
Experiences with FUSE in the Real World

Raghavendra Gowdappa, Csaba Henk, Manoj Pillai

February 2019

1

AGENDA
Implications of FUSE as interface

● Impact of latency of FUSE-userspace transitions
● Caching

○ Kernel vs User-Space
○ Write caching and invalidations
○ Directory Entries

● Memory Management
● FUSE areas of improvement

2

● Perception is that multiple context
switches limits performance

● File-system daemon could be a
distributed file system, as in the case
of gluster, with network latencies
incurred for most operations

FUSE architecture

3

GLUSTER ARCHITECTURE OVERVIEW

MOUNT POINT

FILE 1

server1

DISTRIBUTED-REPLICATED VOLUME

Replicated Vol 0 Replicated Vol 1

BRICK
(exp 1)

FILE 1

server2

BRICK
(exp 2)

FILE 2

server3

BRICK
(exp 3)

FILE 2

server4

BRICK
(exp 4)

GLUSTER ARCHITECTURE
Distributed scale out storage using industry standard hardware

NFS CIFS FUSE

SERVERS WITH LOCAL DISKS

Aggregates systems to one cohesive unit
and presents using common protocols

Gluster client-side implements
distribution, replication and caching
functionality.

GLUSTER ARCHITECTURE OVERVIEW

6

fuse-bridge

client-io-threads

io-stats

client-0

open-behind

write-behind

DHT

metadata-cache

server

server-io-threads

io-stats

posix

Has not been the root-cause of any
performance issues experienced with
glusterfs-fuse.

Partly because network and storage
device latency dominate: graph shows
latency of FUSE path compared to gfapi.

FUSE Latency

7

Caching: Kernel vs User-Space
FUSE filesystems can leverage kernel file system caches and functionality.

● Kernel
○ Page cache, read-ahead and writeback
○ Inode and dentry caches

● Gluster implements similar caching functionality and more in user-space
○ Read-ahead, write-behind, io-cache (data cache)
○ Readdir-ahead, currently not available in kernel; could be implemented.
○ Parallel-readdirplus, motivated by specific gluster architectural details

8

● Kernel caches closer to application;
perform better.

● Graph shows kernel fuse-writeback
more effective at improving
performance, compared to gluster
write-behind:

○ 65% better for fio with 4k write
size

○ 18% better for fio with 128k
write size

Kernel vs. User-Space Caches
Which is preferable?

9

For glusterfs-fuse, no compelling case for gluster user-space implementation of
read-ahead and data cache (io-cache) over kernel provided equivalent.

FUSE Write Caching and Invalidation
Relevant FUSE features:

● write-through and write-back caching
● reverse invalidation framework for user-space process to invalidate kernel cache
● flag to control cache retention on open
● auto-invalidation logic for invalidating cache, and auto-invalidation on/off knob

○ only for write-through caching; write-back leaves invalidation responsibility to
user-space.

○ stat update results in a check and invalidation of cached pages, if stat times have
changed

10

glusterfs-fuse: Invalidation and Write Caching
glusterfs-fuse implementation:

● write-through caching is default
● retain cache on open
● fuse auto-invalidation enabled by default
● kernel writeback caching can be enabled

○ mount option: kernel-writeback-cache=yes

11

Retaining caches after write in
write-through caching

● FUSE auto invalidation not
intelligent enough to distinguish
local writes from remote writes

● Recommended to rely on custom
invalidation policy implementation
using reverse invalidation framework

Caching and Invalidation

12

Custom Invalidation Policies in Userspace File
Systems

● Userspace filesystems are recommended to implement custom invalidation policies
using reverse invalidation framework for both write-through and write-back modes

○ NFS uses close-to-open consistency
■ Invalidate during open if file stat has changed since last close on the inode

○ Suggestions to use leases for stronger consistency

13

Metadata Caching and Prefetching
Certain gluster user-space functionality is needed for good performance

● Functionality needed for good performance given gluster’s distributed nature and
metadata-server-less architecture (missing in kernel)

○ Readdir-ahead
○ parallel readdirplus

● FUSE stat invalidation
○ md-cache (stat cache)

14

Impact of parallel-readdirplus on Performance
(Vault’17)

Explanation

● Dataset with small directories, which was not
showing improvement with md-cache on

● Chart shows impact of parameters
parallel-readdir and readdir-hashed
○ performance.parallel-readdir on
○ cluster.readdir-hashed on

● md-cache is on in all cases

Observations

● readdir-hashed improves performance on its
own, but parallel-readdir=on is better than both
set to on

Memory Management
● Glusterfs has to remember all inodes kernel had looked up and not forgot

○ Inode count can run from 10s of thousands to millions
● Many xlators in glusterfs maintain per xlator state in inodes and fds

○ Caches too are stored as xlator state in inode
○ Coupled with high inode count, memory consumed by inodes can be huge

● Inodes, dentries in userspace filesystem get accounted as process memory
○ OOM kill instead of inode cache eviction
○ Userspace caches can result in OOM kill
○ Glusterfs implemented its own lru based inode garbage collection using FUSE

reverse invalidation framework
● Userspace process has limited visibility of global memory consumption

○ Cache memory management is less dynamic

16

FUSE areas of improvements
● Max value of read-ahead tunable is 128KB
● Responses of operations that update file can carry latest stat to be populated in

attributed cache

17

ACKNOWLEDGMENTS
Contributions to this work

● Shekhar Berry and Xavi Hernandez for assistance on root causing pgbench
performance to sub-optimal cache functioning on client

● Miklos Szeredi for all the assistance provided on FUSE

18

Questions?
Presenters can also be reached at

● rgowdapp@redhat.com
● chenk@redhat.com
● mpillai@redhat.com

19

mailto:rgowdapp@redhat.com
mailto:chenk@redhat.com
mailto:mpillai@redhat.com

THANK YOU

