ceph

Crimson

A new osd for the age of persistent memory and fast nvme storage

Storage Keeps Getting Faster

4K Read IOPS

NVMe SSD

SAS SSD

SATA SSD / 6Gbit/s

SASHDD/ 10k | 150

SATAHDD /7200 | 75

0 100000 200000 300000 400000 500000

CPUs, not so much

42 Years of Microprocessor Trend Data

With a cpu clocked at 3ghz you can PP IR A A v]
afford: } i Yy Transistors
’ - 6 : 3 i AN 2 (thousands)
- HDD: ~20 million cycles/IO 107 [Y, S
‘ i ‘
- SSD: 300,000 cycles/IO 0l NI SR——— S———————— A “hants e Single-Thread
- . j j e %y, Performance
NVME: 6000 cycles/IO i | 5 - A:“A.’“}:. o | (SpecINT x 10%)
. AA :AA :A‘A 3” I!*“.‘ |-. Frequency (MHZ)
4K Read IOPS wwr s ‘.’G'I‘a B .
‘ A Y [. 'y Typical Power
102 | St T v T RIRE » %y o (Watts)
NVMe SSD 1 o o v H *
| C o R ITRTT v paT | Numberof
sassso 10 LA _— v 5 Logical Cores
1/ 6Gbit/s i l | l
1970 1980 1990 2000 2010 2020
Year
SATAHDD /7200 | 75 Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

0 100000 200000 300000 400000 500000

Ceph Architecture

APP HOST/VM CLIENT

$ $

RGW RBD CEPHFS

web services gateway for reliable, fully-distributed distributed file system
object storage, block device with cloud with POSIX semantics and
compatible with S3 and platform integration scale-out metadata
Swift management

LIBRADOS
client library allowing apps to access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS

software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RADOS

APPLICATION

OSD Threading Architecture

Messenger

- L |

- L |

Worker Thread

N

osd op queue

- L |

- L |

ObjectStore

- L |

Worker Thread

- L |

Worker Thread

' kv queue >

Messenger

= L |

= L |

Worker Thread

out_queue [>

Classic OSD Threads

| [J
\ | I
| | BN |
| J |
\ | I
| | L
| |
| Il 1
(- Il
I I L]0 |
| | 1l 1 | !
[| | |1
b | I
|11 | IGNIE, ‘ i I
[0 || PrimaryLogPG: issue_repop (PrimaryL.. ||| [PrimarylogPG..| | |
IR 0N PrimaryLogPG: :execute_ctx PrimaryLogPG.. |BIII1 Ml |
| HIIIIIl\H W\I_i\llll \I
PrimarylogPG::do_request]

[OSD::dequeue_op
PGOpItem::run \|||

I
|l
[o] O

|

1)
(EfE | [unknown] [IEEE
__li.. | std:ithread.. (1 [§] |tom.. | (ShardeaThreadPoolWorkThreaashardedssentry

unknown

|l/® |PrimaryLog
|l Context::complete

Classic OSD Threads

Async

11

|18 |C_0SD_OnOpCommit::~C_OS..
|B PrimaryLogPG: : BlessedContext: :finish
Context::complete

Classic OSD Threads

i |
1 8 | | |8
| | (]] nat.. [§
| |) | o | . |0
! il B]
e [|] | schedule try_to_wa..
[.. | [futex_w..] wake_up_q
= | 11 futex wait futex_wake
[] - B 0 [@oNfuteX do_futex
. @5 18 —x64_s.. [EX64TSySIfN
en..) do_sysca.. (doNSyscallnean

| e & |
@@rrotocoiv2:.. '\R.. i 00 B0

AsyncConnection::send_message e},

PrimaryLogPG::eval_repop
PrimaryLogPG::repop_all_committed
Context::complete
ReplicatedBackend::op_commit
Context::complete
PrimaryLogPG::BlessedContext: :finish
Context::complete
Finisher::finisher_thread_entry
start_thread

fn_anonymous

all

Classic OSD Threads

|
[
g
|
|
|
|
|
|
= | \
| ||
i
| |
| ni
| \ 0
0 \ [|
0 | an
| \ | &
| | ||
= | | 1 | OpTrack.. | ‘
[] | OSD::ms_fast_di
|
g | |llinet_re.. Ws--] [.. B m|| =|=
= - DEWESyTERGEa ESyneCannectionENande) ion::p , I\” Ilh-ll
RN 2 syssendmsg T __han..
| —sys_sendmsg —x.. [Stdi:i_Function handler<vold — — = [
do_cyecall 64 . [libstde++.50.6.0.26] o go
|EREE [unknown] l page_fault]
| I e [fepoll.. | std::thread::_State_impl<std::thread::_Invoker<std::tuple<std::function<void (EcralloeECl |

msgr-worker-0
all

Crimson!

crimson-osd aims to be a replacement osd daemon with the following goals:

- Minimize cpu overhead

- Minimize cycles/iop

- Minimize cross-core communication

- Minimize copies

- Bypass kernel, avoid context switches
- Enable emerging storage technologies

- Zoned Namespaces

- Persistent Memory

- Fast NVME

Seastar

- Single thread per cpu

- Non-blocking 10

- Scheduling done in user space

- Includes direct support for DPDK, a high performance library for userspace networking

Programming Model

repeat([conn, this] ({

for (;;) { return conn.read request().then([this] (auto req)
auto req = connection.read request(); {
auto result = handle request(req); return handle_request(req);
connection.send response (result) ; }) .then([conn] (auto result) ({

} return conn.send response (result);

})
})

OSD Threading Architecture

Messenger PG

- L |

T

- L |

ObjectStore

- L |

— 1 —
R . v
Worker Thread

: N

Worker Thread

- L |

osd op queue

Worker Thread

' kv queue >

Messenger

= L |

= L |

Worker Thread

out_queue [>

Crimson Threading Architecture

i Seastar Reactor Thread

Messenger

PG

async wait >

ObjectStore

async wait >

Messenger

async wait >

Crimson Threading Architecture

Seastar Reactor Thread
Seastar Reactor Thread @

Seastar Reactor Thread

Crimson Threading Architecture

Seastar Reactor Thread

: > @ Seastar Reactor Thread
Incoming message @

Seastar Reactor Thread

Crimson Threading Architecture

Seastar Reactor Thread

Incoming message (2.4) > @ @
Seastar Reactor Thread

Seastar Reactor Thread

Crimson Threading Architecture

Seastar Reactor Thread

oo | G G0
Seastar Reactor Thread

Seastar Reactor Thread
Incoming message (2.4) > 10003 @

Crimson Threading Architecture

OSD 1

COICYRED
@ @ @

Incoming message (2.4) > @

OSD 2

Current Status

- Working:
- Peering
- Replication
Support for rbd based benchmarking
- Memory-only ObjectStore shim
- InProgress:
- Recovery/backfill
- BlueStore support (via alien) -- almost ready to merge
- Seastore implementation in progress

Performance

random read

0.0015
0.001
0.0005

0

B crimson-osd W ceph-osd

avg latency

seq write

0.008
0.006
0.004
0.002

0

B crimson-osd [ceph-osd

avg latency

Performance

random read seq write
B crimson-osd [ceph-osd B crimson-osd [ceph-osd
15000 3000
10000 2000
5000 1000
0 0
avg IOPS avg IOPS

Performance

seq write

random read ,
B crimson-osd [ceph-osd

B crimson-osd [ceph-osd

2
1.25
1 1.5
0.75 1
0.5
0.25 0.5
0 0
cpu util cpu util

BlueStore - Alien

BlueStore - Seastar Native

S
O
wid
®
3]
O
<

Seastar AlIO

Seastore

- Targets next generation storage technologies:
- Zone Namespaces
- Persistent Memory
- Independent metadata and allocation structures for each reactor to avoid synchronization

Seastore - ZNS

- New NVMe Specification
- Intended to address challenges with conventional FTL designs
- High writes amplification, bad for glc flash
- Background garbage collection tends to impact tail latencies
- Different interface
- Drivedivided into zones
- Zones can only be opened, written sequentially, closed, and released.
- As it happens, this kind of write pattern tends to be good for conventional ssds as well.

ObjectStore

- Transactional

- Composed of flat object namespace

- Object names may be large (>1k)

- Each object contains a key->value mapping (string->bytes) as well as a data payload.
- Supports COW obiject clones

- Supports ordered listing of both the omap and the object namespace

Seastore - Logical Structure

onode_by hobject Iba_tree

+ Iba_t -> block _info_t

hobject_t -> onode_t .
block _info

omap_tree

Seastore - Why use an LBA indirection?

When GCing a C, we need to do 2 things:
1. Find allincoming references (B in this case)
2. Write out a transaction updating (and dirtying) those
references as well as writing out the new block C’

Using direct references means we still need to maintain some
means of finding the parent references, and we pay the cost of
updating the relatively low fanout onode and omap trees.

By contrast, using an LBA indirection requires extra reads in the
lookup path, but potentially decreases reads and write
amplification during gc.

Seastore - Layout

Journal Segments

@ —

LBA Tree LBA Tree

Seastore - ZNS

Journal Segments

@

LBA Tree LBA Tree

Seastore - Persistent Memory

- Optane now available

- Almost DRAM like read latencies

- Write latency drastically lower than flash

- Seems like a good fit for caching data and metadata!

- Reads from persistent memory can simply return a ready future without waiting at all.
- Likely to be integrated into seastore as a replacement for metadata structures/journal deltas
- Inparticular, could be used to replace the Iba mapping.

Questions?

- Roadmap: https://github.com/ceph/ceph-notes/blob/master/crimson/status.rst

- Project Tracker: https://github.com/ceph/ceph/projects/2

- Documentation: https://github.com/ceph/ceph/blob/master/doc/dev/crimson.rst
- Seastar tutorial: https://github.com/scylladb/seastar/wiki/Seastar-Tutorial

https://github.com/ceph/ceph-notes/blob/master/crimson/status.rst
https://github.com/ceph/ceph/projects/2
https://github.com/ceph/ceph/blob/master/doc/dev/crimson.rst
https://github.com/scylladb/seastar/wiki/Seastar-Tutorial

