi ≥62% of time [Cisco 2012]
 - good WiFi signal-to-noise ratio (SNR) 5% link-layer retransmission [Chen et al. IMC2012]

WiFi State Transitions

- Good SNR → send/receive data faster (state color)
- But apps with low data rate: Tx/Rx energy small
- Can we trade SNR for saving energy?

Downclocking WiFi

 Power consumption of CMOS devices are proportional to their clock rates
 [Zhang et al. MobiCom 2011]

Clock rate	25%	50%	100%
Idle	640 mW	780 mW	1200 mW
RX	980 mW	1440 mW	1600 mW
ТХ	1210 mW	1460 mW	1710 mW

- Potential 30-46% power saving for commercial WiFi chipset if downclocked [Zhang et al. MobiCom 2011]
- DVFS for CPUs has been around for years

Why not on WiFi?

The Nyquist Wall

- Sampling rate > 2x signal bandwidth
- 22 MHz WiFi signal \rightarrow at least 44 MHz sampling rate
- Clock rate on WiFi chipset is gated by sampling rate

Compressive Sensing

- Recent advances in compressive sensing allow us to cheat when information rate << signaling rate</p>
- Tropp et al. showed how to decode such sparse signal with much lower sampling rates [TIT 2010]
- Observation: Shares great degree of similarity with Direct-sequence Spread Spectrum (DSSS) used in WiFi (when operating at 1/2 Mbps)!

DSSS Encoding

■ Sender: information bit (b) → 11-chip barker sequences [$S_0, S_1, ..., S_{10}$]

• Receiver: 11 sampled sequences $[S_0', S_1', ..., S_{10}'] \rightarrow b$

$$S_{0}' S_{1}' S_{2}' S_{3}' S_{4}' S_{5}' S_{6}' S_{7}' S_{8}' S_{9}' S_{10}'$$

Compressive Decoding

- Much redundancy in signal → opportunity for compressive sensing
- SloMo receiver: combinations of the 11-chip sequences (in analog domain) and <11 samples are sufficient
 - e.g., 3 samples $[S_{c1}, S_{c2}, S_{c3}] \rightarrow b$

$$S_{c1}$$
 S_{c2} S_{c3}

How about Transmission?

- Standard WiFi radio expects regular WiFi signal
- Allows receiver to: (a) lock on to the signal; (b) decode signal

- Downclocked transmission:
 - shorter sequences per bit (<11 chips)
 - challenge: may not be recognized

SloMo Transmitter

- Approximate the 11-chip Barker sequences used in WiFi standard with shorter sequences
- Leverage the large headroom in DSSS decoding on commercial WiFi cards

Barker-like sequences

High downclocking rate fidelity

SloMo Micro-benchmarks

- Implemented on Microsoft
 SORA platform
- Entirely backwards compatible
- Requires NO modification at AP
- Works on any 802.11b/g/n/ac devices @1-2 Mbps

Downclocked Rx (WiFi \rightarrow SloMo)

Baseline: standard WiFi implementation(@100% clock rate) 4 SNR values: 66dB, 56dB, 48dB, 46dB; 1000-bytes UDP packets

Downclocked Tx (SloMo \rightarrow WiFi)

Baseline: standard WiFi implementation(@100% clock rate) 5 SNR values: 66dB, 46dB, 26dB, 13dB, 6dB; 1000-bytes UDP packets

Apps WiFi Energy Evaluation

- Trace based energy evaluation
 - power model based on real measurements [Manweiler et al. MobiSys 2011]
- 8 popular smartphone apps
 - each app > 1 M downloads
- Collect 200s of real WiFi packet traces
 - Google Nexus S and iPhone 4S

Apps Energy Saving (all)

Small Time Penalty Paid

Comparison with Existing Schemes

SloMo: 13% over E-Mili

E-Mili [Zhang *et al.* Mobicom 2011]: re-design WiFi packet format to allow downclocked packet detection, revert to full rate for Tx/Rx

Downclocking WiFi with SloMo

- Trades SNR for saving energy and enables downclocking in WiFi for all communication states
- Works on 11b/g/n/ac devices at 1/2 Mbps
- Fully backwards-compatible design saves up to 34% energy for popular smartphone apps

Thank you!

