ceph

Crimson

A new osd for the age of persistent memory and fast nvme storage



Storage Keeps Getting Faster
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CPUs, not so much
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Ceph Architecture

APP HOST/VM CLIENT

$ $

RGW RBD CEPHFS

web services gateway for reliable, fully-distributed distributed file system
object storage, block device with cloud with POSIX semantics and
compatible with S3 and platform integration scale-out metadata
Swift management

LIBRADOS
client library allowing apps to access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS

software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors
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OSD Threading Architecture
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Classic OSD Threads
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Classic OSD Threads
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Classic OSD Threads
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Classic OSD Threads
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Crimson!

crimson-osd aims to be a replacement osd daemon with the following goals:

- Minimize cpu overhead

- Minimize cycles/iop

- Minimize cross-core communication

- Minimize copies

- Bypass kernel, avoid context switches
- Enable emerging storage technologies

- Zoned Namespaces

- Persistent Memory

- Fast NVME



Seastar

- Single thread per cpu

- Non-blocking 10

- Scheduling done in user space

- Includes direct support for DPDK, a high performance library for userspace networking



Programming Model

repeat([conn, this] ({

for (;;) { return conn.read request().then([this] (auto req)
auto req = connection.read request(); {
auto result = handle request(req); return handle_request(req);
connection.send response (result) ; }) .then([conn] (auto result) ({

} return conn.send response (result);

})
})



OSD Threading Architecture
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Crimson Threading Architecture
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Crimson Threading Architecture
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Crimson Threading Architecture
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Crimson Threading Architecture
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Crimson Threading Architecture
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Crimson Threading Architecture
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Current Status

- Working:
- Peering
- Replication
Support for rbd based benchmarking
- Memory-only ObjectStore shim
- InProgress:
- Recovery/backfill
- BlueStore support (via alien) -- almost ready to merge
- Seastore implementation in progress



Performance
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Performance
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Performance
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BlueStore - Alien




BlueStore - Seastar Native
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Seastore

- Targets next generation storage technologies:
- Zone Namespaces
- Persistent Memory
- Independent metadata and allocation structures for each reactor to avoid synchronization



Seastore - ZNS

- New NVMe Specification
- Intended to address challenges with conventional FTL designs
- High writes amplification, bad for glc flash
- Background garbage collection tends to impact tail latencies
- Different interface
- Drivedivided into zones
- Zones can only be opened, written sequentially, closed, and released.
- As it happens, this kind of write pattern tends to be good for conventional ssds as well.



ObjectStore

- Transactional

- Composed of flat object namespace

- Object names may be large (>1k)

- Each object contains a key->value mapping (string->bytes) as well as a data payload.
- Supports COW obiject clones

- Supports ordered listing of both the omap and the object namespace



Seastore - Logical Structure

onode_by hobject Iba_tree

+ Iba_t -> block _info_t

hobject_t -> onode_t .
block _info

omap_tree



Seastore - Why use an LBA indirection?

When GCing a C, we need to do 2 things:
1. Find allincoming references (B in this case)
2.  Write out a transaction updating (and dirtying) those
references as well as writing out the new block C’

Using direct references means we still need to maintain some
means of finding the parent references, and we pay the cost of
updating the relatively low fanout onode and omap trees.

By contrast, using an LBA indirection requires extra reads in the
lookup path, but potentially decreases reads and write
amplification during gc.



Seastore - Layout
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Seastore - ZNS
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Seastore - Persistent Memory

- Optane now available

- Almost DRAM like read latencies

- Write latency drastically lower than flash

- Seems like a good fit for caching data and metadata!

- Reads from persistent memory can simply return a ready future without waiting at all.
- Likely to be integrated into seastore as a replacement for metadata structures/journal deltas
- Inparticular, could be used to replace the Iba mapping.



Questions?

- Roadmap: https://github.com/ceph/ceph-notes/blob/master/crimson/status.rst

- Project Tracker: https://github.com/ceph/ceph/projects/2

- Documentation: https://github.com/ceph/ceph/blob/master/doc/dev/crimson.rst
- Seastar tutorial: https://github.com/scylladb/seastar/wiki/Seastar-Tutorial
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