
Using kAFS on Linux for
Network Home Directories

Jonathan Billings
University of Michigan,

College of Engineering, CAEN

Topics for today

● Background
● AFS in the Linux Kernel (kAFS)
● kAFS features
● kAFS vs systemd
● Why use kAFS?
● Future of kAFS
● Questions

AFS?

● Distributed network filesystem
● Allows replication of data across multiple servers
● Supports user authentication
● Provides access control lists for managing user and group

permissions

History of AFS

● The Andrew File System
○ Developed at Carnegie Mellon University in collaboration with Transarc

as the VICE file system as part of the Andrew Project in 1985
○ Later sold as a commercial product by Transarc (acquired by IBM)

● OpenAFS
○ IBM opened the source to the Transarc product under an IBM Public

License in 2000
○ The source is now managed by the OpenAFS foundation

What is AFS?

● Runs on top of RXRPC
● Global file system made up of a collection of cells
● Data is stored in volumes served by AFS file servers
● Uses Kerberos for authentication
● Paths appear as /afs/cellname/data.txt

What is RXRPC?

● Runs over UDP
● Remote Procedure Call service
● Security with Kerberos 5
● AFS uses RX for all its services

○ Services correspond to a service number
○ Service numbers defined in Rx_services registry

● It is possible to run other services over RXRPC

AFS Cells
openafs.org

/afs

umich.edu

CellServDB:
>umich.edu #University of Michigan - Campus
141.211.1.32 #fear.ifs.umich.edu
141.211.1.33 #surprise.ifs.umich.edu
141.211.1.34 #ruthless.ifs.umich.edu

AFS Cells
openafs.org

/afs

umich.edu

DNS:
% dig +short umich.edu -t afsdb
1 fear.ifs.umich.edu.
1 surprise.ifs.umich.edu.
1 ruthless.ifs.umich.edu.

(Can also use SRV records)

AFS Mountpoints

AFS Cells
openafs.org

/afs

umich.edu

classgroup systemuser

s

jsbillin

j

AFS Volumes
#umich.edu:root.cell

#umich.edu:user.jsbillin

#umich.edu:user.j

/afs

#umich.edu:user

umich.edu

user

s

jsbillin

j

Global File System
% ls /afs/umich.edu/
class/ group/ README system/ um/ user/

% ls /afs/openafs.org
archive/ cvs/ doc/ local/ project/ service/
software/ user/ www/

% wc -l /afs/umich.edu/user/j/s/jsbillin/.plan
13 /afs/umich.edu/user/j/s/jsbillin/.plan

Magic @sys expansion

● AFS clients have a concept of a “sysname”
● Can be one or more strings

○ By default on 64-bit x86_64 is “amd64_linux24”
○ Can add other sysnames such as “amd64_fedora_31”

● Create symlink or environment variable that includes
@sys in path

● Kernel automatically tries to substitute each member of
the sysname array, in order

● Very useful on multiple OSs, stages or classes

Magic @sys expansion in symlinks
For example, I have the hostname in the sysname array

$ hostname
rhea
$ fs sys
Current sysname list is 'rhea' 'amd64_fedora_31'

$ echo “I am $HOSTNAME” > testfile.$HOSTNAME
$ ls -ago testfile*
lrwxr-xr-x. 1 13 Jan 18 12:01 testfile -> testfile.@sys
-rw-r--r--. 1 31 Jan 18 12:00 testfile.rhea
-rw-rw-r--. 1 33 Jan 18 12:00 testfile.tethys
$ cat testfile
I am rhea

Why use AFS?

● Atomic volume moves and replication
● Strong identity management tied to Kerberos
● Open source and commercial clients for Windows,

macOS, Linux, BSD
● Supports collaborating across multiple cells

Why AFS isn’t as widely adopted

● Complex server infrastructure
● Can’t simply export existing dataset
● Client doesn’t support all filesystem objects such as Unix

domain sockets
● Open source AFS client used to require an out of tree

kernel module

AFS in the Linux Kernel

AFS in the Linux Kernel

● First introduced into the kernel in 2002
● Only had read support and manual mounts
● Improvements in the past two years have made it usable

for end users
● Enabled using these kernel build config options

○ CONFIG_AFS_FS=m
○ CONFIG_AFS_FSCACHE=y
○ CONFIG_AFS_DEBUG=y
○ CONFIG_AF_RXRPC=m
○ CONFIG_AF_RXRPC_IPV6=y
○ CONFIG_AF_RXRPC_DEBUG=y
○ CONFIG_RXKAD

Linux features used by kAFS
● In the Kernel

○ FS-Cache
○ Kernel keyrings
○ Kernel tracepoints (for debugging)
○ In-kernel cryptology functions
○ Dynamic automount

● Keyutil
○ For storing AFS tokens in kernel keyring
○ Uses request-key to handle callback requests from the kernel

kAFS on a Linux system

● Set up a mountpoint for /afs
/usr/lib/systemd/system/afs.mount
[Unit]
Description=kAFS Dynamic Root mount
ConditionPathExists=/afs
Wants=kafs-config.service

[Mount]
What=none
Where=/afs
Type=afs
Options=_netdev,dyn

[Install]
WantedBy=remote-fs.target

AFS Volumes on kAFS
% df -h /afs/umich.edu
Filesystem Size Used Avail Use% Mounted on
#umich.edu:root.cell 4.9M 17K 4.9M 1% /afs/umich.edu

% df -h /afs/umich.edu/user
Filesystem Size Used Avail Use% Mounted on
#umich.edu:user 1000K 38K 962K 4% /afs/umich.edu/user

% df -h /afs/umich.edu/user/j/s/jsbillin
Filesystem Size Used Avail Use% Mounted on
%umich.edu:user.jsbillin 10G 8.9G 1.2G 89%
/afs/umich.edu/user/j/s/jsbillin

Volume Mountpoints
% readlink /afs/umich.edu/user/j
#user.j.

% ls -d /afs/umich.edu/user/j/
/afs/umich.edu/user/j/

% grep umich.edu /proc/mounts
#umich.edu:root.cell /afs/umich.edu afs rw,relatime 0 0
#umich.edu:user /afs/umich.edu/user afs rw,relatime 0 0
#umich.edu:user.j /afs/umich.edu/user/j afs rw,relatime 0 0

Read vs. Read/Write Volume Mountpoints

% df /afs/umich.edu/user
Filesystem 1K-blocks Used Available Use% Mounted on
#umich.edu:user 1000 38 962 4%
/afs/umich.edu/user

% df /afs/umich.edu/user/j/s/jsbillin
Filesystem 1K-blocks Used Available Use% Mounted
on
%umich.edu:user.jsbillin 10485760 9065201 1420559 87%
/afs/umich.edu/user/j/s/jsbillin

% afs vos examine root.cell
root.cell 536870918 RW 17 K On-line

141.211.212.61 /vicepa
RWrite 536870918 ROnly 536870919 Backup 536870920
MaxQuota 5000 K
Creation Wed Jun 16 19:57:56 1993
Copy Mon Aug 19 19:29:18 2019
Backup Mon Jan 06 17:15:01 2020
Last Access Tue Jan 07 16:26:46 2020
Last Update Fri Jan 05 11:37:33 2007
794 accesses in the past day (i.e., vnode references)

RWrite: 536870918 ROnly: 536870919 Backup: 536870920
number of sites -> 4
server afsprs25.afs.storage.umich.edu partition /vicepa RW Site
server afsprs13.afs.storage.umich.edu partition /vicepa RO Site
server afsprs14.afs.storage.umich.edu partition /vicepa RO Site
server afsprs25.afs.storage.umich.edu partition /vicepa RO Site

% afs vos examine user.jsbillin
user.jsbillin 1957144488 RW 9240189 K On-line

141.211.212.58 /vicepc
RWrite 1957144488 ROnly 0 Backup 1957144490
MaxQuota 10485760 K
Creation Fri Jun 13 11:01:26 2008
Copy Thu Aug 29 17:15:36 2019
Backup Mon Jan 06 18:15:18 2020
Last Access Tue Jan 07 18:03:30 2020
Last Update Tue Jan 07 17:52:23 2020
56391 accesses in the past day (i.e., vnode references)

RWrite: 1957144488 ROnly: 1957144489Backup: 1957144490
number of sites -> 1
server afsprs22.afs.storage.umich.edu partition /vicepc RW Site

Authentication in kAFS
% kinit
Password for jsbillin@UMICH.EDU:
% aklog-kafs --verbose
CELL umich.edu
REALM UMICH.EDU
PRINC afs/umich.edu@UMICH.EDU
plen=379 tklen=355 rk=24
% keyctl show @s
Keyring
845055086 --alswrv 263726 1000 keyring: _ses
895678745 --als-rv 263726 1000 _ rxrpc: afs@umich.edu

kAFS Features not in OpenAFS

● Uses FS-Cache for caching filesystem objects instead of
separate caching daemon

● Supports IPv6 RX connections (when available)
● Each volume is its own mount

○ Quota of AFS volume is reflected in df output
● Supports event tracing

○ /sys/kernel/debug/tracing/events/afs
○ /sys/kernel/debug/tracing/events/rxrpc

● Does not use pioctl()

kAFS vs. systemd

● systemd has no problem launching kAFS client
● Issues arise when logging into a system

○ User logs in through PAM stack (ssh, gdm, login, etc.)
○ Systemd starts a “systemd --user” process on behalf of the user

● The systemd --user process
○ Is not a child of the login process
○ Does not inherit any environment variables or session keyring
○ Attempts to read systemd user units out of $HOME/.config/systemd/

Kerberos vs. systemd

● Home directory storage that uses krb5 authentication:
○ NFSv4 with sec=krb5
○ SMB with sec=krb5
○ OpenAFS and AuristorFS
○ Linux kAFS

Kerberos vs. systemd

● The recommended configuration of Kerberos 5 is to have
session-based Kerberos tickets

● Ticket caches are created as part of login and defined by
an environment variable, KRB5CCNAME
$ echo $KRB5CCNAME
FILE:/tmp/krb5cc_263726_wQCVknbH7b

● All child processes of login process get access to
kerberos through that environment variable

What happens when systemd --user runs?

● Doesn’t have kerberos tickets
● Can’t read $HOME/.config/systemd
● Can’t write to $HOME
● No systemd --user service in

$HOME/.config/systemd/user is read
● Any systemd --user service that requires access to

$HOME will get read or write errors

When systemd --user runs with GNOME?

● Xorg crashes, can’t write to
$HOME/.local/share/xorg/Xorg.pid-####.log

● Can’t read Dconf settings
● Nautilus crashes

What happens when systemd --user runs?

● Many graphical components are started by systemd --user
● Example: GNOME Terminal

○ gnome-terminal-server.service
○ All terminals are children of systemd --user and not

login process
○ All terminals launched have no krb5 tickets

Solutions

● Use a krb5 credential cache that is predictable
● As part of login process, run:

systemctl --user import-environment KRB5CCNAME

● Since systemd --user starts *before* ccache is initialized,
you’ll need to run:
systemctl --user daemon-reload

● Any failed user services also need to be restarted

Drawbacks

● Kerberos caches have traditionally been considered per-
session and not per-user.

● The systemd --user processes can persist after logout
○ Safe practice is to ‘kdestroy’ at logout
○ systemd --user session is unable to touch $HOME

anymore
● Multiple logins (ssh to workstation) will break other

session since there is only one systemd --user session

kAFS vs. systemd

● With AFS (OpenAFS and kAFS) you need to get an AFS
token from your krb5 ticket

● The systemd --user process doesn’t have either
● In addition to importing KRB5CCNAME, you need to run

an ‘aklog’ to get AFS tokens
● A kdestroy does not delete tokens

kAFS vs. systemd

● systemd --user session with AFS tokens will persist
logouts

● Second GNOME login will discover AFS tokens from
previous session in persisted systemd --user session

Solutions

● Run an aklog as part of systemd --user session
[Unit]
Description=Set up AFS tokens
Before=dbus.socket
Requires=afs.mount
[Service]
Type=simple
Environment=KRB5CCNAME=KEYRING:persistent:%U

RemainAfterExit=yes
ExecStart=/usr/bin/aklog
StandardOutput=syslog
[Install]
WantedBy=default.target

Drawbacks

● AFS tokens still persist with systemd --user
● Renewing tokens in login session does not renew tokens

in systemd --user session
○ Need to restart the aklog.service to renew tokens

● systemd --user does not handle krb5 ticket and AFS token
expirations gracefully

● Usually just crashes GNOME

Best solution

● Disable systemd --user entirely
systemctl mask user@.service

● Disabling user systemd breaks some software
○ Flatpak
○ Gnome tracker

● In latest GNOME, disabling systemd --user breaks
GNOME desktop and GDM, must use other Display
Manager and Desktop Environment
○ I use lightdm and MATE

Why use kAFS?

If you’re at an institution that uses AFS

● kAFS is more efficient than OpenAFS
○ Uses kernel VFS layer
○ Less overhead from network stack
○ Not limited by cache manager user space
○ Write latency is lower

● Officially part of Linux kernel and uses cool new features
● More open license, no 3rd party kmod

What needs to be implemented

● Fix systemd issues
● More AFS tools

○ Need ‘fs’ command for ACL manipulation
○ ‘vos’, ‘pts’, ‘bos’ already written but need testing
○ Use “user” keyring instead of “session” keyring for

storing AFS token
● More distros should turn on kAFS and rxrpc kernel

modules

Planned features

● inotify support
● SELinux labels and other extended attributes
● Container namespacing

Thanks!

David Howells (Red Hat)

Jeff Altman (Auristor)

OpenAFS Foundation

Questions?

Contact me:
jsbillings@jsbillings.org

