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AGENDA
Implications of FUSE as interface

● Impact of latency of FUSE-userspace transitions
● Caching

○ Kernel vs User-Space
○ Write caching and invalidations
○ Directory Entries

● Memory Management
● FUSE areas of improvement
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● Perception is that  multiple context 
switches limits performance  

● File-system daemon could be a 
distributed file system, as in the case 
of gluster, with network latencies 
incurred for most operations

FUSE architecture
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GLUSTER ARCHITECTURE OVERVIEW
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GLUSTER ARCHITECTURE
Distributed scale out storage using industry standard hardware

NFS CIFS FUSE

SERVERS WITH LOCAL DISKS

Aggregates systems to one cohesive unit 
and presents using common protocols



Gluster client-side implements 
distribution, replication and caching 
functionality.

GLUSTER ARCHITECTURE OVERVIEW
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Has not been the root-cause of any 
performance issues experienced with 
glusterfs-fuse.

Partly because network and storage 
device latency dominate: graph shows 
latency of FUSE path compared to gfapi.

FUSE Latency
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Caching: Kernel vs User-Space
FUSE filesystems can leverage kernel file system caches and functionality.

● Kernel
○ Page cache, read-ahead and writeback
○ Inode and dentry caches

● Gluster implements similar caching functionality and more in user-space
○ Read-ahead, write-behind, io-cache (data cache)
○ Readdir-ahead, currently not available in kernel; could be implemented.
○ Parallel-readdirplus, motivated by specific gluster architectural details
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● Kernel caches closer to application; 
perform better.

● Graph shows kernel fuse-writeback 
more effective at improving 
performance, compared to gluster 
write-behind:

○ 65% better for fio with 4k write 
size

○ 18% better for fio with 128k 
write size

Kernel vs. User-Space Caches
Which is preferable?
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For glusterfs-fuse, no compelling case for gluster user-space implementation of 
read-ahead and data cache (io-cache) over kernel provided equivalent.



FUSE Write Caching and Invalidation
Relevant FUSE features:

● write-through and write-back caching
● reverse invalidation framework for user-space process to invalidate kernel cache
● flag to control cache retention on open
● auto-invalidation logic for invalidating cache, and auto-invalidation on/off knob

○ only for write-through caching; write-back leaves invalidation responsibility to 
user-space.

○ stat update results in a check and invalidation of cached pages, if stat times have 
changed
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glusterfs-fuse: Invalidation and Write Caching 
glusterfs-fuse implementation:

● write-through caching is default
● retain cache on open 
● fuse auto-invalidation enabled by default
● kernel writeback caching can be enabled

○ mount option: kernel-writeback-cache=yes
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Retaining caches after write in 
write-through caching 

● FUSE auto invalidation not 
intelligent enough to distinguish 
local writes from remote writes

● Recommended to rely on custom 
invalidation policy implementation 
using reverse invalidation framework

Caching and Invalidation
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Custom Invalidation Policies in Userspace File 
Systems

● Userspace filesystems are recommended to implement custom invalidation policies 
using reverse invalidation framework for both write-through and write-back modes

○ NFS uses close-to-open consistency
■ Invalidate during open if file stat has changed since last close on the inode

○ Suggestions to use leases for stronger consistency
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Metadata Caching and Prefetching
Certain gluster user-space functionality is needed for good performance

● Functionality needed for good performance given gluster’s distributed nature and 
metadata-server-less architecture (missing in kernel)

○ Readdir-ahead
○ parallel readdirplus

● FUSE stat invalidation
○ md-cache (stat cache)
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Impact of parallel-readdirplus on Performance 
(Vault’17)

Explanation

● Dataset with small directories, which was not 
showing improvement with md-cache on

● Chart shows impact of parameters 
parallel-readdir and readdir-hashed
○ performance.parallel-readdir on
○ cluster.readdir-hashed on

● md-cache is on in all cases

Observations

● readdir-hashed improves performance on its 
own, but parallel-readdir=on is better than both 
set to on



Memory Management
● Glusterfs has to remember all inodes kernel had looked up and not forgot

○ Inode count can run from 10s of thousands to millions
● Many xlators in glusterfs maintain per xlator state in inodes and fds

○ Caches too are stored as xlator state in inode
○ Coupled with high inode count, memory consumed by inodes can be huge

● Inodes, dentries in userspace filesystem get accounted as process memory
○ OOM kill instead of inode cache eviction
○ Userspace caches can result in OOM kill
○ Glusterfs implemented its own lru based inode garbage collection using FUSE 

reverse invalidation framework
● Userspace process has limited visibility of global memory consumption

○ Cache memory management is less dynamic
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FUSE areas of improvements
● Max value of read-ahead tunable is 128KB
● Responses of operations that update file can carry latest stat to be populated in 

attributed cache
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Questions?
Presenters can also be reached at

● rgowdapp@redhat.com
● chenk@redhat.com
● mpillai@redhat.com 
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