
A new osd for the age of persistent memory and fast nvme storage

Crimson

2

Storage Keeps Getting Faster

3

CPUs, not so much

With a cpu clocked at 3ghz you can
afford:

- HDD: ~20 million cycles/IO
- SSD: 300,000 cycles/IO
- NVME: 6000 cycles/IO

4

Ceph Architecture

Ceph Components

RGW
web services gateway for

object storage,
compatible with S3 and

Swift

LIBRADOS
client library allowing apps to access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
software-based, reliable, autonomous, distributed object store comprised of

self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
reliable, fully-distributed
block device with cloud

platform integration

CEPHFS
distributed file system

with POSIX semantics and
scale-out metadata

management

APP HOST/VM CLIENT

5

RADOS

APPLICATION

M M

M M

M

RADOS
CLUSTER

6

OSD Threading Architecture

Messenger

Worker Thread
Worker Thread

Worker Thread

PG

Worker Thread
Worker Thread

Worker Thread

ObjectStore

Worker Thread
Worker Thread

Worker Thread
osd op queue kv queue

Messenger

Worker Thread
Worker Thread

Worker Thread
out_queue

7

Classic OSD Threads

8

Classic OSD Threads

9

Classic OSD Threads

10

Classic OSD Threads

11

crimson-osd aims to be a replacement osd daemon with the following goals:

- Minimize cpu overhead

- Minimize cycles/iop

- Minimize cross-core communication

- Minimize copies

- Bypass kernel, avoid context switches

- Enable emerging storage technologies

- Zoned Namespaces

- Persistent Memory

- Fast NVME

Crimson!

12

- Single thread per cpu

- Non-blocking IO

- Scheduling done in user space

- Includes direct support for DPDK, a high performance library for userspace networking

Seastar

13

Programming Model

for (;;) {
 auto req = connection.read_request();
 auto result = handle_request(req);
 connection.send_response(result);
}

repeat([conn, this] {
 return conn.read_request().then([this](auto req)
{
 return handle_request(req);
 }).then([conn] (auto result) {
 return conn.send_response(result);
 });
});

14

OSD Threading Architecture

Messenger

Worker Thread
Worker Thread

Worker Thread

PG

Worker Thread
Worker Thread

Worker Thread

ObjectStore

Worker Thread
Worker Thread

Worker Thread
osd op queue kv queue

Messenger

Worker Thread
Worker Thread

Worker Thread
out_queue

15

Seastar Reactor Thread

Crimson Threading Architecture

Messenger PG ObjectStore

async wait async wait

Messenger
async wait

Seastar Reactor Thread

Messenger PG ObjectStore

async wait async wait

Messenger
async wait

Seastar Reactor Thread

Messenger PG ObjectStore

async wait async wait

Messenger
async wait

Seastar Reactor Thread

Messenger PG ObjectStore

async wait async wait

Messenger
async wait

Seastar Reactor Thread

Messenger PG ObjectStore

async wait async wait

Messenger
async wait

16

Crimson Threading Architecture

Seastar Reactor Thread

1.1
2.4

1.f

Seastar Reactor Thread

1.2

2.7 2.9

Seastar Reactor Thread

2.4
2.d

1.3

17

Crimson Threading Architecture

Seastar Reactor Thread

1.1 2.4 1.f

Seastar Reactor Thread

1.2
2.7

2.9

Seastar Reactor Thread

2.4

2.d
1.3

Incoming message ?

18

Crimson Threading Architecture

Seastar Reactor Thread

1.1 2.4 1.f

Seastar Reactor Thread

1.2
2.7

2.9

Seastar Reactor Thread

2.4

2.d
1.3

Incoming message (2.4)

19

Crimson Threading Architecture

Seastar Reactor Thread

1.1 2.4 1.f

Seastar Reactor Thread

1.2
2.7

2.9

Seastar Reactor Thread

2.4

2.d
1.3Incoming message (2.4)

10001

10002

10003

20

Crimson Threading Architecture

OSD 1

1.1 2.4 1.f

OSD 2

1.2
2.7

2.9

OSD 3

2.4

2.d
1.3Incoming message (2.4)

21

- Working:

- Peering

- Replication

- Support for rbd based benchmarking

- Memory-only ObjectStore shim

- In Progress:

- Recovery/backfill

- BlueStore support (via alien) -- almost ready to merge

- Seastore implementation in progress

Current Status

22

Performance

23

Performance

24

Performance

25

BlueStore - Alien

alien threadsseastar reactor

OSD

1.0

1.2

1.4

1.6

1.8

26

BlueStore - Seastar Native

A
llo

ca
to

r

data
metadata

RocksDB

SeastarEnv

BlueFS*

Seastar AIO

27

- Targets next generation storage technologies:

- Zone Namespaces

- Persistent Memory

- Independent metadata and allocation structures for each reactor to avoid synchronization

Seastore

28

- New NVMe Specification

- Intended to address challenges with conventional FTL designs

- High writes amplification, bad for qlc flash

- Background garbage collection tends to impact tail latencies

- Different interface

- Drive divided into zones

- Zones can only be opened, written sequentially, closed, and released.

- As it happens, this kind of write pattern tends to be good for conventional ssds as well.

Seastore - ZNS

29

- Transactional

- Composed of flat object namespace

- Object names may be large (>1k)

- Each object contains a key->value mapping (string->bytes) as well as a data payload.

- Supports COW object clones

- Supports ordered listing of both the omap and the object namespace

ObjectStore

30

Seastore - Logical Structure

Root

onode_by_hobject lba_tree

onode

block_info

omap_tree extent_tree

lba_t -> block_info_t
hobject_t -> onode_t

31

Seastore - Why use an LBA indirection?

A

B

C C’

When GCing a C, we need to do 2 things:
1. Find all incoming references (B in this case)
2. Write out a transaction updating (and dirtying) those

references as well as writing out the new block C’

Using direct references means we still need to maintain some
means of finding the parent references, and we pay the cost of
updating the relatively low fanout onode and omap trees.

By contrast, using an LBA indirection requires extra reads in the
lookup path, but potentially decreases reads and write
amplification during gc.

32

Seastore - Layout

Journal Segments

header delta D’ ...delta E’ (logical) block Brecord(physical) block A

ED

A

E’D’

B

LBA Tree LBA Tree

33

Seastore - ZNS

Journal Segments

header delta D’ ...delta E’ (logical) block Brecord(physical) block A

ED

A

E’D’

B

LBA Tree LBA Tree

34

- Optane now available

- Almost DRAM like read latencies

- Write latency drastically lower than flash

- Seems like a good fit for caching data and metadata!

- Reads from persistent memory can simply return a ready future without waiting at all.

- Likely to be integrated into seastore as a replacement for metadata structures/journal deltas

- In particular, could be used to replace the lba mapping.

Seastore - Persistent Memory

35

- Roadmap: https://github.com/ceph/ceph-notes/blob/master/crimson/status.rst

- Project Tracker: https://github.com/ceph/ceph/projects/2

- Documentation: https://github.com/ceph/ceph/blob/master/doc/dev/crimson.rst

- Seastar tutorial: https://github.com/scylladb/seastar/wiki/Seastar-Tutorial

Questions?

https://github.com/ceph/ceph-notes/blob/master/crimson/status.rst
https://github.com/ceph/ceph/projects/2
https://github.com/ceph/ceph/blob/master/doc/dev/crimson.rst
https://github.com/scylladb/seastar/wiki/Seastar-Tutorial

